rtrs-srv.c 54.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * RDMA Transport Layer
 *
 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
 */

#undef pr_fmt
#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt

#include <linux/module.h>
#include <linux/mempool.h>

#include "rtrs-srv.h"
#include "rtrs-log.h"
18
#include <rdma/ib_cm.h>
19
#include <rdma/ib_verbs.h>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

MODULE_DESCRIPTION("RDMA Transport Server");
MODULE_LICENSE("GPL");

/* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
#define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
#define DEFAULT_SESS_QUEUE_DEPTH 512
#define MAX_HDR_SIZE PAGE_SIZE

/* We guarantee to serve 10 paths at least */
#define CHUNK_POOL_SZ 10

static struct rtrs_rdma_dev_pd dev_pd;
static mempool_t *chunk_pool;
struct class *rtrs_dev_class;
35
static struct rtrs_srv_ib_ctx ib_ctx;
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;

static bool always_invalidate = true;
module_param(always_invalidate, bool, 0444);
MODULE_PARM_DESC(always_invalidate,
		 "Invalidate memory registration for contiguous memory regions before accessing.");

module_param_named(max_chunk_size, max_chunk_size, int, 0444);
MODULE_PARM_DESC(max_chunk_size,
		 "Max size for each IO request, when change the unit is in byte (default: "
		 __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");

module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
MODULE_PARM_DESC(sess_queue_depth,
		 "Number of buffers for pending I/O requests to allocate per session. Maximum: "
		 __stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
		 __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");

static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };

static struct workqueue_struct *rtrs_wq;

static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
{
	return container_of(c, struct rtrs_srv_con, c);
}

static inline struct rtrs_srv_sess *to_srv_sess(struct rtrs_sess *s)
{
	return container_of(s, struct rtrs_srv_sess, s);
}

static bool __rtrs_srv_change_state(struct rtrs_srv_sess *sess,
				     enum rtrs_srv_state new_state)
{
	enum rtrs_srv_state old_state;
	bool changed = false;

	lockdep_assert_held(&sess->state_lock);
	old_state = sess->state;
	switch (new_state) {
	case RTRS_SRV_CONNECTED:
		switch (old_state) {
		case RTRS_SRV_CONNECTING:
			changed = true;
			fallthrough;
		default:
			break;
		}
		break;
	case RTRS_SRV_CLOSING:
		switch (old_state) {
		case RTRS_SRV_CONNECTING:
		case RTRS_SRV_CONNECTED:
			changed = true;
			fallthrough;
		default:
			break;
		}
		break;
	case RTRS_SRV_CLOSED:
		switch (old_state) {
		case RTRS_SRV_CLOSING:
			changed = true;
			fallthrough;
		default:
			break;
		}
		break;
	default:
		break;
	}
	if (changed)
		sess->state = new_state;

	return changed;
}

116 117
static bool rtrs_srv_change_state(struct rtrs_srv_sess *sess,
				   enum rtrs_srv_state new_state)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
{
	bool changed;

	spin_lock_irq(&sess->state_lock);
	changed = __rtrs_srv_change_state(sess, new_state);
	spin_unlock_irq(&sess->state_lock);

	return changed;
}

static void free_id(struct rtrs_srv_op *id)
{
	if (!id)
		return;
	kfree(id);
}

static void rtrs_srv_free_ops_ids(struct rtrs_srv_sess *sess)
{
	struct rtrs_srv *srv = sess->srv;
	int i;

	WARN_ON(atomic_read(&sess->ids_inflight));
	if (sess->ops_ids) {
		for (i = 0; i < srv->queue_depth; i++)
			free_id(sess->ops_ids[i]);
		kfree(sess->ops_ids);
		sess->ops_ids = NULL;
	}
}

static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);

static struct ib_cqe io_comp_cqe = {
	.done = rtrs_srv_rdma_done
};

static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_sess *sess)
{
	struct rtrs_srv *srv = sess->srv;
	struct rtrs_srv_op *id;
	int i;

	sess->ops_ids = kcalloc(srv->queue_depth, sizeof(*sess->ops_ids),
				GFP_KERNEL);
	if (!sess->ops_ids)
		goto err;

	for (i = 0; i < srv->queue_depth; ++i) {
		id = kzalloc(sizeof(*id), GFP_KERNEL);
		if (!id)
			goto err;

		sess->ops_ids[i] = id;
	}
	init_waitqueue_head(&sess->ids_waitq);
	atomic_set(&sess->ids_inflight, 0);

	return 0;

err:
	rtrs_srv_free_ops_ids(sess);
	return -ENOMEM;
}

static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_sess *sess)
{
	atomic_inc(&sess->ids_inflight);
}

static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_sess *sess)
{
	if (atomic_dec_and_test(&sess->ids_inflight))
		wake_up(&sess->ids_waitq);
}

static void rtrs_srv_wait_ops_ids(struct rtrs_srv_sess *sess)
{
	wait_event(sess->ids_waitq, !atomic_read(&sess->ids_inflight));
}


static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
{
202
	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_srv_sess *sess = to_srv_sess(s);

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		rtrs_err(s, "REG MR failed: %s\n",
			  ib_wc_status_msg(wc->status));
		close_sess(sess);
		return;
	}
}

static struct ib_cqe local_reg_cqe = {
	.done = rtrs_srv_reg_mr_done
};

static int rdma_write_sg(struct rtrs_srv_op *id)
{
	struct rtrs_sess *s = id->con->c.sess;
	struct rtrs_srv_sess *sess = to_srv_sess(s);
	dma_addr_t dma_addr = sess->dma_addr[id->msg_id];
	struct rtrs_srv_mr *srv_mr;
	struct rtrs_srv *srv = sess->srv;
225 226
	struct ib_send_wr inv_wr;
	struct ib_rdma_wr imm_wr;
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	struct ib_rdma_wr *wr = NULL;
	enum ib_send_flags flags;
	size_t sg_cnt;
	int err, offset;
	bool need_inval;
	u32 rkey = 0;
	struct ib_reg_wr rwr;
	struct ib_sge *plist;
	struct ib_sge list;

	sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
	need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
	if (unlikely(sg_cnt != 1))
		return -EINVAL;

	offset = 0;

	wr		= &id->tx_wr;
	plist		= &id->tx_sg;
	plist->addr	= dma_addr + offset;
	plist->length	= le32_to_cpu(id->rd_msg->desc[0].len);

	/* WR will fail with length error
	 * if this is 0
	 */
	if (unlikely(plist->length == 0)) {
		rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
		return -EINVAL;
	}

	plist->lkey = sess->s.dev->ib_pd->local_dma_lkey;
	offset += plist->length;

	wr->wr.sg_list	= plist;
	wr->wr.num_sge	= 1;
	wr->remote_addr	= le64_to_cpu(id->rd_msg->desc[0].addr);
	wr->rkey	= le32_to_cpu(id->rd_msg->desc[0].key);
	if (rkey == 0)
		rkey = wr->rkey;
	else
		/* Only one key is actually used */
		WARN_ON_ONCE(rkey != wr->rkey);

	wr->wr.opcode = IB_WR_RDMA_WRITE;
J
Jack Wang 已提交
271
	wr->wr.wr_cqe   = &io_comp_cqe;
272 273 274 275 276 277
	wr->wr.ex.imm_data = 0;
	wr->wr.send_flags  = 0;

	if (need_inval && always_invalidate) {
		wr->wr.next = &rwr.wr;
		rwr.wr.next = &inv_wr;
278
		inv_wr.next = &imm_wr.wr;
279 280
	} else if (always_invalidate) {
		wr->wr.next = &rwr.wr;
281
		rwr.wr.next = &imm_wr.wr;
282 283
	} else if (need_inval) {
		wr->wr.next = &inv_wr;
284
		inv_wr.next = &imm_wr.wr;
285
	} else {
286
		wr->wr.next = &imm_wr.wr;
287 288 289 290 291 292 293 294 295 296 297 298
	}
	/*
	 * From time to time we have to post signaled sends,
	 * or send queue will fill up and only QP reset can help.
	 */
	flags = (atomic_inc_return(&id->con->wr_cnt) % srv->queue_depth) ?
		0 : IB_SEND_SIGNALED;

	if (need_inval) {
		inv_wr.sg_list = NULL;
		inv_wr.num_sge = 0;
		inv_wr.opcode = IB_WR_SEND_WITH_INV;
J
Jack Wang 已提交
299
		inv_wr.wr_cqe   = &io_comp_cqe;
300 301 302 303
		inv_wr.send_flags = 0;
		inv_wr.ex.invalidate_rkey = rkey;
	}

