amdgpu_amdkfd_gfx_v9.c 27.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/*
 * Copyright 2014-2018 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */
#include "amdgpu.h"
#include "amdgpu_amdkfd.h"
#include "gc/gc_9_0_offset.h"
#include "gc/gc_9_0_sh_mask.h"
#include "vega10_enum.h"
#include "sdma0/sdma0_4_0_offset.h"
#include "sdma0/sdma0_4_0_sh_mask.h"
#include "sdma1/sdma1_4_0_offset.h"
#include "sdma1/sdma1_4_0_sh_mask.h"
#include "athub/athub_1_0_offset.h"
#include "athub/athub_1_0_sh_mask.h"
#include "oss/osssys_4_0_offset.h"
#include "oss/osssys_4_0_sh_mask.h"
#include "soc15_common.h"
#include "v9_structs.h"
#include "soc15.h"
#include "soc15d.h"
39
#include "gfx_v9_0.h"
40
#include "amdgpu_amdkfd_gfx_v9.h"
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

enum hqd_dequeue_request_type {
	NO_ACTION = 0,
	DRAIN_PIPE,
	RESET_WAVES
};

static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
{
	return (struct amdgpu_device *)kgd;
}

static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
			uint32_t queue, uint32_t vmid)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

	mutex_lock(&adev->srbm_mutex);
	soc15_grbm_select(adev, mec, pipe, queue, vmid);
}

static void unlock_srbm(struct kgd_dev *kgd)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

	soc15_grbm_select(adev, 0, 0, 0, 0);
	mutex_unlock(&adev->srbm_mutex);
}

static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
				uint32_t queue_id)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);

	lock_srbm(kgd, mec, pipe, queue_id, 0);
}

81
static uint64_t get_queue_mask(struct amdgpu_device *adev,
82 83
			       uint32_t pipe_id, uint32_t queue_id)
{
84 85
	unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
			queue_id;
86

87
	return 1ull << bit;
88 89 90 91 92 93 94
}

static void release_queue(struct kgd_dev *kgd)
{
	unlock_srbm(kgd);
}

95
void kgd_gfx_v9_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
96 97 98 99 100 101 102 103 104
					uint32_t sh_mem_config,
					uint32_t sh_mem_ape1_base,
					uint32_t sh_mem_ape1_limit,
					uint32_t sh_mem_bases)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

	lock_srbm(kgd, 0, 0, 0, vmid);

105 106
	WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
	WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
107 108 109 110 111
	/* APE1 no longer exists on GFX9 */

	unlock_srbm(kgd);
}

112
int kgd_gfx_v9_set_pasid_vmid_mapping(struct kgd_dev *kgd, u32 pasid,
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
					unsigned int vmid)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

	/*
	 * We have to assume that there is no outstanding mapping.
	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
	 * a mapping is in progress or because a mapping finished
	 * and the SW cleared it.
	 * So the protocol is to always wait & clear.
	 */
	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
			ATC_VMID0_PASID_MAPPING__VALID_MASK;

	/*
	 * need to do this twice, once for gfx and once for mmhub
	 * for ATC add 16 to VMID for mmhub, for IH different registers.
	 * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
	 */

	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
	       pasid_mapping);

	while (!(RREG32(SOC15_REG_OFFSET(
				ATHUB, 0,
				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
		 (1U << vmid)))
		cpu_relax();

	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
	       1U << vmid);

	/* Mapping vmid to pasid also for IH block */
	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
	       pasid_mapping);

	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
	       pasid_mapping);

	while (!(RREG32(SOC15_REG_OFFSET(
				ATHUB, 0,
				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
		 (1U << (vmid + 16))))
		cpu_relax();

	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
	       1U << (vmid + 16));

	/* Mapping vmid to pasid also for IH block */
	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
	       pasid_mapping);
	return 0;
}

/* TODO - RING0 form of field is obsolete, seems to date back to SI
 * but still works
 */

173
int kgd_gfx_v9_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t mec;
	uint32_t pipe;

	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);

	lock_srbm(kgd, mec, pipe, 0, 0);

