dcn32_resource.c 70.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
// SPDX-License-Identifier: MIT
/*
 * Copyright 2022 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

#include "dm_services.h"
#include "dc.h"

#include "dcn32_init.h"

#include "resource.h"
#include "include/irq_service_interface.h"
#include "dcn32_resource.h"

#include "dcn20/dcn20_resource.h"
#include "dcn30/dcn30_resource.h"

#include "dcn10/dcn10_ipp.h"
#include "dcn30/dcn30_hubbub.h"
#include "dcn31/dcn31_hubbub.h"
#include "dcn32/dcn32_hubbub.h"
#include "dcn32/dcn32_mpc.h"
#include "dcn32_hubp.h"
#include "irq/dcn32/irq_service_dcn32.h"
#include "dcn32/dcn32_dpp.h"
#include "dcn32/dcn32_optc.h"
#include "dcn20/dcn20_hwseq.h"
#include "dcn30/dcn30_hwseq.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dcn30/dcn30_opp.h"
#include "dcn20/dcn20_dsc.h"
#include "dcn30/dcn30_vpg.h"
#include "dcn30/dcn30_afmt.h"
#include "dcn30/dcn30_dio_stream_encoder.h"
#include "dcn32/dcn32_dio_stream_encoder.h"
#include "dcn31/dcn31_hpo_dp_stream_encoder.h"
#include "dcn31/dcn31_hpo_dp_link_encoder.h"
#include "dcn32/dcn32_hpo_dp_link_encoder.h"
#include "dc_link_dp.h"
#include "dcn31/dcn31_apg.h"
#include "dcn31/dcn31_dio_link_encoder.h"
#include "dcn32/dcn32_dio_link_encoder.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "clk_mgr.h"
#include "virtual/virtual_stream_encoder.h"
#include "dml/display_mode_vba.h"
#include "dcn32/dcn32_dccg.h"
#include "dcn10/dcn10_resource.h"
#include "dc_link_ddc.h"
#include "dcn31/dcn31_panel_cntl.h"

#include "dcn30/dcn30_dwb.h"
#include "dcn32/dcn32_mmhubbub.h"

#include "dcn/dcn_3_2_0_offset.h"
#include "dcn/dcn_3_2_0_sh_mask.h"
80
#include "nbio/nbio_4_3_0_offset.h"
81 82 83 84 85 86 87 88 89 90

#include "reg_helper.h"
#include "dce/dmub_abm.h"
#include "dce/dmub_psr.h"
#include "dce/dce_aux.h"
#include "dce/dce_i2c.h"

#include "dml/dcn30/display_mode_vba_30.h"
#include "vm_helper.h"
#include "dcn20/dcn20_vmid.h"
91
#include "dml/dcn32/dcn32_fpu.h"
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

#define DC_LOGGER_INIT(logger)

enum dcn32_clk_src_array_id {
	DCN32_CLK_SRC_PLL0,
	DCN32_CLK_SRC_PLL1,
	DCN32_CLK_SRC_PLL2,
	DCN32_CLK_SRC_PLL3,
	DCN32_CLK_SRC_PLL4,
	DCN32_CLK_SRC_TOTAL
};

/* begin *********************
 * macros to expend register list macro defined in HW object header file
 */

/* DCN */
109
#define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
110 111 112 113

#define BASE(seg) BASE_INNER(seg)

#define SR(reg_name)\
114
		REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
115
					reg ## reg_name
116 117 118 119 120
#define SR_ARR(reg_name, id) \
	REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name

#define SR_ARR_INIT(reg_name, id, value) \
	REG_STRUCT[id].reg_name = value
121 122

#define SRI(reg_name, block, id)\
123 124 125 126 127 128 129
	REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name

#define SRI_ARR(reg_name, block, id)\
	REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name

130 131 132 133 134 135 136
#define SR_ARR_I2C(reg_name, id) \
	REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name

#define SRI_ARR_I2C(reg_name, block, id)\
	REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name

137 138 139
#define SRI_ARR_ALPHABET(reg_name, block, index, id)\
	REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name
140 141

#define SRI2(reg_name, block, id)\
142 143 144 145 146
	.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
		reg ## reg_name
#define SRI2_ARR(reg_name, block, id)\
	REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
		reg ## reg_name
147 148 149

#define SRIR(var_name, reg_name, block, id)\
	.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
150
		reg ## block ## id ## _ ## reg_name
151 152

#define SRII(reg_name, block, id)\
153
	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
154 155
					reg ## block ## id ## _ ## reg_name

156 157 158 159
#define SRII_ARR_2(reg_name, block, id, inst)\
	REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name

160 161
#define SRII_MPC_RMU(reg_name, block, id)\
	.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
162
		reg ## block ## id ## _ ## reg_name
163 164

#define SRII_DWB(reg_name, temp_name, block, id)\
165 166
	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## temp_name
167

168 169 170
#define SF_DWB2(reg_name, block, id, field_name, post_fix)	\
	.field_name = reg_name ## __ ## field_name ## post_fix

171
#define DCCG_SRII(reg_name, block, id)\
172 173
	REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name
174 175

#define VUPDATE_SRII(reg_name, block, id)\
176 177
	REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
		reg ## reg_name ## _ ## block ## id
178 179

/* NBIO */
180
#define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
181 182 183 184 185

#define NBIO_BASE(seg) \
	NBIO_BASE_INNER(seg)

#define NBIO_SR(reg_name)\
186 187 188 189 190
	REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
			regBIF_BX0_ ## reg_name
#define NBIO_SR_ARR(reg_name, id)\
	REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
		regBIF_BX0_ ## reg_name
191