304
	imm_wr.wr.next = NULL;
305 306 307 308 309
	if (always_invalidate) {
		struct rtrs_msg_rkey_rsp *msg;

		srv_mr = &sess->mrs[id->msg_id];
		rwr.wr.opcode = IB_WR_REG_MR;
J
Jack Wang 已提交
310
		rwr.wr.wr_cqe = &local_reg_cqe;
311 312 313 314 315 316 317 318 319 320 321 322 323 324
		rwr.wr.num_sge = 0;
		rwr.mr = srv_mr->mr;
		rwr.wr.send_flags = 0;
		rwr.key = srv_mr->mr->rkey;
		rwr.access = (IB_ACCESS_LOCAL_WRITE |
			      IB_ACCESS_REMOTE_WRITE);
		msg = srv_mr->iu->buf;
		msg->buf_id = cpu_to_le16(id->msg_id);
		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);

		list.addr   = srv_mr->iu->dma_addr;
		list.length = sizeof(*msg);
		list.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
325 326 327
		imm_wr.wr.sg_list = &list;
		imm_wr.wr.num_sge = 1;
		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
328 329 330 331
		ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
					      srv_mr->iu->dma_addr,
					      srv_mr->iu->size, DMA_TO_DEVICE);
	} else {
332 333 334
		imm_wr.wr.sg_list = NULL;
		imm_wr.wr.num_sge = 0;
		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
335
	}
336 337
	imm_wr.wr.send_flags = flags;
	imm_wr.wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
338 339
							     0, need_inval));

340
	imm_wr.wr.wr_cqe   = &io_comp_cqe;
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, dma_addr,
				      offset, DMA_BIDIRECTIONAL);

	err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
	if (unlikely(err))
		rtrs_err(s,
			  "Posting RDMA-Write-Request to QP failed, err: %d\n",
			  err);

	return err;
}

/**
 * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
 *                      requests or on successful WRITE request.
 * @con:	the connection to send back result
 * @id:		the id associated with the IO
 * @errno:	the error number of the IO.
 *
 * Return 0 on success, errno otherwise.
 */
static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
			    int errno)
{
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_srv_sess *sess = to_srv_sess(s);
367 368
	struct ib_send_wr inv_wr, *wr = NULL;
	struct ib_rdma_wr imm_wr;
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	struct ib_reg_wr rwr;
	struct rtrs_srv *srv = sess->srv;
	struct rtrs_srv_mr *srv_mr;
	bool need_inval = false;
	enum ib_send_flags flags;
	u32 imm;
	int err;

	if (id->dir == READ) {
		struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
		size_t sg_cnt;

		need_inval = le16_to_cpu(rd_msg->flags) &
				RTRS_MSG_NEED_INVAL_F;
		sg_cnt = le16_to_cpu(rd_msg->sg_cnt);

		if (need_inval) {
			if (likely(sg_cnt)) {
J
Jack Wang 已提交
387
				inv_wr.wr_cqe   = &io_comp_cqe;
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
				inv_wr.sg_list = NULL;
				inv_wr.num_sge = 0;
				inv_wr.opcode = IB_WR_SEND_WITH_INV;
				inv_wr.send_flags = 0;
				/* Only one key is actually used */
				inv_wr.ex.invalidate_rkey =
					le32_to_cpu(rd_msg->desc[0].key);
			} else {
				WARN_ON_ONCE(1);
				need_inval = false;
			}
		}
	}

	if (need_inval && always_invalidate) {
		wr = &inv_wr;
		inv_wr.next = &rwr.wr;
405
		rwr.wr.next = &imm_wr.wr;
406 407
	} else if (always_invalidate) {
		wr = &rwr.wr;
408
		rwr.wr.next = &imm_wr.wr;
409 410
	} else if (need_inval) {
		wr = &inv_wr;
411
		inv_wr.next = &imm_wr.wr;
412
	} else {
413
		wr = &imm_wr.wr;
414 415 416 417 418 419 420 421
	}
	/*
	 * From time to time we have to post signalled sends,
	 * or send queue will fill up and only QP reset can help.
	 */
	flags = (atomic_inc_return(&con->wr_cnt) % srv->queue_depth) ?
		0 : IB_SEND_SIGNALED;
	imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
422
	imm_wr.wr.next = NULL;
423 424 425 426 427
	if (always_invalidate) {
		struct ib_sge list;
		struct rtrs_msg_rkey_rsp *msg;

		srv_mr = &sess->mrs[id->msg_id];
428
		rwr.wr.next = &imm_wr.wr;
429
		rwr.wr.opcode = IB_WR_REG_MR;
J
Jack Wang 已提交
430
		rwr.wr.wr_cqe = &local_reg_cqe;
431 432 433 434 435 436 437 438 439 440 441 442 443 444
		rwr.wr.num_sge = 0;
		rwr.wr.send_flags = 0;
		rwr.mr = srv_mr->mr;
		rwr.key = srv_mr->mr->rkey;
		rwr.access = (IB_ACCESS_LOCAL_WRITE |
			      IB_ACCESS_REMOTE_WRITE);
		msg = srv_mr->iu->buf;
		msg->buf_id = cpu_to_le16(id->msg_id);
		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);

		list.addr   = srv_mr->iu->dma_addr;
		list.length = sizeof(*msg);
		list.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
445 446 447
		imm_wr.wr.sg_list = &list;
		imm_wr.wr.num_sge = 1;
		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
448 449 450 451
		ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
					      srv_mr->iu->dma_addr,
					      srv_mr->iu->size, DMA_TO_DEVICE);
	} else {
452 453 454
		imm_wr.wr.sg_list = NULL;
		imm_wr.wr.num_sge = 0;
		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
455
	}
456 457
	imm_wr.wr.send_flags = flags;
	imm_wr.wr.wr_cqe   = &io_comp_cqe;
458

459
	imm_wr.wr.ex.imm_data = cpu_to_be32(imm);
460 461 462 463 464 465 466 467 468 469 470

	err = ib_post_send(id->con->c.qp, wr, NULL);
	if (unlikely(err))
		rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n",
			     err);

	return err;
}

void close_sess(struct rtrs_srv_sess *sess)
{
471
	if (rtrs_srv_change_state(sess, RTRS_SRV_CLOSING))
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
		queue_work(rtrs_wq, &sess->close_work);
	WARN_ON(sess->state != RTRS_SRV_CLOSING);
}

static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
{
	switch (state) {
	case RTRS_SRV_CONNECTING:
		return "RTRS_SRV_CONNECTING";
	case RTRS_SRV_CONNECTED:
		return "RTRS_SRV_CONNECTED";
	case RTRS_SRV_CLOSING:
		return "RTRS_SRV_CLOSING";
	case RTRS_SRV_CLOSED:
		return "RTRS_SRV_CLOSED";
	default:
		return "UNKNOWN";
	}
}

/**
 * rtrs_srv_resp_rdma() - Finish an RDMA request
 *
 * @id:		Internal RTRS operation identifier
 * @status:	Response Code sent to the other side for this operation.
 *		0 = success, <=0 error
 * Context: any
 *
 * Finish a RDMA operation. A message is sent to the client and the
 * corresponding memory areas will be released.
 */
bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
{
	struct rtrs_srv_sess *sess;
	struct rtrs_srv_con *con;
	struct rtrs_sess *s;
	int err;

	if (WARN_ON(!id))
		return true;

	con = id->con;
	s = con->c.sess;
	sess = to_srv_sess(s);

	id->status = status;

	if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
		rtrs_err_rl(s,
521 522 523
			    "Sending I/O response failed,  session %s is disconnected, sess state %s\n",
			    kobject_name(&sess->kobj),
			    rtrs_srv_state_str(sess->state));
524 525 526 527 528 529 530 531 532
		goto out;
	}
	if (always_invalidate) {
		struct rtrs_srv_mr *mr = &sess->mrs[id->msg_id];

		ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
	}
	if (unlikely(atomic_sub_return(1,
				       &con->sq_wr_avail) < 0)) {
533 534 535
		rtrs_err(s, "IB send queue full: sess=%s cid=%d\n",
			 kobject_name(&sess->kobj),
			 con->c.cid);
536 537 538 539 540 541 542 543 544 545 546 547 548
		atomic_add(1, &con->sq_wr_avail);
		spin_lock(&con->rsp_wr_wait_lock);
		list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
		spin_unlock(&con->rsp_wr_wait_lock);
		return false;
	}

	if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
		err = send_io_resp_imm(con, id, status);
	else
		err = rdma_write_sg(id);

	if (unlikely(err)) {
549 550
		rtrs_err_rl(s, "IO response failed: %d: sess=%s\n", err,
			    kobject_name(&sess->kobj));
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
		close_sess(sess);
	}
out:
	rtrs_srv_put_ops_ids(sess);
	return true;
}
EXPORT_SYMBOL(rtrs_srv_resp_rdma);

/**
 * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
 * @srv:	Session pointer
 * @priv:	The private pointer that is associated with the session.
 */
void rtrs_srv_set_sess_priv(struct rtrs_srv *srv, void *priv)
{
	srv->priv = priv;
}
EXPORT_SYMBOL(rtrs_srv_set_sess_priv);

static void unmap_cont_bufs(struct rtrs_srv_sess *sess)
{
	int i;

	for (i = 0; i < sess->mrs_num; i++) {
		struct rtrs_srv_mr *srv_mr;

		srv_mr = &sess->mrs[i];
578
		rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
		ib_dereg_mr(srv_mr->mr);
		ib_dma_unmap_sg(sess->s.dev->ib_dev, srv_mr->sgt.sgl,
				srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
		sg_free_table(&srv_mr->sgt);
	}
	kfree(sess->mrs);
}

static int map_cont_bufs(struct rtrs_srv_sess *sess)
{
	struct rtrs_srv *srv = sess->srv;
	struct rtrs_sess *ss = &sess->s;
	int i, mri, err, mrs_num;
	unsigned int chunk_bits;
	int chunks_per_mr = 1;

	/*
	 * Here we map queue_depth chunks to MR.  Firstly we have to
	 * figure out how many chunks can we map per MR.
	 */
	if (always_invalidate) {
		/*
		 * in order to do invalidate for each chunks of memory, we needs
		 * more memory regions.
		 */
		mrs_num = srv->queue_depth;
	} else {
		chunks_per_mr =
			sess->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
		mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
		chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
	}

	sess->mrs = kcalloc(mrs_num, sizeof(*sess->mrs), GFP_KERNEL);
	if (!sess->mrs)
		return -ENOMEM;

	sess->mrs_num = mrs_num;

	for (mri = 0; mri < mrs_num; mri++) {
		struct rtrs_srv_mr *srv_mr = &sess->mrs[mri];
		struct sg_table *sgt = &srv_mr->sgt;
		struct scatterlist *s;
		struct ib_mr *mr;
		int nr, chunks;

		chunks = chunks_per_mr * mri;
		if (!always_invalidate)
			chunks_per_mr = min_t(int, chunks_per_mr,
					      srv->queue_depth - chunks);

		err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
		if (err)
			goto err;

		for_each_sg(sgt->sgl, s, chunks_per_mr, i)
			sg_set_page(s, srv->chunks[chunks + i],
				    max_chunk_size, 0);

		nr = ib_dma_map_sg(sess->s.dev->ib_dev, sgt->sgl,
				   sgt->nents, DMA_BIDIRECTIONAL);
		if (nr < sgt->nents) {
			err = nr < 0 ? nr : -EINVAL;
			goto free_sg;
		}
		mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
				 sgt->nents);
		if (IS_ERR(mr)) {
			err = PTR_ERR(mr);
			goto unmap_sg;
		}
		nr = ib_map_mr_sg(mr, sgt->sgl, sgt->nents,
				  NULL, max_chunk_size);
652
		if (nr < 0 || nr < sgt->nents) {
653 654 655 656 657 658 659 660 661 662
			err = nr < 0 ? nr : -EINVAL;
			goto dereg_mr;
		}

		if (always_invalidate) {
			srv_mr->iu = rtrs_iu_alloc(1,
					sizeof(struct rtrs_msg_rkey_rsp),
					GFP_KERNEL, sess->s.dev->ib_dev,
					DMA_TO_DEVICE, rtrs_srv_rdma_done);
			if (!srv_mr->iu) {
663 664
				err = -ENOMEM;
				rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err);
665
				goto dereg_mr;
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
			}
		}
		/* Eventually dma addr for each chunk can be cached */
		for_each_sg(sgt->sgl, s, sgt->orig_nents, i)
			sess->dma_addr[chunks + i] = sg_dma_address(s);

		ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
		srv_mr->mr = mr;

		continue;
err:
		while (mri--) {
			srv_mr = &sess->mrs[mri];
			sgt = &srv_mr->sgt;
			mr = srv_mr->mr;
681
			rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
dereg_mr:
			ib_dereg_mr(mr);
unmap_sg:
			ib_dma_unmap_sg(sess->s.dev->ib_dev, sgt->sgl,
					sgt->nents, DMA_BIDIRECTIONAL);
free_sg:
			sg_free_table(sgt);
		}
		kfree(sess->mrs);

		return err;
	}

	chunk_bits = ilog2(srv->queue_depth - 1) + 1;
	sess->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);

	return 0;
}

static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
{
	close_sess(to_srv_sess(c->sess));
}

static void rtrs_srv_init_hb(struct rtrs_srv_sess *sess)
{
	rtrs_init_hb(&sess->s, &io_comp_cqe,
		      RTRS_HB_INTERVAL_MS,
		      RTRS_HB_MISSED_MAX,
		      rtrs_srv_hb_err_handler,
		      rtrs_wq);
}

static void rtrs_srv_start_hb(struct rtrs_srv_sess *sess)
{
	rtrs_start_hb(&sess->s);
}

static void rtrs_srv_stop_hb(struct rtrs_srv_sess *sess)
{
	rtrs_stop_hb(&sess->s);
}

static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
{
727
	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
728 729 730 731 732
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_srv_sess *sess = to_srv_sess(s);
	struct rtrs_iu *iu;

	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
733
	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		rtrs_err(s, "Sess info response send failed: %s\n",
			  ib_wc_status_msg(wc->status));
		close_sess(sess);
		return;
	}
	WARN_ON(wc->opcode != IB_WC_SEND);
}

static void rtrs_srv_sess_up(struct rtrs_srv_sess *sess)
{
	struct rtrs_srv *srv = sess->srv;
	struct rtrs_srv_ctx *ctx = srv->ctx;
	int up;

	mutex_lock(&srv->paths_ev_mutex);
	up = ++srv->paths_up;
	if (up == 1)
		ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
	mutex_unlock(&srv->paths_ev_mutex);

	/* Mark session as established */
	sess->established = true;
}

static void rtrs_srv_sess_down(struct rtrs_srv_sess *sess)
{
	struct rtrs_srv *srv = sess->srv;
	struct rtrs_srv_ctx *ctx = srv->ctx;

	if (!sess->established)
		return;

	sess->established = false;
	mutex_lock(&srv->paths_ev_mutex);
	WARN_ON(!srv->paths_up);
	if (--srv->paths_up == 0)
		ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
	mutex_unlock(&srv->paths_ev_mutex);
}

static int post_recv_sess(struct rtrs_srv_sess *sess);

static int process_info_req(struct rtrs_srv_con *con,
			    struct rtrs_msg_info_req *msg)
{
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_srv_sess *sess = to_srv_sess(s);
	struct ib_send_wr *reg_wr = NULL;
	struct rtrs_msg_info_rsp *rsp;
	struct rtrs_iu *tx_iu;
	struct ib_reg_wr *rwr;
	int mri, err;
	size_t tx_sz;

	err = post_recv_sess(sess);
	if (unlikely(err)) {
		rtrs_err(s, "post_recv_sess(), err: %d\n", err);
		return err;
	}
	rwr = kcalloc(sess->mrs_num, sizeof(*rwr), GFP_KERNEL);
	if (unlikely(!rwr))
		return -ENOMEM;
	strlcpy(sess->s.sessname, msg->sessname, sizeof(sess->s.sessname));

	tx_sz  = sizeof(*rsp);
	tx_sz += sizeof(rsp->desc[0]) * sess->mrs_num;
	tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
			       DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
	if (unlikely(!tx_iu)) {
		err = -ENOMEM;
		goto rwr_free;
	}

	rsp = tx_iu->buf;
	rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
	rsp->sg_cnt = cpu_to_le16(sess->mrs_num);

	for (mri = 0; mri < sess->mrs_num; mri++) {
		struct ib_mr *mr = sess->mrs[mri].mr;

		rsp->desc[mri].addr = cpu_to_le64(mr->iova);
		rsp->desc[mri].key  = cpu_to_le32(mr->rkey);
		rsp->desc[mri].len  = cpu_to_le32(mr->length);