	WREG32(SOC15_REG_OFFSET(GC, 0, mmCPC_INT_CNTL),
		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);

	unlock_srbm(kgd);

	return 0;
}

193
static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
194 195 196
				unsigned int engine_id,
				unsigned int queue_id)
{
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	uint32_t sdma_engine_reg_base = 0;
	uint32_t sdma_rlc_reg_offset;

	switch (engine_id) {
	default:
		dev_warn(adev->dev,
			 "Invalid sdma engine id (%d), using engine id 0\n",
			 engine_id);
		fallthrough;
	case 0:
		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
				mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
		break;
	case 1:
		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
				mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
		break;
	}

	sdma_rlc_reg_offset = sdma_engine_reg_base
217
		+ queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
218

219
	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
220
		 queue_id, sdma_rlc_reg_offset);
221

222
	return sdma_rlc_reg_offset;
223 224 225 226 227 228 229 230 231 232 233 234
}

static inline struct v9_mqd *get_mqd(void *mqd)
{
	return (struct v9_mqd *)mqd;
}

static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
{
	return (struct v9_sdma_mqd *)mqd;
}

235
int kgd_gfx_v9_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
			uint32_t queue_id, uint32_t __user *wptr,
			uint32_t wptr_shift, uint32_t wptr_mask,
			struct mm_struct *mm)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	struct v9_mqd *m;
	uint32_t *mqd_hqd;
	uint32_t reg, hqd_base, data;

	m = get_mqd(mqd);

	acquire_queue(kgd, pipe_id, queue_id);

	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
	mqd_hqd = &m->cp_mqd_base_addr_lo;
	hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);

	for (reg = hqd_base;
	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
255
		WREG32_RLC(reg, mqd_hqd[reg - hqd_base]);
256 257 258 259 260


	/* Activate doorbell logic before triggering WPTR poll. */
	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
261
	WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

	if (wptr) {
		/* Don't read wptr with get_user because the user
		 * context may not be accessible (if this function
		 * runs in a work queue). Instead trigger a one-shot
		 * polling read from memory in the CP. This assumes
		 * that wptr is GPU-accessible in the queue's VMID via
		 * ATC or SVM. WPTR==RPTR before starting the poll so
		 * the CP starts fetching new commands from the right
		 * place.
		 *
		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
		 * tricky. Assume that the queue didn't overflow. The
		 * number of valid bits in the 32-bit RPTR depends on
		 * the queue size. The remaining bits are taken from
		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
		 * queue size.
		 */
		uint32_t queue_size =
			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);

		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
			guessed_wptr += queue_size;
		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;

290
		WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
291
		       lower_32_bits(guessed_wptr));
292
		WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
293
		       upper_32_bits(guessed_wptr));
294
		WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
295
		       lower_32_bits((uintptr_t)wptr));
296
		WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
297
		       upper_32_bits((uintptr_t)wptr));
298
		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1),
299
		       (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
300 301 302
	}

	/* Start the EOP fetcher */
303
	WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
304 305 306 307
	       REG_SET_FIELD(m->cp_hqd_eop_rptr,
			     CP_HQD_EOP_RPTR, INIT_FETCHER, 1));

	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
308
	WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
309 310 311 312 313 314

	release_queue(kgd);

	return 0;
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
int kgd_gfx_v9_hiq_mqd_load(struct kgd_dev *kgd, void *mqd,
			    uint32_t pipe_id, uint32_t queue_id,
			    uint32_t doorbell_off)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
	struct v9_mqd *m;
	uint32_t mec, pipe;
	int r;

	m = get_mqd(mqd);

	acquire_queue(kgd, pipe_id, queue_id);

	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);

	pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
		 mec, pipe, queue_id);

	spin_lock(&adev->gfx.kiq.ring_lock);
	r = amdgpu_ring_alloc(kiq_ring, 7);
	if (r) {
		pr_err("Failed to alloc KIQ (%d).\n", r);
		goto out_unlock;
	}