192
#undef CTX
193 194
#define CTX ctx
#define REG(reg_name) \
195
	(ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
196

197
static struct bios_registers bios_regs;
198

199 200 201 202 203
#define bios_regs_init() \
		( \
		NBIO_SR(BIOS_SCRATCH_3),\
		NBIO_SR(BIOS_SCRATCH_6)\
		)
204

205 206 207 208
#define clk_src_regs_init(index, pllid)\
	CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)

static struct dce110_clk_src_regs clk_src_regs[5];
209 210 211 212 213 214 215 216 217

static const struct dce110_clk_src_shift cs_shift = {
		CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
};

static const struct dce110_clk_src_mask cs_mask = {
		CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
};

218 219
#define abm_regs_init(id)\
		ABM_DCN32_REG_LIST_RI(id)
220

221
static struct dce_abm_registers abm_regs[4];
222 223 224 225 226 227 228 229 230

static const struct dce_abm_shift abm_shift = {
		ABM_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dce_abm_mask abm_mask = {
		ABM_MASK_SH_LIST_DCN32(_MASK)
};

231 232
#define audio_regs_init(id)\
		AUD_COMMON_REG_LIST_RI(id)
233

234
static struct dce_audio_registers audio_regs[5];
235 236 237 238 239 240 241 242 243 244 245 246 247 248

#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)

static const struct dce_audio_shift audio_shift = {
		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};

static const struct dce_audio_mask audio_mask = {
		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};

249 250
#define vpg_regs_init(id)\
	VPG_DCN3_REG_LIST_RI(id)
251

252
static struct dcn30_vpg_registers vpg_regs[10];
253 254 255 256 257 258 259 260 261

static const struct dcn30_vpg_shift vpg_shift = {
	DCN3_VPG_MASK_SH_LIST(__SHIFT)
};

static const struct dcn30_vpg_mask vpg_mask = {
	DCN3_VPG_MASK_SH_LIST(_MASK)
};

262 263
#define afmt_regs_init(id)\
	AFMT_DCN3_REG_LIST_RI(id)
264

265
static struct dcn30_afmt_registers afmt_regs[6];
266 267 268 269 270 271 272 273 274

static const struct dcn30_afmt_shift afmt_shift = {
	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
};

static const struct dcn30_afmt_mask afmt_mask = {
	DCN3_AFMT_MASK_SH_LIST(_MASK)
};

275 276
#define apg_regs_init(id)\
	APG_DCN31_REG_LIST_RI(id)
277

278
static struct dcn31_apg_registers apg_regs[4];
279 280 281 282 283 284 285 286 287

static const struct dcn31_apg_shift apg_shift = {
	DCN31_APG_MASK_SH_LIST(__SHIFT)
};

static const struct dcn31_apg_mask apg_mask = {
		DCN31_APG_MASK_SH_LIST(_MASK)
};

288 289
#define stream_enc_regs_init(id)\
	SE_DCN32_REG_LIST_RI(id)
290

291
static struct dcn10_stream_enc_registers stream_enc_regs[5];
292 293 294 295 296 297 298 299 300 301

static const struct dcn10_stream_encoder_shift se_shift = {
		SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dcn10_stream_encoder_mask se_mask = {
		SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
};


302 303
#define aux_regs_init(id)\
	DCN2_AUX_REG_LIST_RI(id)
304

305
static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
306

307 308
#define hpd_regs_init(id)\
	HPD_REG_LIST_RI(id)
309

310
static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
311

312 313 314 315 316
#define link_regs_init(id, phyid)\
	( \
	LE_DCN31_REG_LIST_RI(id), \
	UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
	)
317 318
	/*DPCS_DCN31_REG_LIST(id),*/ \

319
static struct dcn10_link_enc_registers link_enc_regs[5];
320 321 322 323 324 325 326 327 328 329 330 331

static const struct dcn10_link_enc_shift le_shift = {
	LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
	//DPCS_DCN31_MASK_SH_LIST(__SHIFT)
};

static const struct dcn10_link_enc_mask le_mask = {
	LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \

	//DPCS_DCN31_MASK_SH_LIST(_MASK)
};

332 333
#define hpo_dp_stream_encoder_reg_init(id)\
	DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
334

335
static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
336 337 338 339 340 341 342 343 344 345

static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
};

static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
};


346 347 348 349 350 351
#define hpo_dp_link_encoder_reg_init(id)\
	DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
	/*DCN3_1_RDPCSTX_REG_LIST(0),*/
	/*DCN3_1_RDPCSTX_REG_LIST(1),*/
	/*DCN3_1_RDPCSTX_REG_LIST(2),*/
	/*DCN3_1_RDPCSTX_REG_LIST(3),*/
352

353
static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
354 355 356 357 358 359 360 361 362

static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
};

static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
};

363 364
#define dpp_regs_init(id)\
	DPP_REG_LIST_DCN30_COMMON_RI(id)
365

366
static struct dcn3_dpp_registers dpp_regs[4];
367 368 369 370 371 372 373 374 375 376

static const struct dcn3_dpp_shift tf_shift = {
		DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
};

static const struct dcn3_dpp_mask tf_mask = {
		DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
};


377 378
#define opp_regs_init(id)\
	OPP_REG_LIST_DCN30_RI(id)
379

380
static struct dcn20_opp_registers opp_regs[4];
381 382 383 384 385 386 387 388 389

static const struct dcn20_opp_shift opp_shift = {
	OPP_MASK_SH_LIST_DCN20(__SHIFT)
};

static const struct dcn20_opp_mask opp_mask = {
	OPP_MASK_SH_LIST_DCN20(_MASK)
};