		/*
		 * Fill in reg MR request and chain them *backwards*
		 */
		rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
		rwr[mri].wr.opcode = IB_WR_REG_MR;
		rwr[mri].wr.wr_cqe = &local_reg_cqe;
		rwr[mri].wr.num_sge = 0;
J
Jack Wang 已提交
827
		rwr[mri].wr.send_flags = 0;
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
		rwr[mri].mr = mr;
		rwr[mri].key = mr->rkey;
		rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
				   IB_ACCESS_REMOTE_WRITE);
		reg_wr = &rwr[mri].wr;
	}

	err = rtrs_srv_create_sess_files(sess);
	if (unlikely(err))
		goto iu_free;
	kobject_get(&sess->kobj);
	get_device(&sess->srv->dev);
	rtrs_srv_change_state(sess, RTRS_SRV_CONNECTED);
	rtrs_srv_start_hb(sess);

	/*
	 * We do not account number of established connections at the current
	 * moment, we rely on the client, which should send info request when
	 * all connections are successfully established.  Thus, simply notify
	 * listener with a proper event if we are the first path.
	 */
	rtrs_srv_sess_up(sess);

	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
				      tx_iu->size, DMA_TO_DEVICE);

	/* Send info response */
	err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
	if (unlikely(err)) {
		rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err);
iu_free:
859
		rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
860 861 862 863 864 865 866 867 868
	}
rwr_free:
	kfree(rwr);

	return err;
}

static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
{
869
	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_srv_sess *sess = to_srv_sess(s);
	struct rtrs_msg_info_req *msg;
	struct rtrs_iu *iu;
	int err;

	WARN_ON(con->c.cid);

	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		rtrs_err(s, "Sess info request receive failed: %s\n",
			  ib_wc_status_msg(wc->status));
		goto close;
	}
	WARN_ON(wc->opcode != IB_WC_RECV);

	if (unlikely(wc->byte_len < sizeof(*msg))) {
		rtrs_err(s, "Sess info request is malformed: size %d\n",
			  wc->byte_len);
		goto close;
	}
	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
				   iu->size, DMA_FROM_DEVICE);
	msg = iu->buf;
	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ)) {
		rtrs_err(s, "Sess info request is malformed: type %d\n",
			  le16_to_cpu(msg->type));
		goto close;
	}
	err = process_info_req(con, msg);
	if (unlikely(err))
		goto close;

out:
904
	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	return;
close:
	close_sess(sess);
	goto out;
}

static int post_recv_info_req(struct rtrs_srv_con *con)
{
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_srv_sess *sess = to_srv_sess(s);
	struct rtrs_iu *rx_iu;
	int err;

	rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
			       GFP_KERNEL, sess->s.dev->ib_dev,
			       DMA_FROM_DEVICE, rtrs_srv_info_req_done);
	if (unlikely(!rx_iu))
		return -ENOMEM;
	/* Prepare for getting info response */
	err = rtrs_iu_post_recv(&con->c, rx_iu);
	if (unlikely(err)) {
		rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err);
927
		rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		return err;
	}

	return 0;
}

static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
{
	int i, err;

	for (i = 0; i < q_size; i++) {
		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
		if (unlikely(err))
			return err;
	}

	return 0;
}

static int post_recv_sess(struct rtrs_srv_sess *sess)
{
	struct rtrs_srv *srv = sess->srv;
	struct rtrs_sess *s = &sess->s;
	size_t q_size;
	int err, cid;

	for (cid = 0; cid < sess->s.con_num; cid++) {
		if (cid == 0)
			q_size = SERVICE_CON_QUEUE_DEPTH;
		else
			q_size = srv->queue_depth;

		err = post_recv_io(to_srv_con(sess->s.con[cid]), q_size);
		if (unlikely(err)) {
			rtrs_err(s, "post_recv_io(), err: %d\n", err);
			return err;
		}
	}

	return 0;
}

static void process_read(struct rtrs_srv_con *con,
			 struct rtrs_msg_rdma_read *msg,
			 u32 buf_id, u32 off)
{
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_srv_sess *sess = to_srv_sess(s);
	struct rtrs_srv *srv = sess->srv;
	struct rtrs_srv_ctx *ctx = srv->ctx;
	struct rtrs_srv_op *id;

	size_t usr_len, data_len;
	void *data;
	int ret;

	if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
		rtrs_err_rl(s,
			     "Processing read request failed,  session is disconnected, sess state %s\n",
			     rtrs_srv_state_str(sess->state));
		return;
	}
	if (unlikely(msg->sg_cnt != 1 && msg->sg_cnt != 0)) {
		rtrs_err_rl(s,
			    "Processing read request failed, invalid message\n");
		return;
	}
	rtrs_srv_get_ops_ids(sess);
	rtrs_srv_update_rdma_stats(sess->stats, off, READ);
	id = sess->ops_ids[buf_id];
	id->con		= con;
	id->dir		= READ;
	id->msg_id	= buf_id;
	id->rd_msg	= msg;
	usr_len = le16_to_cpu(msg->usr_len);
	data_len = off - usr_len;
	data = page_address(srv->chunks[buf_id]);
1005
	ret = ctx->ops.rdma_ev(srv->priv, id, READ, data, data_len,
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
			   data + data_len, usr_len);

	if (unlikely(ret)) {
		rtrs_err_rl(s,
			     "Processing read request failed, user module cb reported for msg_id %d, err: %d\n",
			     buf_id, ret);
		goto send_err_msg;
	}

	return;

send_err_msg:
	ret = send_io_resp_imm(con, id, ret);
	if (ret < 0) {
		rtrs_err_rl(s,
			     "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n",
			     buf_id, ret);
		close_sess(sess);
	}
	rtrs_srv_put_ops_ids(sess);
}

static void process_write(struct rtrs_srv_con *con,
			  struct rtrs_msg_rdma_write *req,
			  u32 buf_id, u32 off)
{
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_srv_sess *sess = to_srv_sess(s);
	struct rtrs_srv *srv = sess->srv;
	struct rtrs_srv_ctx *ctx = srv->ctx;
	struct rtrs_srv_op *id;

	size_t data_len, usr_len;
	void *data;
	int ret;

	if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
		rtrs_err_rl(s,
			     "Processing write request failed,  session is disconnected, sess state %s\n",
			     rtrs_srv_state_str(sess->state));
		return;
	}
	rtrs_srv_get_ops_ids(sess);
	rtrs_srv_update_rdma_stats(sess->stats, off, WRITE);
	id = sess->ops_ids[buf_id];
	id->con    = con;
	id->dir    = WRITE;
	id->msg_id = buf_id;

	usr_len = le16_to_cpu(req->usr_len);
	data_len = off - usr_len;
	data = page_address(srv->chunks[buf_id]);
1058
	ret = ctx->ops.rdma_ev(srv->priv, id, WRITE, data, data_len,
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
			   data + data_len, usr_len);
	if (unlikely(ret)) {
		rtrs_err_rl(s,
			     "Processing write request failed, user module callback reports err: %d\n",
			     ret);
		goto send_err_msg;
	}

	return;

send_err_msg:
	ret = send_io_resp_imm(con, id, ret);
	if (ret < 0) {
		rtrs_err_rl(s,
			     "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n",
			     buf_id, ret);
		close_sess(sess);
	}
	rtrs_srv_put_ops_ids(sess);
}

static void process_io_req(struct rtrs_srv_con *con, void *msg,
			   u32 id, u32 off)
{
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_srv_sess *sess = to_srv_sess(s);
	struct rtrs_msg_rdma_hdr *hdr;
	unsigned int type;