	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
	amdgpu_ring_write(kiq_ring,
			  PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
			  PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
			  PACKET3_MAP_QUEUES_QUEUE(queue_id) |
			  PACKET3_MAP_QUEUES_PIPE(pipe) |
			  PACKET3_MAP_QUEUES_ME((mec - 1)) |
			  PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
			  PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
			  PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
			  PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
	amdgpu_ring_write(kiq_ring,
			  PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
	amdgpu_ring_commit(kiq_ring);

out_unlock:
	spin_unlock(&adev->gfx.kiq.ring_lock);
	release_queue(kgd);

	return r;
}

368
int kgd_gfx_v9_hqd_dump(struct kgd_dev *kgd,
369 370 371 372 373 374 375 376 377 378 379 380 381
			uint32_t pipe_id, uint32_t queue_id,
			uint32_t (**dump)[2], uint32_t *n_regs)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t i = 0, reg;
#define HQD_N_REGS 56
#define DUMP_REG(addr) do {				\
		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
			break;				\
		(*dump)[i][0] = (addr) << 2;		\
		(*dump)[i++][1] = RREG32(addr);		\
	} while (0)

382
	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	if (*dump == NULL)
		return -ENOMEM;

	acquire_queue(kgd, pipe_id, queue_id);

	for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
		DUMP_REG(reg);

	release_queue(kgd);

	WARN_ON_ONCE(i != HQD_N_REGS);
	*n_regs = i;

	return 0;
}

static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
			     uint32_t __user *wptr, struct mm_struct *mm)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	struct v9_sdma_mqd *m;
405
	uint32_t sdma_rlc_reg_offset;
406 407 408 409 410 411
	unsigned long end_jiffies;
	uint32_t data;
	uint64_t data64;
	uint64_t __user *wptr64 = (uint64_t __user *)wptr;

	m = get_sdma_mqd(mqd);
412
	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
413 414
					    m->sdma_queue_id);

415
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
416 417 418 419
		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));

	end_jiffies = msecs_to_jiffies(2000) + jiffies;
	while (true) {
420
		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
421 422
		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
			break;
423 424
		if (time_after(jiffies, end_jiffies)) {
			pr_err("SDMA RLC not idle in %s\n", __func__);
425
			return -ETIME;
426
		}
427 428 429
		usleep_range(500, 1000);
	}

430
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
431 432 433 434
	       m->sdmax_rlcx_doorbell_offset);

	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
			     ENABLE, 1);
435 436 437 438
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
				m->sdmax_rlcx_rb_rptr);
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
439 440
				m->sdmax_rlcx_rb_rptr_hi);

441
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
442
	if (read_user_wptr(mm, wptr64, data64)) {
443
		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
444
		       lower_32_bits(data64));
445
		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
446 447
		       upper_32_bits(data64));
	} else {
448
		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
449
		       m->sdmax_rlcx_rb_rptr);
450
		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
451 452
		       m->sdmax_rlcx_rb_rptr_hi);
	}
453
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
454

455 456
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
457
			m->sdmax_rlcx_rb_base_hi);
458
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
459
			m->sdmax_rlcx_rb_rptr_addr_lo);
460
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
461 462 463 464
			m->sdmax_rlcx_rb_rptr_addr_hi);

	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
			     RB_ENABLE, 1);
465
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
466 467 468 469 470 471 472 473 474

	return 0;
}

static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
			     uint32_t engine_id, uint32_t queue_id,
			     uint32_t (**dump)[2], uint32_t *n_regs)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
475 476
	uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
			engine_id, queue_id);
477 478 479 480
	uint32_t i = 0, reg;
#undef HQD_N_REGS
#define HQD_N_REGS (19+6+7+10)

481
	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
482 483 484 485
	if (*dump == NULL)
		return -ENOMEM;

	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
486
		DUMP_REG(sdma_rlc_reg_offset + reg);
487
	for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
488
		DUMP_REG(sdma_rlc_reg_offset + reg);
489 490
	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
	     reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
491
		DUMP_REG(sdma_rlc_reg_offset + reg);
492 493
	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
	     reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
494
		DUMP_REG(sdma_rlc_reg_offset + reg);
495 496 497 498 499 500 501