390 391 392 393 394 395 396 397
#define aux_engine_regs_init(id)\
	( \
	AUX_COMMON_REG_LIST0_RI(id), \
	SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
	SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
	)
398

399
static struct dce110_aux_registers aux_engine_regs[5];
400 401 402 403 404 405 406 407 408

static const struct dce110_aux_registers_shift aux_shift = {
	DCN_AUX_MASK_SH_LIST(__SHIFT)
};

static const struct dce110_aux_registers_mask aux_mask = {
	DCN_AUX_MASK_SH_LIST(_MASK)
};

409 410
#define dwbc_regs_dcn3_init(id)\
	DWBC_COMMON_REG_LIST_DCN30_RI(id)
411

412
static struct dcn30_dwbc_registers dwbc30_regs[1];
413 414 415 416 417 418 419 420 421

static const struct dcn30_dwbc_shift dwbc30_shift = {
	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};

static const struct dcn30_dwbc_mask dwbc30_mask = {
	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};

422 423
#define mcif_wb_regs_dcn3_init(id)\
	MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
424

425
static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
426 427 428 429 430 431 432 433 434

static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
};

435 436
#define dsc_regsDCN20_init(id)\
	DSC_REG_LIST_DCN20_RI(id)
437

438
static struct dcn20_dsc_registers dsc_regs[4];
439 440 441 442 443 444 445 446 447

static const struct dcn20_dsc_shift dsc_shift = {
	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
};

static const struct dcn20_dsc_mask dsc_mask = {
	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
};

448
static struct dcn30_mpc_registers mpc_regs;
449 450 451 452 453 454 455 456 457 458 459

#define dcn_mpc_regs_init() \
	MPC_REG_LIST_DCN3_2_RI(0),\
	MPC_REG_LIST_DCN3_2_RI(1),\
	MPC_REG_LIST_DCN3_2_RI(2),\
	MPC_REG_LIST_DCN3_2_RI(3),\
	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
	MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
460 461 462 463 464 465 466 467 468

static const struct dcn30_mpc_shift mpc_shift = {
	MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dcn30_mpc_mask mpc_mask = {
	MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
};

469 470 471 472
#define optc_regs_init(id)\
	OPTC_COMMON_REG_LIST_DCN3_2_RI(id)

static struct dcn_optc_registers optc_regs[4];
473 474 475 476 477 478 479 480 481

static const struct dcn_optc_shift optc_shift = {
	OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
};

static const struct dcn_optc_mask optc_mask = {
	OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
};

482 483
#define hubp_regs_init(id)\
	HUBP_REG_LIST_DCN32_RI(id)
484

485
static struct dcn_hubp2_registers hubp_regs[4];
486 487 488 489 490 491 492 493 494


static const struct dcn_hubp2_shift hubp_shift = {
		HUBP_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dcn_hubp2_mask hubp_mask = {
		HUBP_MASK_SH_LIST_DCN32(_MASK)
};
495 496 497 498

static struct dcn_hubbub_registers hubbub_reg;
#define hubbub_reg_init()\
		HUBBUB_REG_LIST_DCN32_RI(0)
499 500 501 502 503 504 505 506 507

static const struct dcn_hubbub_shift hubbub_shift = {
		HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dcn_hubbub_mask hubbub_mask = {
		HUBBUB_MASK_SH_LIST_DCN32(_MASK)
};

508 509 510 511
static struct dccg_registers dccg_regs;

#define dccg_regs_init()\
	DCCG_REG_LIST_DCN32_RI()
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

static const struct dccg_shift dccg_shift = {
		DCCG_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dccg_mask dccg_mask = {
		DCCG_MASK_SH_LIST_DCN32(_MASK)
};


#define SRII2(reg_name_pre, reg_name_post, id)\
	.reg_name_pre ## _ ##  reg_name_post[id] = BASE(reg ## reg_name_pre \
			## id ## _ ## reg_name_post ## _BASE_IDX) + \
			reg ## reg_name_pre ## id ## _ ## reg_name_post


#define HWSEQ_DCN32_REG_LIST()\
	SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
	SR(DIO_MEM_PWR_CTRL), \
	SR(ODM_MEM_PWR_CTRL3), \
	SR(MMHUBBUB_MEM_PWR_CNTL), \
	SR(DCCG_GATE_DISABLE_CNTL), \
	SR(DCCG_GATE_DISABLE_CNTL2), \
	SR(DCFCLK_CNTL),\
	SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
	SRII(PIXEL_RATE_CNTL, OTG, 0), \
	SRII(PIXEL_RATE_CNTL, OTG, 1),\
	SRII(PIXEL_RATE_CNTL, OTG, 2),\
	SRII(PIXEL_RATE_CNTL, OTG, 3),\
	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
	SR(MICROSECOND_TIME_BASE_DIV), \
	SR(MILLISECOND_TIME_BASE_DIV), \
	SR(DISPCLK_FREQ_CHANGE_CNTL), \
	SR(RBBMIF_TIMEOUT_DIS), \
	SR(RBBMIF_TIMEOUT_DIS_2), \
	SR(DCHUBBUB_CRC_CTRL), \
	SR(DPP_TOP0_DPP_CRC_CTRL), \
	SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
	SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
	SR(MPC_CRC_CTRL), \
	SR(MPC_CRC_RESULT_GB), \
	SR(MPC_CRC_RESULT_C), \
	SR(MPC_CRC_RESULT_AR), \
	SR(DOMAIN0_PG_CONFIG), \
	SR(DOMAIN1_PG_CONFIG), \
	SR(DOMAIN2_PG_CONFIG), \
	SR(DOMAIN3_PG_CONFIG), \
	SR(DOMAIN16_PG_CONFIG), \
	SR(DOMAIN17_PG_CONFIG), \
	SR(DOMAIN18_PG_CONFIG), \
	SR(DOMAIN19_PG_CONFIG), \
	SR(DOMAIN0_PG_STATUS), \
	SR(DOMAIN1_PG_STATUS), \
	SR(DOMAIN2_PG_STATUS), \
	SR(DOMAIN3_PG_STATUS), \
	SR(DOMAIN16_PG_STATUS), \
	SR(DOMAIN17_PG_STATUS), \
	SR(DOMAIN18_PG_STATUS), \
	SR(DOMAIN19_PG_STATUS), \
	SR(D1VGA_CONTROL), \
	SR(D2VGA_CONTROL), \
	SR(D3VGA_CONTROL), \
	SR(D4VGA_CONTROL), \
	SR(D5VGA_CONTROL), \
	SR(D6VGA_CONTROL), \
	SR(DC_IP_REQUEST_CNTL), \
	SR(AZALIA_AUDIO_DTO), \
	SR(AZALIA_CONTROLLER_CLOCK_GATING)