	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, sess->dma_addr[id],
				   max_chunk_size, DMA_BIDIRECTIONAL);
	hdr = msg;
	type = le16_to_cpu(hdr->type);

	switch (type) {
	case RTRS_MSG_WRITE:
		process_write(con, msg, id, off);
		break;
	case RTRS_MSG_READ:
		process_read(con, msg, id, off);
		break;
	default:
		rtrs_err(s,
			  "Processing I/O request failed, unknown message type received: 0x%02x\n",
			  type);
		goto err;
	}

	return;

err:
	close_sess(sess);
}

static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct rtrs_srv_mr *mr =
		container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
1117
	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_srv_sess *sess = to_srv_sess(s);
	struct rtrs_srv *srv = sess->srv;
	u32 msg_id, off;
	void *data;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
			  ib_wc_status_msg(wc->status));
		close_sess(sess);
	}
	msg_id = mr->msg_id;
	off = mr->msg_off;
	data = page_address(srv->chunks[msg_id]) + off;
	process_io_req(con, data, msg_id, off);
}

static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
			      struct rtrs_srv_mr *mr)
{
	struct ib_send_wr wr = {
		.opcode		    = IB_WR_LOCAL_INV,
		.wr_cqe		    = &mr->inv_cqe,
		.send_flags	    = IB_SEND_SIGNALED,
		.ex.invalidate_rkey = mr->mr->rkey,
	};
	mr->inv_cqe.done = rtrs_srv_inv_rkey_done;

	return ib_post_send(con->c.qp, &wr, NULL);
}

static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
{
	spin_lock(&con->rsp_wr_wait_lock);
	while (!list_empty(&con->rsp_wr_wait_list)) {
		struct rtrs_srv_op *id;
		int ret;

		id = list_entry(con->rsp_wr_wait_list.next,
				struct rtrs_srv_op, wait_list);
		list_del(&id->wait_list);

		spin_unlock(&con->rsp_wr_wait_lock);
		ret = rtrs_srv_resp_rdma(id, id->status);
		spin_lock(&con->rsp_wr_wait_lock);

		if (!ret) {
			list_add(&id->wait_list, &con->rsp_wr_wait_list);
			break;
		}
	}
	spin_unlock(&con->rsp_wr_wait_lock);
}

static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
{
1174
	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_srv_sess *sess = to_srv_sess(s);
	struct rtrs_srv *srv = sess->srv;
	u32 imm_type, imm_payload;
	int err;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		if (wc->status != IB_WC_WR_FLUSH_ERR) {
			rtrs_err(s,
				  "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
				  ib_wc_status_msg(wc->status), wc->wr_cqe,
				  wc->opcode, wc->vendor_err, wc->byte_len);
			close_sess(sess);
		}
		return;
	}

	switch (wc->opcode) {
	case IB_WC_RECV_RDMA_WITH_IMM:
		/*
		 * post_recv() RDMA write completions of IO reqs (read/write)
		 * and hb
		 */
		if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
			return;
		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
		if (unlikely(err)) {
			rtrs_err(s, "rtrs_post_recv(), err: %d\n", err);
			close_sess(sess);
			break;
		}
		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
			       &imm_type, &imm_payload);
		if (likely(imm_type == RTRS_IO_REQ_IMM)) {
			u32 msg_id, off;
			void *data;

			msg_id = imm_payload >> sess->mem_bits;
			off = imm_payload & ((1 << sess->mem_bits) - 1);
1214 1215
			if (unlikely(msg_id >= srv->queue_depth ||
				     off >= max_chunk_size)) {
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
				rtrs_err(s, "Wrong msg_id %u, off %u\n",
					  msg_id, off);
				close_sess(sess);
				return;
			}
			if (always_invalidate) {
				struct rtrs_srv_mr *mr = &sess->mrs[msg_id];

				mr->msg_off = off;
				mr->msg_id = msg_id;
				err = rtrs_srv_inv_rkey(con, mr);
				if (unlikely(err)) {
					rtrs_err(s, "rtrs_post_recv(), err: %d\n",
						  err);
					close_sess(sess);
					break;
				}
			} else {
				data = page_address(srv->chunks[msg_id]) + off;
				process_io_req(con, data, msg_id, off);
			}
		} else if (imm_type == RTRS_HB_MSG_IMM) {
			WARN_ON(con->c.cid);
			rtrs_send_hb_ack(&sess->s);
		} else if (imm_type == RTRS_HB_ACK_IMM) {
			WARN_ON(con->c.cid);
			sess->s.hb_missed_cnt = 0;
		} else {
			rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
		}
		break;
	case IB_WC_RDMA_WRITE:
	case IB_WC_SEND:
		/*
		 * post_send() RDMA write completions of IO reqs (read/write)
		 */
		atomic_add(srv->queue_depth, &con->sq_wr_avail);

		if (unlikely(!list_empty_careful(&con->rsp_wr_wait_list)))
			rtrs_rdma_process_wr_wait_list(con);

		break;
	default:
		rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
		return;
	}
}

/**
 * rtrs_srv_get_sess_name() - Get rtrs_srv peer hostname.
 * @srv:	Session
 * @sessname:	Sessname buffer
 * @len:	Length of sessname buffer
 */
int rtrs_srv_get_sess_name(struct rtrs_srv *srv, char *sessname, size_t len)
{
	struct rtrs_srv_sess *sess;
	int err = -ENOTCONN;

	mutex_lock(&srv->paths_mutex);
	list_for_each_entry(sess, &srv->paths_list, s.entry) {
		if (sess->state != RTRS_SRV_CONNECTED)
			continue;
		strlcpy(sessname, sess->s.sessname,
		       min_t(size_t, sizeof(sess->s.sessname), len));
		err = 0;
		break;
	}
	mutex_unlock(&srv->paths_mutex);

	return err;
}
EXPORT_SYMBOL(rtrs_srv_get_sess_name);

/**
 * rtrs_srv_get_sess_qdepth() - Get rtrs_srv qdepth.
 * @srv:	Session
 */
int rtrs_srv_get_queue_depth(struct rtrs_srv *srv)
{
	return srv->queue_depth;
}
EXPORT_SYMBOL(rtrs_srv_get_queue_depth);

static int find_next_bit_ring(struct rtrs_srv_sess *sess)
{
	struct ib_device *ib_dev = sess->s.dev->ib_dev;
	int v;

	v = cpumask_next(sess->cur_cq_vector, &cq_affinity_mask);
	if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
		v = cpumask_first(&cq_affinity_mask);
	return v;
}

static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_sess *sess)
{
	sess->cur_cq_vector = find_next_bit_ring(sess);

	return sess->cur_cq_vector;
}

1318 1319 1320 1321 1322 1323 1324
static void rtrs_srv_dev_release(struct device *dev)
{
	struct rtrs_srv *srv = container_of(dev, struct rtrs_srv, dev);

	kfree(srv);
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
static void free_srv(struct rtrs_srv *srv)
{
	int i;

	WARN_ON(refcount_read(&srv->refcount));
	for (i = 0; i < srv->queue_depth; i++)
		mempool_free(srv->chunks[i], chunk_pool);
	kfree(srv->chunks);
	mutex_destroy(&srv->paths_mutex);
	mutex_destroy(&srv->paths_ev_mutex);
	/* last put to release the srv structure */
	put_device(&srv->dev);
}

static struct rtrs_srv *get_or_create_srv(struct rtrs_srv_ctx *ctx,
1340 1341
					  const uuid_t *paths_uuid,
					  bool first_conn)
1342 1343 1344 1345
{
	struct rtrs_srv *srv;
	int i;

1346 1347 1348 1349 1350 1351 1352 1353
	mutex_lock(&ctx->srv_mutex);
	list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
		if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
		    refcount_inc_not_zero(&srv->refcount)) {
			mutex_unlock(&ctx->srv_mutex);
			return srv;
		}
	}
1354
	mutex_unlock(&ctx->srv_mutex);
1355 1356 1357 1358
	/*
	 * If this request is not the first connection request from the
	 * client for this session then fail and return error.
	 */
1359
	if (!first_conn)
1360
		return ERR_PTR(-ENXIO);
1361 1362

	/* need to allocate a new srv */
1363
	srv = kzalloc(sizeof(*srv), GFP_KERNEL);
1364
	if  (!srv)
1365
		return ERR_PTR(-ENOMEM);
1366 1367 1368 1369 1370 1371 1372

	INIT_LIST_HEAD(&srv->paths_list);
	mutex_init(&srv->paths_mutex);
	mutex_init(&srv->paths_ev_mutex);
	uuid_copy(&srv->paths_uuid, paths_uuid);
	srv->queue_depth = sess_queue_depth;
	srv->ctx = ctx;
1373
	device_initialize(&srv->dev);
1374
	srv->dev.release = rtrs_srv_dev_release;
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385

	srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
			      GFP_KERNEL);
	if (!srv->chunks)
		goto err_free_srv;

	for (i = 0; i < srv->queue_depth; i++) {
		srv->chunks[i] = mempool_alloc(chunk_pool, GFP_KERNEL);
		if (!srv->chunks[i])
			goto err_free_chunks;
	}
1386
	refcount_set(&srv->refcount, 1);
1387 1388 1389
	mutex_lock(&ctx->srv_mutex);
	list_add(&srv->ctx_list, &ctx->srv_list);
	mutex_unlock(&ctx->srv_mutex);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399

	return srv;

err_free_chunks:
	while (i--)
		mempool_free(srv->chunks[i], chunk_pool);
	kfree(srv->chunks);

err_free_srv:
	kfree(srv);
1400
	return ERR_PTR(-ENOMEM);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
}

static void put_srv(struct rtrs_srv *srv)
{
	if (refcount_dec_and_test(&srv->refcount)) {
		struct rtrs_srv_ctx *ctx = srv->ctx;