	WARN_ON_ONCE(i != HQD_N_REGS);
	*n_regs = i;

	return 0;
}

502
bool kgd_gfx_v9_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
				uint32_t pipe_id, uint32_t queue_id)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t act;
	bool retval = false;
	uint32_t low, high;

	acquire_queue(kgd, pipe_id, queue_id);
	act = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
	if (act) {
		low = lower_32_bits(queue_address >> 8);
		high = upper_32_bits(queue_address >> 8);

		if (low == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE)) &&
		   high == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE_HI)))
			retval = true;
	}
	release_queue(kgd);
	return retval;
}

static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	struct v9_sdma_mqd *m;
528
	uint32_t sdma_rlc_reg_offset;
529 530 531
	uint32_t sdma_rlc_rb_cntl;

	m = get_sdma_mqd(mqd);
532
	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
533 534
					    m->sdma_queue_id);

535
	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
536 537 538 539 540 541 542

	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
		return true;

	return false;
}

543
int kgd_gfx_v9_hqd_destroy(struct kgd_dev *kgd, void *mqd,
544 545 546 547 548 549 550 551 552 553
				enum kfd_preempt_type reset_type,
				unsigned int utimeout, uint32_t pipe_id,
				uint32_t queue_id)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	enum hqd_dequeue_request_type type;
	unsigned long end_jiffies;
	uint32_t temp;
	struct v9_mqd *m = get_mqd(mqd);

554
	if (amdgpu_in_reset(adev))
555 556
		return -EIO;

557 558 559
	acquire_queue(kgd, pipe_id, queue_id);

	if (m->cp_hqd_vmid == 0)
560
		WREG32_FIELD15_RLC(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
561 562 563 564 565 566 567 568 569 570 571 572 573

	switch (reset_type) {
	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
		type = DRAIN_PIPE;
		break;
	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
		type = RESET_WAVES;
		break;
	default:
		type = DRAIN_PIPE;
		break;
	}

574
	WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597

	end_jiffies = (utimeout * HZ / 1000) + jiffies;
	while (true) {
		temp = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
			break;
		if (time_after(jiffies, end_jiffies)) {
			pr_err("cp queue preemption time out.\n");
			release_queue(kgd);
			return -ETIME;
		}
		usleep_range(500, 1000);
	}

	release_queue(kgd);
	return 0;
}

static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
				unsigned int utimeout)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	struct v9_sdma_mqd *m;
598
	uint32_t sdma_rlc_reg_offset;
599 600 601 602
	uint32_t temp;
	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;

	m = get_sdma_mqd(mqd);
603
	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
604 605
					    m->sdma_queue_id);

606
	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
607
	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
608
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
609 610

	while (true) {
611
		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
612 613
		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
			break;
614 615
		if (time_after(jiffies, end_jiffies)) {
			pr_err("SDMA RLC not idle in %s\n", __func__);
616
			return -ETIME;
617
		}
618 619 620
		usleep_range(500, 1000);
	}

621 622 623
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
624 625
		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);

626
	m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
627
	m->sdmax_rlcx_rb_rptr_hi =
628
		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
629 630 631 632

	return 0;
}

633 634
bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
					uint8_t vmid, uint16_t *p_pasid)
635
{
636
	uint32_t value;
637 638
	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;

639
	value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
640
		     + vmid);
641
	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
642

643
	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
644 645
}

646
int kgd_gfx_v9_address_watch_disable(struct kgd_dev *kgd)
647 648 649 650
{
	return 0;
}

651
int kgd_gfx_v9_address_watch_execute(struct kgd_dev *kgd,
652 653 654 655 656 657 658 659
					unsigned int watch_point_id,
					uint32_t cntl_val,
					uint32_t addr_hi,
					uint32_t addr_lo)
{
	return 0;
}

660
int kgd_gfx_v9_wave_control_execute(struct kgd_dev *kgd,
661 662 663 664 665 666 667 668
					uint32_t gfx_index_val,
					uint32_t sq_cmd)
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);
	uint32_t data = 0;

	mutex_lock(&adev->grbm_idx_mutex);