584 585 586 587
static struct dce_hwseq_registers hwseq_reg;

#define hwseq_reg_init()\
	HWSEQ_DCN32_REG_LIST()
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

#define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
	HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
	HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
	HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
	HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
	HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)

static const struct dce_hwseq_shift hwseq_shift = {
		HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
};

static const struct dce_hwseq_mask hwseq_mask = {
		HWSEQ_DCN32_MASK_SH_LIST(_MASK)
};
630 631
#define vmid_regs_init(id)\
		DCN20_VMID_REG_LIST_RI(id)
632

633
static struct dcn_vmid_registers vmid_regs[16];
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

static const struct dcn20_vmid_shift vmid_shifts = {
		DCN20_VMID_MASK_SH_LIST(__SHIFT)
};

static const struct dcn20_vmid_mask vmid_masks = {
		DCN20_VMID_MASK_SH_LIST(_MASK)
};

static const struct resource_caps res_cap_dcn32 = {
	.num_timing_generator = 4,
	.num_opp = 4,
	.num_video_plane = 4,
	.num_audio = 5,
	.num_stream_encoder = 5,
	.num_hpo_dp_stream_encoder = 4,
	.num_hpo_dp_link_encoder = 2,
	.num_pll = 5,
	.num_dwb = 1,
	.num_ddc = 5,
	.num_vmid = 16,
	.num_mpc_3dlut = 4,
	.num_dsc = 4,
};

static const struct dc_plane_cap plane_cap = {
	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
	.blends_with_above = true,
	.blends_with_below = true,
	.per_pixel_alpha = true,

	.pixel_format_support = {
			.argb8888 = true,
			.nv12 = true,
			.fp16 = true,
			.p010 = true,
			.ayuv = false,
	},

	.max_upscale_factor = {
			.argb8888 = 16000,
			.nv12 = 16000,
			.fp16 = 16000
	},

	// 6:1 downscaling ratio: 1000/6 = 166.666
	.max_downscale_factor = {
			.argb8888 = 167,
			.nv12 = 167,
			.fp16 = 167
	},
	64,
	64
};

static const struct dc_debug_options debug_defaults_drv = {
	.disable_dmcu = true,
	.force_abm_enable = false,
	.timing_trace = false,
	.clock_trace = true,
	.disable_pplib_clock_request = false,
695
	.pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	.force_single_disp_pipe_split = false,
	.disable_dcc = DCC_ENABLE,
	.vsr_support = true,
	.performance_trace = false,
	.max_downscale_src_width = 7680,/*upto 8K*/
	.disable_pplib_wm_range = false,
	.scl_reset_length10 = true,
	.sanity_checks = false,
	.underflow_assert_delay_us = 0xFFFFFFFF,
	.dwb_fi_phase = -1, // -1 = disable,
	.dmub_command_table = true,
	.enable_mem_low_power = {
		.bits = {
			.vga = false,
			.i2c = false,
			.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
			.dscl = false,
			.cm = false,
			.mpc = false,
715
			.optc = true,
716 717 718
		}
	},
	.use_max_lb = true,
719
	.force_disable_subvp = false,
720
	.exit_idle_opt_for_cursor_updates = true,
721
	.enable_single_display_2to1_odm_policy = true,
722 723 724

	/* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
	.enable_double_buffered_dsc_pg_support = true,
725
	.enable_dp_dig_pixel_rate_div_policy = 1,
726
	.allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
727
	.alloc_extra_way_for_cursor = true,
728
	.min_prefetch_in_strobe_ns = 60000, // 60us
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
};

static const struct dc_debug_options debug_defaults_diags = {
	.disable_dmcu = true,
	.force_abm_enable = false,
	.timing_trace = true,
	.clock_trace = true,
	.disable_dpp_power_gate = true,
	.disable_hubp_power_gate = true,
	.disable_dsc_power_gate = true,
	.disable_clock_gate = true,
	.disable_pplib_clock_request = true,
	.disable_pplib_wm_range = true,
	.disable_stutter = false,
	.scl_reset_length10 = true,
	.dwb_fi_phase = -1, // -1 = disable
	.dmub_command_table = true,
	.enable_tri_buf = true,
	.use_max_lb = true,
	.force_disable_subvp = true
};

static struct dce_aux *dcn32_aux_engine_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct aux_engine_dce110 *aux_engine =
		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);

	if (!aux_engine)
		return NULL;

761 762 763 764 765 766 767 768
#undef REG_STRUCT
#define REG_STRUCT aux_engine_regs
	aux_engine_regs_init(0),
	aux_engine_regs_init(1),
	aux_engine_regs_init(2),
	aux_engine_regs_init(3),
	aux_engine_regs_init(4);