		WARN_ON(srv->dev.kobj.state_in_sysfs);

		mutex_lock(&ctx->srv_mutex);
		list_del(&srv->ctx_list);
		mutex_unlock(&ctx->srv_mutex);
		free_srv(srv);
	}
}

static void __add_path_to_srv(struct rtrs_srv *srv,
			      struct rtrs_srv_sess *sess)
{
	list_add_tail(&sess->s.entry, &srv->paths_list);
	srv->paths_num++;
	WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
}

static void del_path_from_srv(struct rtrs_srv_sess *sess)
{
	struct rtrs_srv *srv = sess->srv;

	if (WARN_ON(!srv))
		return;

	mutex_lock(&srv->paths_mutex);
	list_del(&sess->s.entry);
	WARN_ON(!srv->paths_num);
	srv->paths_num--;
	mutex_unlock(&srv->paths_mutex);
}

/* return true if addresses are the same, error other wise */
static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
{
	switch (a->sa_family) {
	case AF_IB:
		return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
			      &((struct sockaddr_ib *)b)->sib_addr,
			      sizeof(struct ib_addr)) &&
			(b->sa_family == AF_IB);
	case AF_INET:
		return memcmp(&((struct sockaddr_in *)a)->sin_addr,
			      &((struct sockaddr_in *)b)->sin_addr,
			      sizeof(struct in_addr)) &&
			(b->sa_family == AF_INET);
	case AF_INET6:
		return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
			      &((struct sockaddr_in6 *)b)->sin6_addr,
			      sizeof(struct in6_addr)) &&
			(b->sa_family == AF_INET6);
	default:
		return -ENOENT;
	}
}

static bool __is_path_w_addr_exists(struct rtrs_srv *srv,
				    struct rdma_addr *addr)
{
	struct rtrs_srv_sess *sess;

	list_for_each_entry(sess, &srv->paths_list, s.entry)
		if (!sockaddr_cmp((struct sockaddr *)&sess->s.dst_addr,
				  (struct sockaddr *)&addr->dst_addr) &&
		    !sockaddr_cmp((struct sockaddr *)&sess->s.src_addr,
				  (struct sockaddr *)&addr->src_addr))
			return true;

	return false;
}

static void free_sess(struct rtrs_srv_sess *sess)
{
1480 1481
	if (sess->kobj.state_in_sysfs) {
		kobject_del(&sess->kobj);
1482
		kobject_put(&sess->kobj);
1483
	} else {
1484
		kfree(sess);
1485
	}
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
}

static void rtrs_srv_close_work(struct work_struct *work)
{
	struct rtrs_srv_sess *sess;
	struct rtrs_srv_con *con;
	int i;

	sess = container_of(work, typeof(*sess), close_work);

	rtrs_srv_destroy_sess_files(sess);
	rtrs_srv_stop_hb(sess);

	for (i = 0; i < sess->s.con_num; i++) {
		if (!sess->s.con[i])
			continue;
		con = to_srv_con(sess->s.con[i]);
		rdma_disconnect(con->c.cm_id);
		ib_drain_qp(con->c.qp);
	}
	/* Wait for all inflights */
	rtrs_srv_wait_ops_ids(sess);

	/* Notify upper layer if we are the last path */
	rtrs_srv_sess_down(sess);

	unmap_cont_bufs(sess);
	rtrs_srv_free_ops_ids(sess);

	for (i = 0; i < sess->s.con_num; i++) {
		if (!sess->s.con[i])
			continue;
		con = to_srv_con(sess->s.con[i]);
		rtrs_cq_qp_destroy(&con->c);
		rdma_destroy_id(con->c.cm_id);
		kfree(con);
	}
	rtrs_ib_dev_put(sess->s.dev);

	del_path_from_srv(sess);
	put_srv(sess->srv);
	sess->srv = NULL;
	rtrs_srv_change_state(sess, RTRS_SRV_CLOSED);

	kfree(sess->dma_addr);
	kfree(sess->s.con);
	free_sess(sess);
}

static int rtrs_rdma_do_accept(struct rtrs_srv_sess *sess,
			       struct rdma_cm_id *cm_id)
{
	struct rtrs_srv *srv = sess->srv;
	struct rtrs_msg_conn_rsp msg;
	struct rdma_conn_param param;
	int err;

	param = (struct rdma_conn_param) {
		.rnr_retry_count = 7,
		.private_data = &msg,
		.private_data_len = sizeof(msg),
	};

	msg = (struct rtrs_msg_conn_rsp) {
		.magic = cpu_to_le16(RTRS_MAGIC),
		.version = cpu_to_le16(RTRS_PROTO_VER),
		.queue_depth = cpu_to_le16(srv->queue_depth),
		.max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
		.max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
	};

	if (always_invalidate)
		msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);

	err = rdma_accept(cm_id, &param);
	if (err)
		pr_err("rdma_accept(), err: %d\n", err);

	return err;
}

static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
{
	struct rtrs_msg_conn_rsp msg;
	int err;

	msg = (struct rtrs_msg_conn_rsp) {
		.magic = cpu_to_le16(RTRS_MAGIC),
		.version = cpu_to_le16(RTRS_PROTO_VER),
		.errno = cpu_to_le16(errno),
	};

1578
	err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED);
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	if (err)
		pr_err("rdma_reject(), err: %d\n", err);

	/* Bounce errno back */
	return errno;
}

static struct rtrs_srv_sess *
__find_sess(struct rtrs_srv *srv, const uuid_t *sess_uuid)
{
	struct rtrs_srv_sess *sess;

	list_for_each_entry(sess, &srv->paths_list, s.entry) {
		if (uuid_equal(&sess->s.uuid, sess_uuid))
			return sess;
	}

	return NULL;
}

static int create_con(struct rtrs_srv_sess *sess,
		      struct rdma_cm_id *cm_id,
		      unsigned int cid)
{
	struct rtrs_srv *srv = sess->srv;
	struct rtrs_sess *s = &sess->s;
	struct rtrs_srv_con *con;

J
Jack Wang 已提交
1607
	u32 cq_size, wr_queue_size;
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	int err, cq_vector;

	con = kzalloc(sizeof(*con), GFP_KERNEL);
	if (!con) {
		err = -ENOMEM;
		goto err;
	}

	spin_lock_init(&con->rsp_wr_wait_lock);
	INIT_LIST_HEAD(&con->rsp_wr_wait_list);
	con->c.cm_id = cm_id;
	con->c.sess = &sess->s;
	con->c.cid = cid;
J
Jack Wang 已提交
1621
	atomic_set(&con->wr_cnt, 1);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

	if (con->c.cid == 0) {
		/*
		 * All receive and all send (each requiring invalidate)
		 * + 2 for drain and heartbeat
		 */
		wr_queue_size = SERVICE_CON_QUEUE_DEPTH * 3 + 2;
		cq_size = wr_queue_size;
	} else {
		/*
		 * If we have all receive requests posted and
		 * all write requests posted and each read request
		 * requires an invalidate request + drain
		 * and qp gets into error state.
		 */
		cq_size = srv->queue_depth * 3 + 1;
		/*
		 * In theory we might have queue_depth * 32
		 * outstanding requests if an unsafe global key is used
		 * and we have queue_depth read requests each consisting
		 * of 32 different addresses. div 3 for mlx5.
		 */
		wr_queue_size = sess->s.dev->ib_dev->attrs.max_qp_wr / 3;
	}
	atomic_set(&con->sq_wr_avail, wr_queue_size);
	cq_vector = rtrs_srv_get_next_cq_vector(sess);

	/* TODO: SOFTIRQ can be faster, but be careful with softirq context */
	err = rtrs_cq_qp_create(&sess->s, &con->c, 1, cq_vector, cq_size,
J
Jack Wang 已提交
1651 1652
				 wr_queue_size, wr_queue_size,
				 IB_POLL_WORKQUEUE);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	if (err) {
		rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err);
		goto free_con;
	}
	if (con->c.cid == 0) {
		err = post_recv_info_req(con);
		if (err)
			goto free_cqqp;
	}
	WARN_ON(sess->s.con[cid]);
	sess->s.con[cid] = &con->c;