669
	WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val);
670 671 672 673 674 675 676 677 678
	WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd);

	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
		INSTANCE_BROADCAST_WRITES, 1);
	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
		SH_BROADCAST_WRITES, 1);
	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
		SE_BROADCAST_WRITES, 1);

679
	WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, data);
680 681 682 683 684
	mutex_unlock(&adev->grbm_idx_mutex);

	return 0;
}

685
uint32_t kgd_gfx_v9_address_watch_get_offset(struct kgd_dev *kgd,
686 687 688 689 690 691
					unsigned int watch_point_id,
					unsigned int reg_offset)
{
	return 0;
}

692
void kgd_gfx_v9_set_vm_context_page_table_base(struct kgd_dev *kgd,
693
			uint32_t vmid, uint64_t page_table_base)
694 695 696 697 698 699 700 701 702
{
	struct amdgpu_device *adev = get_amdgpu_device(kgd);

	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
		pr_err("trying to set page table base for wrong VMID %u\n",
		       vmid);
		return;
	}

703
	adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
704

705
	adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
706
}
707

708 709 710 711 712 713 714 715 716 717 718 719 720 721
static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
{
	mutex_lock(&adev->srbm_mutex);
	mutex_lock(&adev->grbm_idx_mutex);

}

static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
{
	mutex_unlock(&adev->grbm_idx_mutex);
	mutex_unlock(&adev->srbm_mutex);
}

/**
722
 * get_wave_count: Read device registers to get number of waves in flight for
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
 * a particular queue. The method also returns the VMID associated with the
 * queue.
 *
 * @adev: Handle of device whose registers are to be read
 * @queue_idx: Index of queue in the queue-map bit-field
 * @wave_cnt: Output parameter updated with number of waves in flight
 * @vmid: Output parameter updated with VMID of queue whose wave count
 * is being collected
 */
static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
		int *wave_cnt, int *vmid)
{
	int pipe_idx;
	int queue_slot;
	unsigned int reg_val;

	/*
	 * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
	 * parameters to read out waves in flight. Get VMID if there are
	 * non-zero waves in flight.
	 */
	*vmid = 0xFF;
	*wave_cnt = 0;
	pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
	queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
	soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0);
	reg_val = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_CSQ_WF_ACTIVE_COUNT_0) +
			 queue_slot);
	*wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
	if (*wave_cnt != 0)
		*vmid = (RREG32_SOC15(GC, 0, mmCP_HQD_VMID) &
			 CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT;
}

/**
758
 * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
759 760 761 762 763 764
 * shader engine and aggregates the number of waves that are in flight for the
 * process whose pasid is provided as a parameter. The process could have ZERO
 * or more queues running and submitting waves to compute units.
 *
 * @kgd: Handle of device from which to get number of waves in flight
 * @pasid: Identifies the process for which this query call is invoked
765
 * @pasid_wave_cnt: Output parameter updated with number of waves in flight that
766 767 768 769
 * belong to process with given pasid
 * @max_waves_per_cu: Output parameter updated with maximum number of waves
 * possible per Compute Unit
 *
770
 * Note: It's possible that the device has too many queues (oversubscription)
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
 * in which case a VMID could be remapped to a different PASID. This could lead
 * to an iaccurate wave count. Following is a high-level sequence:
 *    Time T1: vmid = getVmid(); vmid is associated with Pasid P1
 *    Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
 * In the sequence above wave count obtained from time T1 will be incorrectly
 * lost or added to total wave count.
 *
 * The registers that provide the waves in flight are:
 *
 *  SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
 *  queue is slotted, OFF if there is no queue. A process could have ZERO or
 *  more queues slotted and submitting waves to be run on compute units. Even
 *  when there is a queue it is possible there could be zero wave fronts, this
 *  can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
 *  command
 *
 *  For each bit that is ON from above:
 *
 *    Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
 *    number of waves that are in flight for the queue at specified index. The
 *    index ranges from 0 to 7.
 *
 *    If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID
 *    of the wave(s).
 *
 *    Determine if VMID from above step maps to pasid provided as parameter. If
 *    it matches agrregate the wave count. That the VMID will not match pasid is
 *    a normal condition i.e. a device is expected to support multiple queues
 *    from multiple proceses.
 *
 *  Reading registers referenced above involves programming GRBM appropriately
 */
803
void kgd_gfx_v9_get_cu_occupancy(struct kgd_dev *kgd, int pasid,
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
		int *pasid_wave_cnt, int *max_waves_per_cu)
{
	int qidx;
	int vmid;
	int se_idx;
	int sh_idx;
	int se_cnt;
	int sh_cnt;
	int wave_cnt;
	int queue_map;
	int pasid_tmp;
	int max_queue_cnt;
	int vmid_wave_cnt = 0;
	struct amdgpu_device *adev;
	DECLARE_BITMAP(cp_queue_bitmap, KGD_MAX_QUEUES);