769 770 771 772 773 774 775 776 777
	dce110_aux_engine_construct(aux_engine, ctx, inst,
				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
				    &aux_engine_regs[inst],
					&aux_mask,
					&aux_shift,
					ctx->dc->caps.extended_aux_timeout_support);

	return &aux_engine->base;
}
778 779 780
#define i2c_inst_regs_init(id)\
	I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)

781
static struct dce_i2c_registers i2c_hw_regs[5];
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

static const struct dce_i2c_shift i2c_shifts = {
		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};

static const struct dce_i2c_mask i2c_masks = {
		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
};

static struct dce_i2c_hw *dcn32_i2c_hw_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct dce_i2c_hw *dce_i2c_hw =
		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);

	if (!dce_i2c_hw)
		return NULL;

801 802 803 804 805 806 807 808
#undef REG_STRUCT
#define REG_STRUCT i2c_hw_regs
	i2c_inst_regs_init(1),
	i2c_inst_regs_init(2),
	i2c_inst_regs_init(3),
	i2c_inst_regs_init(4),
	i2c_inst_regs_init(5);

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);

	return dce_i2c_hw;
}

static struct clock_source *dcn32_clock_source_create(
		struct dc_context *ctx,
		struct dc_bios *bios,
		enum clock_source_id id,
		const struct dce110_clk_src_regs *regs,
		bool dp_clk_src)
{
	struct dce110_clk_src *clk_src =
		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);

	if (!clk_src)
		return NULL;

828
	if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
829 830 831 832 833
			regs, &cs_shift, &cs_mask)) {
		clk_src->base.dp_clk_src = dp_clk_src;
		return &clk_src->base;
	}

834
	kfree(clk_src);
835 836 837 838 839 840 841 842 843 844 845 846 847 848
	BREAK_TO_DEBUGGER();
	return NULL;
}

static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
{
	int i;

	struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
					  GFP_KERNEL);

	if (!hubbub2)
		return NULL;

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
#undef REG_STRUCT
#define REG_STRUCT hubbub_reg
	hubbub_reg_init();

#undef REG_STRUCT
#define REG_STRUCT vmid_regs
	vmid_regs_init(0),
	vmid_regs_init(1),
	vmid_regs_init(2),
	vmid_regs_init(3),
	vmid_regs_init(4),
	vmid_regs_init(5),
	vmid_regs_init(6),
	vmid_regs_init(7),
	vmid_regs_init(8),
	vmid_regs_init(9),
	vmid_regs_init(10),
	vmid_regs_init(11),
	vmid_regs_init(12),
	vmid_regs_init(13),
	vmid_regs_init(14),
	vmid_regs_init(15);

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
	hubbub32_construct(hubbub2, ctx,
			&hubbub_reg,
			&hubbub_shift,
			&hubbub_mask,
			ctx->dc->dml.ip.det_buffer_size_kbytes,
			ctx->dc->dml.ip.pixel_chunk_size_kbytes,
			ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);


	for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
		struct dcn20_vmid *vmid = &hubbub2->vmid[i];

		vmid->ctx = ctx;

		vmid->regs = &vmid_regs[i];
		vmid->shifts = &vmid_shifts;
		vmid->masks = &vmid_masks;
	}

	return &hubbub2->base;
}

static struct hubp *dcn32_hubp_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct dcn20_hubp *hubp2 =
		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);

	if (!hubp2)
		return NULL;

904 905
#undef REG_STRUCT
#define REG_STRUCT hubp_regs
906 907 908 909
	hubp_regs_init(0),
	hubp_regs_init(1),
	hubp_regs_init(2),
	hubp_regs_init(3);
910

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
	if (hubp32_construct(hubp2, ctx, inst,
			&hubp_regs[inst], &hubp_shift, &hubp_mask))
		return &hubp2->base;

	BREAK_TO_DEBUGGER();
	kfree(hubp2);
	return NULL;
}

static void dcn32_dpp_destroy(struct dpp **dpp)
{
	kfree(TO_DCN30_DPP(*dpp));
	*dpp = NULL;
}

static struct dpp *dcn32_dpp_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct dcn3_dpp *dpp3 =
		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);

	if (!dpp3)
		return NULL;

936 937 938 939 940 941 942
#undef REG_STRUCT
#define REG_STRUCT dpp_regs
	dpp_regs_init(0),
	dpp_regs_init(1),
	dpp_regs_init(2),
	dpp_regs_init(3);

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	if (dpp32_construct(dpp3, ctx, inst,
			&dpp_regs[inst], &tf_shift, &tf_mask))
		return &dpp3->base;

	BREAK_TO_DEBUGGER();
	kfree(dpp3);
	return NULL;
}

static struct mpc *dcn32_mpc_create(
		struct dc_context *ctx,
		int num_mpcc,
		int num_rmu)
{
	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
					  GFP_KERNEL);

	if (!mpc30)
		return NULL;

963 964 965 966
#undef REG_STRUCT
#define REG_STRUCT mpc_regs
	dcn_mpc_regs_init();

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	dcn32_mpc_construct(mpc30, ctx,
			&mpc_regs,
			&mpc_shift,
			&mpc_mask,
			num_mpcc,
			num_rmu);

	return &mpc30->base;
}

static struct output_pixel_processor *dcn32_opp_create(
	struct dc_context *ctx, uint32_t inst)
{
	struct dcn20_opp *opp2 =
		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);

	if (!opp2) {
		BREAK_TO_DEBUGGER();
		return NULL;
	}

988 989 990 991 992 993 994
#undef REG_STRUCT
#define REG_STRUCT opp_regs
	opp_regs_init(0),
	opp_regs_init(1),
	opp_regs_init(2),
	opp_regs_init(3);