	/*
	 * Change context from server to current connection.  The other
	 * way is to use cm_id->qp->qp_context, which does not work on OFED.
	 */
	cm_id->context = &con->c;

	return 0;

free_cqqp:
	rtrs_cq_qp_destroy(&con->c);
free_con:
	kfree(con);

err:
	return err;
}

static struct rtrs_srv_sess *__alloc_sess(struct rtrs_srv *srv,
					   struct rdma_cm_id *cm_id,
					   unsigned int con_num,
					   unsigned int recon_cnt,
					   const uuid_t *uuid)
{
	struct rtrs_srv_sess *sess;
	int err = -ENOMEM;
1690 1691
	char str[NAME_MAX];
	struct rtrs_addr path;
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

	if (srv->paths_num >= MAX_PATHS_NUM) {
		err = -ECONNRESET;
		goto err;
	}
	if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
		err = -EEXIST;
		pr_err("Path with same addr exists\n");
		goto err;
	}
	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
	if (!sess)
		goto err;

	sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
	if (!sess->stats)
		goto err_free_sess;

	sess->stats->sess = sess;

	sess->dma_addr = kcalloc(srv->queue_depth, sizeof(*sess->dma_addr),
				 GFP_KERNEL);
	if (!sess->dma_addr)
		goto err_free_stats;

	sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
	if (!sess->s.con)
		goto err_free_dma_addr;

	sess->state = RTRS_SRV_CONNECTING;
	sess->srv = srv;
	sess->cur_cq_vector = -1;
	sess->s.dst_addr = cm_id->route.addr.dst_addr;
	sess->s.src_addr = cm_id->route.addr.src_addr;
1726 1727 1728 1729 1730 1731 1732

	/* temporary until receiving session-name from client */
	path.src = &sess->s.src_addr;
	path.dst = &sess->s.dst_addr;
	rtrs_addr_to_str(&path, str, sizeof(str));
	strlcpy(sess->s.sessname, str, sizeof(sess->s.sessname));

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	sess->s.con_num = con_num;
	sess->s.recon_cnt = recon_cnt;
	uuid_copy(&sess->s.uuid, uuid);
	spin_lock_init(&sess->state_lock);
	INIT_WORK(&sess->close_work, rtrs_srv_close_work);
	rtrs_srv_init_hb(sess);

	sess->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
	if (!sess->s.dev) {
		err = -ENOMEM;
		goto err_free_con;
	}
	err = map_cont_bufs(sess);
	if (err)
		goto err_put_dev;

	err = rtrs_srv_alloc_ops_ids(sess);
	if (err)
		goto err_unmap_bufs;

	__add_path_to_srv(srv, sess);

	return sess;

err_unmap_bufs:
	unmap_cont_bufs(sess);
err_put_dev:
	rtrs_ib_dev_put(sess->s.dev);
err_free_con:
	kfree(sess->s.con);
err_free_dma_addr:
	kfree(sess->dma_addr);
err_free_stats:
	kfree(sess->stats);
err_free_sess:
	kfree(sess);
err:
	return ERR_PTR(err);
}

static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
			      const struct rtrs_msg_conn_req *msg,
			      size_t len)
{
	struct rtrs_srv_ctx *ctx = cm_id->context;
	struct rtrs_srv_sess *sess;
	struct rtrs_srv *srv;

	u16 version, con_num, cid;
	u16 recon_cnt;
1783
	int err = -ECONNRESET;
1784 1785 1786

	if (len < sizeof(*msg)) {
		pr_err("Invalid RTRS connection request\n");
1787
		goto reject_w_err;
1788 1789 1790
	}
	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
		pr_err("Invalid RTRS magic\n");
1791
		goto reject_w_err;
1792 1793 1794 1795 1796
	}
	version = le16_to_cpu(msg->version);
	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
		pr_err("Unsupported major RTRS version: %d, expected %d\n",
		       version >> 8, RTRS_PROTO_VER_MAJOR);
1797
		goto reject_w_err;
1798 1799 1800 1801 1802
	}
	con_num = le16_to_cpu(msg->cid_num);
	if (con_num > 4096) {
		/* Sanity check */
		pr_err("Too many connections requested: %d\n", con_num);
1803
		goto reject_w_err;
1804 1805 1806 1807 1808
	}
	cid = le16_to_cpu(msg->cid);
	if (cid >= con_num) {
		/* Sanity check */
		pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
1809
		goto reject_w_err;
1810 1811
	}
	recon_cnt = le16_to_cpu(msg->recon_cnt);
1812
	srv = get_or_create_srv(ctx, &msg->paths_uuid, msg->first_conn);
1813
	if (IS_ERR(srv)) {
1814
		err = PTR_ERR(srv);
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		goto reject_w_err;
	}
	mutex_lock(&srv->paths_mutex);
	sess = __find_sess(srv, &msg->sess_uuid);
	if (sess) {
		struct rtrs_sess *s = &sess->s;

		/* Session already holds a reference */
		put_srv(srv);

		if (sess->state != RTRS_SRV_CONNECTING) {
			rtrs_err(s, "Session in wrong state: %s\n",
				  rtrs_srv_state_str(sess->state));
			mutex_unlock(&srv->paths_mutex);
1829
			goto reject_w_err;
1830 1831 1832 1833
		}
		/*
		 * Sanity checks
		 */
1834
		if (con_num != s->con_num || cid >= s->con_num) {
1835 1836 1837
			rtrs_err(s, "Incorrect request: %d, %d\n",
				  cid, con_num);
			mutex_unlock(&srv->paths_mutex);
1838
			goto reject_w_err;
1839
		}
1840
		if (s->con[cid]) {
1841 1842 1843
			rtrs_err(s, "Connection already exists: %d\n",
				  cid);
			mutex_unlock(&srv->paths_mutex);
1844
			goto reject_w_err;
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		}
	} else {
		sess = __alloc_sess(srv, cm_id, con_num, recon_cnt,
				    &msg->sess_uuid);
		if (IS_ERR(sess)) {
			mutex_unlock(&srv->paths_mutex);
			put_srv(srv);
			err = PTR_ERR(sess);
			goto reject_w_err;
		}
	}
	err = create_con(sess, cm_id, cid);
	if (err) {
		(void)rtrs_rdma_do_reject(cm_id, err);
		/*
		 * Since session has other connections we follow normal way
		 * through workqueue, but still return an error to tell cma.c
		 * to call rdma_destroy_id() for current connection.
		 */
		goto close_and_return_err;
	}
	err = rtrs_rdma_do_accept(sess, cm_id);
	if (err) {
		(void)rtrs_rdma_do_reject(cm_id, err);
		/*
		 * Since current connection was successfully added to the
		 * session we follow normal way through workqueue to close the
		 * session, thus return 0 to tell cma.c we call
		 * rdma_destroy_id() ourselves.
		 */
		err = 0;
		goto close_and_return_err;
	}
	mutex_unlock(&srv->paths_mutex);

	return 0;

reject_w_err:
	return rtrs_rdma_do_reject(cm_id, err);

close_and_return_err:
	mutex_unlock(&srv->paths_mutex);
1887
	close_sess(sess);
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

	return err;
}

static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
				     struct rdma_cm_event *ev)
{
	struct rtrs_srv_sess *sess = NULL;
	struct rtrs_sess *s = NULL;

	if (ev->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
		struct rtrs_con *c = cm_id->context;

		s = c->sess;
		sess = to_srv_sess(s);
	}

	switch (ev->event) {
	case RDMA_CM_EVENT_CONNECT_REQUEST:
		/*
		 * In case of error cma.c will destroy cm_id,
		 * see cma_process_remove()
		 */
		return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
					  ev->param.conn.private_data_len);
	case RDMA_CM_EVENT_ESTABLISHED:
		/* Nothing here */
		break;
	case RDMA_CM_EVENT_REJECTED:
	case RDMA_CM_EVENT_CONNECT_ERROR:
	case RDMA_CM_EVENT_UNREACHABLE:
		rtrs_err(s, "CM error (CM event: %s, err: %d)\n",
			  rdma_event_msg(ev->event), ev->status);
1921
		fallthrough;
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	case RDMA_CM_EVENT_DISCONNECTED:
	case RDMA_CM_EVENT_ADDR_CHANGE:
	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
		close_sess(sess);
		break;
	default:
		pr_err("Ignoring unexpected CM event %s, err %d\n",
		       rdma_event_msg(ev->event), ev->status);
		break;
	}