	adev = get_amdgpu_device(kgd);
	lock_spi_csq_mutexes(adev);
	soc15_grbm_select(adev, 1, 0, 0, 0);

	/*
	 * Iterate through the shader engines and arrays of the device
	 * to get number of waves in flight
	 */
	bitmap_complement(cp_queue_bitmap, adev->gfx.mec.queue_bitmap,
			  KGD_MAX_QUEUES);
	max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
			adev->gfx.mec.num_queue_per_pipe;
	sh_cnt = adev->gfx.config.max_sh_per_se;
	se_cnt = adev->gfx.config.max_shader_engines;
	for (se_idx = 0; se_idx < se_cnt; se_idx++) {
		for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) {

			gfx_v9_0_select_se_sh(adev, se_idx, sh_idx, 0xffffffff);
			queue_map = RREG32(SOC15_REG_OFFSET(GC, 0,
					   mmSPI_CSQ_WF_ACTIVE_STATUS));

			/*
			 * Assumption: queue map encodes following schema: four
			 * pipes per each micro-engine, with each pipe mapping
			 * eight queues. This schema is true for GFX9 devices
			 * and must be verified for newer device families
			 */
			for (qidx = 0; qidx < max_queue_cnt; qidx++) {

				/* Skip qeueus that are not associated with
				 * compute functions
				 */
				if (!test_bit(qidx, cp_queue_bitmap))
					continue;

				if (!(queue_map & (1 << qidx)))
					continue;

				/* Get number of waves in flight and aggregate them */
				get_wave_count(adev, qidx, &wave_cnt, &vmid);
				if (wave_cnt != 0) {
					pasid_tmp =
					  RREG32(SOC15_REG_OFFSET(OSSSYS, 0,
						 mmIH_VMID_0_LUT) + vmid);
					if (pasid_tmp == pasid)
						vmid_wave_cnt += wave_cnt;
				}
			}
		}
	}

	gfx_v9_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
	soc15_grbm_select(adev, 0, 0, 0, 0);
	unlock_spi_csq_mutexes(adev);
874

875 876 877 878
	/* Update the output parameters and return */
	*pasid_wave_cnt = vmid_wave_cnt;
	*max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
				adev->gfx.cu_info.max_waves_per_simd;
879
}
880

881
const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
882 883 884 885
	.program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
	.set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
	.init_interrupts = kgd_gfx_v9_init_interrupts,
	.hqd_load = kgd_gfx_v9_hqd_load,
886
	.hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
887 888 889 890 891 892 893 894 895 896 897
	.hqd_sdma_load = kgd_hqd_sdma_load,
	.hqd_dump = kgd_gfx_v9_hqd_dump,
	.hqd_sdma_dump = kgd_hqd_sdma_dump,
	.hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
	.hqd_destroy = kgd_gfx_v9_hqd_destroy,
	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
	.address_watch_disable = kgd_gfx_v9_address_watch_disable,
	.address_watch_execute = kgd_gfx_v9_address_watch_execute,
	.wave_control_execute = kgd_gfx_v9_wave_control_execute,
	.address_watch_get_offset = kgd_gfx_v9_address_watch_get_offset,
898 899
	.get_atc_vmid_pasid_mapping_info =
			kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
900
	.set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
901
	.get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
902
};