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	dcn20_opp_construct(opp2, ctx, inst,
			&opp_regs[inst], &opp_shift, &opp_mask);
	return &opp2->base;
}


static struct timing_generator *dcn32_timing_generator_create(
		struct dc_context *ctx,
		uint32_t instance)
{
	struct optc *tgn10 =
		kzalloc(sizeof(struct optc), GFP_KERNEL);

	if (!tgn10)
		return NULL;

1011 1012 1013 1014 1015 1016 1017
#undef REG_STRUCT
#define REG_STRUCT optc_regs
	optc_regs_init(0),
	optc_regs_init(1),
	optc_regs_init(2),
	optc_regs_init(3);

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	tgn10->base.inst = instance;
	tgn10->base.ctx = ctx;

	tgn10->tg_regs = &optc_regs[instance];
	tgn10->tg_shift = &optc_shift;
	tgn10->tg_mask = &optc_mask;

	dcn32_timing_generator_init(tgn10);

	return &tgn10->base;
}

static const struct encoder_feature_support link_enc_feature = {
		.max_hdmi_deep_color = COLOR_DEPTH_121212,
		.max_hdmi_pixel_clock = 600000,
		.hdmi_ycbcr420_supported = true,
		.dp_ycbcr420_supported = true,
		.fec_supported = true,
		.flags.bits.IS_HBR2_CAPABLE = true,
		.flags.bits.IS_HBR3_CAPABLE = true,
		.flags.bits.IS_TPS3_CAPABLE = true,
		.flags.bits.IS_TPS4_CAPABLE = true
};

static struct link_encoder *dcn32_link_encoder_create(
1043
	struct dc_context *ctx,
1044 1045 1046 1047 1048 1049 1050 1051
	const struct encoder_init_data *enc_init_data)
{
	struct dcn20_link_encoder *enc20 =
		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);

	if (!enc20)
		return NULL;

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
#undef REG_STRUCT
#define REG_STRUCT link_enc_aux_regs
	aux_regs_init(0),
	aux_regs_init(1),
	aux_regs_init(2),
	aux_regs_init(3),
	aux_regs_init(4);

#undef REG_STRUCT
#define REG_STRUCT link_enc_hpd_regs
	hpd_regs_init(0),
	hpd_regs_init(1),
	hpd_regs_init(2),
	hpd_regs_init(3),
	hpd_regs_init(4);

#undef REG_STRUCT
#define REG_STRUCT link_enc_regs
	link_regs_init(0, A),
	link_regs_init(1, B),
	link_regs_init(2, C),
	link_regs_init(3, D),
	link_regs_init(4, E);

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	dcn32_link_encoder_construct(enc20,
			enc_init_data,
			&link_enc_feature,
			&link_enc_regs[enc_init_data->transmitter],
			&link_enc_aux_regs[enc_init_data->channel - 1],
			&link_enc_hpd_regs[enc_init_data->hpd_source],
			&le_shift,
			&le_mask);

	return &enc20->enc10.base;
}

struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
	struct dcn31_panel_cntl *panel_cntl =
		kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);

	if (!panel_cntl)
		return NULL;

	dcn31_panel_cntl_construct(panel_cntl, init_data);

	return &panel_cntl->base;
}

static void read_dce_straps(
	struct dc_context *ctx,
	struct resource_straps *straps)
{
1105
	generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
1106 1107 1108 1109 1110 1111 1112
		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);

}

static struct audio *dcn32_create_audio(
		struct dc_context *ctx, unsigned int inst)
{
1113 1114 1115 1116 1117 1118 1119 1120 1121

#undef REG_STRUCT
#define REG_STRUCT audio_regs
	audio_regs_init(0),
	audio_regs_init(1),
	audio_regs_init(2),
	audio_regs_init(3),
	audio_regs_init(4);

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	return dce_audio_create(ctx, inst,
			&audio_regs[inst], &audio_shift, &audio_mask);
}

static struct vpg *dcn32_vpg_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);

	if (!vpg3)
		return NULL;

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
#undef REG_STRUCT
#define REG_STRUCT vpg_regs
	vpg_regs_init(0),
	vpg_regs_init(1),
	vpg_regs_init(2),
	vpg_regs_init(3),
	vpg_regs_init(4),
	vpg_regs_init(5),
	vpg_regs_init(6),
	vpg_regs_init(7),
	vpg_regs_init(8),
	vpg_regs_init(9);

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	vpg3_construct(vpg3, ctx, inst,
			&vpg_regs[inst],
			&vpg_shift,
			&vpg_mask);

	return &vpg3->base;
}

static struct afmt *dcn32_afmt_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);

	if (!afmt3)
		return NULL;

1165 1166 1167 1168 1169 1170 1171 1172 1173
#undef REG_STRUCT
#define REG_STRUCT afmt_regs
	afmt_regs_init(0),
	afmt_regs_init(1),
	afmt_regs_init(2),
	afmt_regs_init(3),
	afmt_regs_init(4),
	afmt_regs_init(5);

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	afmt3_construct(afmt3, ctx, inst,
			&afmt_regs[inst],
			&afmt_shift,
			&afmt_mask);

	return &afmt3->base;
}

static struct apg *dcn31_apg_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);

	if (!apg31)
		return NULL;

1191 1192 1193 1194 1195 1196 1197
#undef REG_STRUCT
#define REG_STRUCT apg_regs
	apg_regs_init(0),
	apg_regs_init(1),
	apg_regs_init(2),
	apg_regs_init(3);