	return 0;
}

static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
					    struct sockaddr *addr,
					    enum rdma_ucm_port_space ps)
{
	struct rdma_cm_id *cm_id;
	int ret;

	cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
			       ctx, ps, IB_QPT_RC);
	if (IS_ERR(cm_id)) {
		ret = PTR_ERR(cm_id);
		pr_err("Creating id for RDMA connection failed, err: %d\n",
		       ret);
		goto err_out;
	}
	ret = rdma_bind_addr(cm_id, addr);
	if (ret) {
		pr_err("Binding RDMA address failed, err: %d\n", ret);
		goto err_cm;
	}
	ret = rdma_listen(cm_id, 64);
	if (ret) {
		pr_err("Listening on RDMA connection failed, err: %d\n",
		       ret);
		goto err_cm;
	}

	return cm_id;

err_cm:
	rdma_destroy_id(cm_id);
err_out:

	return ERR_PTR(ret);
}

static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
{
	struct sockaddr_in6 sin = {
		.sin6_family	= AF_INET6,
		.sin6_addr	= IN6ADDR_ANY_INIT,
		.sin6_port	= htons(port),
	};
	struct sockaddr_ib sib = {
		.sib_family			= AF_IB,
		.sib_sid	= cpu_to_be64(RDMA_IB_IP_PS_IB | port),
		.sib_sid_mask	= cpu_to_be64(0xffffffffffffffffULL),
		.sib_pkey	= cpu_to_be16(0xffff),
	};
	struct rdma_cm_id *cm_ip, *cm_ib;
	int ret;

	/*
	 * We accept both IPoIB and IB connections, so we need to keep
	 * two cm id's, one for each socket type and port space.
	 * If the cm initialization of one of the id's fails, we abort
	 * everything.
	 */
	cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
	if (IS_ERR(cm_ip))
		return PTR_ERR(cm_ip);

	cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
	if (IS_ERR(cm_ib)) {
		ret = PTR_ERR(cm_ib);
		goto free_cm_ip;
	}

	ctx->cm_id_ip = cm_ip;
	ctx->cm_id_ib = cm_ib;

	return 0;

free_cm_ip:
	rdma_destroy_id(cm_ip);

	return ret;
}

static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
{
	struct rtrs_srv_ctx *ctx;

	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return NULL;

	ctx->ops = *ops;
	mutex_init(&ctx->srv_mutex);
	INIT_LIST_HEAD(&ctx->srv_list);

	return ctx;
}

static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
{
	WARN_ON(!list_empty(&ctx->srv_list));
	mutex_destroy(&ctx->srv_mutex);
	kfree(ctx);
}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
static int rtrs_srv_add_one(struct ib_device *device)
{
	struct rtrs_srv_ctx *ctx;
	int ret = 0;

	mutex_lock(&ib_ctx.ib_dev_mutex);
	if (ib_ctx.ib_dev_count)
		goto out;

	/*
	 * Since our CM IDs are NOT bound to any ib device we will create them
	 * only once
	 */
	ctx = ib_ctx.srv_ctx;
	ret = rtrs_srv_rdma_init(ctx, ib_ctx.port);
	if (ret) {
		/*
		 * We errored out here.
		 * According to the ib code, if we encounter an error here then the
		 * error code is ignored, and no more calls to our ops are made.
		 */
		pr_err("Failed to initialize RDMA connection");
		goto err_out;
	}

out:
	/*
	 * Keep a track on the number of ib devices added
	 */
	ib_ctx.ib_dev_count++;

err_out:
	mutex_unlock(&ib_ctx.ib_dev_mutex);
	return ret;
}

static void rtrs_srv_remove_one(struct ib_device *device, void *client_data)
{
	struct rtrs_srv_ctx *ctx;

	mutex_lock(&ib_ctx.ib_dev_mutex);
	ib_ctx.ib_dev_count--;

	if (ib_ctx.ib_dev_count)
		goto out;

	/*
	 * Since our CM IDs are NOT bound to any ib device we will remove them
	 * only once, when the last device is removed
	 */
	ctx = ib_ctx.srv_ctx;
	rdma_destroy_id(ctx->cm_id_ip);
	rdma_destroy_id(ctx->cm_id_ib);

out:
	mutex_unlock(&ib_ctx.ib_dev_mutex);
}

static struct ib_client rtrs_srv_client = {
	.name	= "rtrs_server",
	.add	= rtrs_srv_add_one,
	.remove	= rtrs_srv_remove_one
};

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
/**
 * rtrs_srv_open() - open RTRS server context
 * @ops:		callback functions
 * @port:               port to listen on
 *
 * Creates server context with specified callbacks.
 *
 * Return a valid pointer on success otherwise PTR_ERR.
 */
struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
{
	struct rtrs_srv_ctx *ctx;
	int err;

	ctx = alloc_srv_ctx(ops);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

2120 2121 2122 2123 2124
	mutex_init(&ib_ctx.ib_dev_mutex);
	ib_ctx.srv_ctx = ctx;
	ib_ctx.port = port;

	err = ib_register_client(&rtrs_srv_client);
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	if (err) {
		free_srv_ctx(ctx);
		return ERR_PTR(err);
	}

	return ctx;
}
EXPORT_SYMBOL(rtrs_srv_open);

static void close_sessions(struct rtrs_srv *srv)
{
	struct rtrs_srv_sess *sess;

	mutex_lock(&srv->paths_mutex);
	list_for_each_entry(sess, &srv->paths_list, s.entry)
		close_sess(sess);
	mutex_unlock(&srv->paths_mutex);
}

static void close_ctx(struct rtrs_srv_ctx *ctx)
{
	struct rtrs_srv *srv;

	mutex_lock(&ctx->srv_mutex);
	list_for_each_entry(srv, &ctx->srv_list, ctx_list)
		close_sessions(srv);
	mutex_unlock(&ctx->srv_mutex);
	flush_workqueue(rtrs_wq);
}

/**
 * rtrs_srv_close() - close RTRS server context
 * @ctx: pointer to server context
 *
 * Closes RTRS server context with all client sessions.
 */
void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
{
2163 2164
	ib_unregister_client(&rtrs_srv_client);
	mutex_destroy(&ib_ctx.ib_dev_mutex);
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	close_ctx(ctx);
	free_srv_ctx(ctx);
}
EXPORT_SYMBOL(rtrs_srv_close);

static int check_module_params(void)
{
	if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
		pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
		       sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
		return -EINVAL;
	}
	if (max_chunk_size < 4096 || !is_power_of_2(max_chunk_size)) {
		pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
		       max_chunk_size, 4096);
		return -EINVAL;
	}

	/*
	 * Check if IB immediate data size is enough to hold the mem_id and the
	 * offset inside the memory chunk
	 */
	if ((ilog2(sess_queue_depth - 1) + 1) +
	    (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
		pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
		       MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
		return -EINVAL;
	}

	return 0;
}

static int __init rtrs_server_init(void)
{
	int err;

	pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
		KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
		max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
		sess_queue_depth, always_invalidate);

	rtrs_rdma_dev_pd_init(0, &dev_pd);

	err = check_module_params();
	if (err) {
		pr_err("Failed to load module, invalid module parameters, err: %d\n",
		       err);
		return err;
	}
	chunk_pool = mempool_create_page_pool(sess_queue_depth * CHUNK_POOL_SZ,
					      get_order(max_chunk_size));
	if (!chunk_pool)
		return -ENOMEM;
	rtrs_dev_class = class_create(THIS_MODULE, "rtrs-server");
	if (IS_ERR(rtrs_dev_class)) {
		err = PTR_ERR(rtrs_dev_class);
		goto out_chunk_pool;
	}
2223
	rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0);
2224 2225
	if (!rtrs_wq) {
		err = -ENOMEM;
2226
		goto out_dev_class;
2227
	}
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

	return 0;

out_dev_class:
	class_destroy(rtrs_dev_class);
out_chunk_pool:
	mempool_destroy(chunk_pool);

	return err;
}

static void __exit rtrs_server_exit(void)
{
	destroy_workqueue(rtrs_wq);
	class_destroy(rtrs_dev_class);
	mempool_destroy(chunk_pool);
	rtrs_rdma_dev_pd_deinit(&dev_pd);
}

module_init(rtrs_server_init);
module_exit(rtrs_server_exit);