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	apg31_construct(apg31, ctx, inst,
			&apg_regs[inst],
			&apg_shift,
			&apg_mask);

	return &apg31->base;
}

static struct stream_encoder *dcn32_stream_encoder_create(
	enum engine_id eng_id,
	struct dc_context *ctx)
{
	struct dcn10_stream_encoder *enc1;
	struct vpg *vpg;
	struct afmt *afmt;
	int vpg_inst;
	int afmt_inst;

	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
	if (eng_id <= ENGINE_ID_DIGF) {
		vpg_inst = eng_id;
		afmt_inst = eng_id;
	} else
		return NULL;

	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
	vpg = dcn32_vpg_create(ctx, vpg_inst);
	afmt = dcn32_afmt_create(ctx, afmt_inst);

	if (!enc1 || !vpg || !afmt) {
		kfree(enc1);
		kfree(vpg);
		kfree(afmt);
		return NULL;
	}

1234 1235 1236 1237 1238 1239 1240 1241
#undef REG_STRUCT
#define REG_STRUCT stream_enc_regs
	stream_enc_regs_init(0),
	stream_enc_regs_init(1),
	stream_enc_regs_init(2),
	stream_enc_regs_init(3),
	stream_enc_regs_init(4);

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
					eng_id, vpg, afmt,
					&stream_enc_regs[eng_id],
					&se_shift, &se_mask);

	return &enc1->base;
}

static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
	enum engine_id eng_id,
	struct dc_context *ctx)
{
	struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
	struct vpg *vpg;
	struct apg *apg;
	uint32_t hpo_dp_inst;
	uint32_t vpg_inst;
	uint32_t apg_inst;

	ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
	hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;

	/* Mapping of VPG register blocks to HPO DP block instance:
	 * VPG[6] -> HPO_DP[0]
	 * VPG[7] -> HPO_DP[1]
	 * VPG[8] -> HPO_DP[2]
	 * VPG[9] -> HPO_DP[3]
	 */
	vpg_inst = hpo_dp_inst + 6;

	/* Mapping of APG register blocks to HPO DP block instance:
	 * APG[0] -> HPO_DP[0]
	 * APG[1] -> HPO_DP[1]
	 * APG[2] -> HPO_DP[2]
	 * APG[3] -> HPO_DP[3]
	 */
	apg_inst = hpo_dp_inst;

	/* allocate HPO stream encoder and create VPG sub-block */
	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
	vpg = dcn32_vpg_create(ctx, vpg_inst);
	apg = dcn31_apg_create(ctx, apg_inst);

	if (!hpo_dp_enc31 || !vpg || !apg) {
		kfree(hpo_dp_enc31);
		kfree(vpg);
		kfree(apg);
		return NULL;
	}

1292 1293 1294 1295 1296 1297 1298
#undef REG_STRUCT
#define REG_STRUCT hpo_dp_stream_enc_regs
	hpo_dp_stream_encoder_reg_init(0),
	hpo_dp_stream_encoder_reg_init(1),
	hpo_dp_stream_encoder_reg_init(2),
	hpo_dp_stream_encoder_reg_init(3);

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
					hpo_dp_inst, eng_id, vpg, apg,
					&hpo_dp_stream_enc_regs[hpo_dp_inst],
					&hpo_dp_se_shift, &hpo_dp_se_mask);

	return &hpo_dp_enc31->base;
}

static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
	uint8_t inst,
	struct dc_context *ctx)
{
	struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;

	/* allocate HPO link encoder */
	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);

1316 1317 1318 1319 1320
#undef REG_STRUCT
#define REG_STRUCT hpo_dp_link_enc_regs
	hpo_dp_link_encoder_reg_init(0),
	hpo_dp_link_encoder_reg_init(1);

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
					&hpo_dp_link_enc_regs[inst],
					&hpo_dp_le_shift, &hpo_dp_le_mask);

	return &hpo_dp_enc31->base;
}

static struct dce_hwseq *dcn32_hwseq_create(
	struct dc_context *ctx)
{
	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);

1333 1334 1335 1336
#undef REG_STRUCT
#define REG_STRUCT hwseq_reg
	hwseq_reg_init();

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	if (hws) {
		hws->ctx = ctx;
		hws->regs = &hwseq_reg;
		hws->shifts = &hwseq_shift;
		hws->masks = &hwseq_mask;
	}
	return hws;
}
static const struct resource_create_funcs res_create_funcs = {
	.read_dce_straps = read_dce_straps,
	.create_audio = dcn32_create_audio,
	.create_stream_encoder = dcn32_stream_encoder_create,
	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
	.create_hwseq = dcn32_hwseq_create,
};

static const struct resource_create_funcs res_create_maximus_funcs = {
	.read_dce_straps = NULL,
	.create_audio = NULL,
	.create_stream_encoder = NULL,
	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
	.create_hwseq = dcn32_hwseq_create,
};

static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
{
	unsigned int i;

	for (i = 0; i < pool->base.stream_enc_count; i++) {
		if (pool->base.stream_enc[i] != NULL) {
			if (pool->base.stream_enc[i]->vpg != NULL) {
				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
				pool->base.stream_enc[i]->vpg = NULL;
			}
			if (pool->base.stream_enc[i]->afmt != NULL) {
				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
				pool->base.stream_enc[i]->afmt = NULL;
			}
			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
			pool->base.stream_enc[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
		if (pool->base.hpo_dp_stream_enc[i] != NULL) {
			if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
				kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
				pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
			}
			if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
				kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
				pool->base.hpo_dp_stream_enc[i]->apg = NULL;
			}
			kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
			pool->base.hpo_dp_stream_enc[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
		if (pool->base.hpo_dp_link_enc[i] != NULL) {
			kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
			pool->base.hpo_dp_link_enc[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
		if (pool->base.dscs[i] != NULL)
			dcn20_dsc_destroy(&pool->base.dscs[i]);
	}

	if (pool->base.mpc != NULL) {
		kfree(TO_DCN20_MPC(pool->base.mpc));
		pool->base.mpc = NULL;
	}
	if (pool->base.hubbub != NULL) {
		kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
		pool->base.hubbub = NULL;
	}
	for (i = 0; i < pool->base.pipe_count; i++) {
		if (pool->base.dpps[i] != NULL)
			dcn32_dpp_destroy(&pool->base.dpps[i]);

		if (pool->base.ipps[i] != NULL)
			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);

		if (pool->base.hubps[i] != NULL) {
			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
			pool->base.hubps[i] = NULL;
		}

		if (pool->base.irqs != NULL) {
			dal_irq_service_destroy(&pool->base.irqs);
		}
	}

	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
		if (pool->base.engines[i] != NULL)
			dce110_engine_destroy(&pool->base.engines[i]);
		if (pool->base.hw_i2cs[i] != NULL) {
			kfree(pool->base.hw_i2cs[i]);
			pool->base.hw_i2cs[i] = NULL;
		}
		if (pool->base.sw_i2cs[i] != NULL) {
			kfree(pool->base.sw_i2cs[i]);
			pool->base.sw_i2cs[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
		if (pool->base.opps[i] != NULL)
			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
	}

	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
		if (pool->base.timing_generators[i] != NULL)	{
			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
			pool->base.timing_generators[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
		if (pool->base.dwbc[i] != NULL) {
			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
			pool->base.dwbc[i] = NULL;
		}
		if (pool->base.mcif_wb[i] != NULL) {
			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
			pool->base.mcif_wb[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.audio_count; i++) {
		if (pool->base.audios[i])
			dce_aud_destroy(&pool->base.audios[i]);
	}

	for (i = 0; i < pool->base.clk_src_count; i++) {
		if (pool->base.clock_sources[i] != NULL) {
			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
			pool->base.clock_sources[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
		if (pool->base.mpc_lut[i] != NULL) {
			dc_3dlut_func_release(pool->base.mpc_lut[i]);
			pool->base.mpc_lut[i] = NULL;
		}
		if (pool->base.mpc_shaper[i] != NULL) {
			dc_transfer_func_release(pool->base.mpc_shaper[i]);
			pool->base.mpc_shaper[i] = NULL;
		}
	}

	if (pool->base.dp_clock_source != NULL) {
		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
		pool->base.dp_clock_source = NULL;
	}

	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
		if (pool->base.multiple_abms[i] != NULL)
			dce_abm_destroy(&pool->base.multiple_abms[i]);
	}

	if (pool->base.psr != NULL)
		dmub_psr_destroy(&pool->base.psr);

	if (pool->base.dccg != NULL)
		dcn_dccg_destroy(&pool->base.dccg);

	if (pool->base.oem_device != NULL)
		dal_ddc_service_destroy(&pool->base.oem_device);
}


static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
{
	int i;
	uint32_t dwb_count = pool->res_cap->num_dwb;

	for (i = 0; i < dwb_count; i++) {
		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
						    GFP_KERNEL);

		if (!dwbc30) {
			dm_error("DC: failed to create dwbc30!\n");
			return false;
		}

1528 1529 1530 1531
#undef REG_STRUCT
#define REG_STRUCT dwbc30_regs
		dwbc_regs_dcn3_init(0);

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		dcn30_dwbc_construct(dwbc30, ctx,
				&dwbc30_regs[i],
				&dwbc30_shift,
				&dwbc30_mask,
				i);

		pool->dwbc[i] = &dwbc30->base;
	}
	return true;
}

static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
{
	int i;
	uint32_t dwb_count = pool->res_cap->num_dwb;

	for (i = 0; i < dwb_count; i++) {
		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
						    GFP_KERNEL);

		if (!mcif_wb30) {
			dm_error("DC: failed to create mcif_wb30!\n");
			return false;
		}

1557 1558 1559 1560
#undef REG_STRUCT
#define REG_STRUCT mcif_wb30_regs
		mcif_wb_regs_dcn3_init(0);

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		dcn32_mmhubbub_construct(mcif_wb30, ctx,
				&mcif_wb30_regs[i],
				&mcif_wb30_shift,
				&mcif_wb30_mask,
				i);

		pool->mcif_wb[i] = &mcif_wb30->base;
	}
	return true;
}

static struct display_stream_compressor *dcn32_dsc_create(
	struct dc_context *ctx, uint32_t inst)
{
	struct dcn20_dsc *dsc =
		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);

	if (!dsc) {
		BREAK_TO_DEBUGGER();
		return NULL;
	}

1583 1584 1585 1586 1587 1588 1589
#undef REG_STRUCT
#define REG_STRUCT dsc_regs
	dsc_regsDCN20_init(0),
	dsc_regsDCN20_init(1),
	dsc_regsDCN20_init(2),
	dsc_regsDCN20_init(3);

1590
	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1591 1592 1593

	dsc->max_image_width = 6016;

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	return &dsc->base;
}

static void dcn32_destroy_resource_pool(struct resource_pool **pool)
{
	struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);

	dcn32_resource_destruct(dcn32_pool);
	kfree(dcn32_pool);
	*pool = NULL;
}

bool dcn32_acquire_post_bldn_3dlut(
		struct resource_context *res_ctx,
		const struct resource_pool *pool,
		int mpcc_id,
		struct dc_3dlut **lut,
		struct dc_transfer_func **shaper)
{
	bool ret = false;
	union dc_3dlut_state *state;

	ASSERT(*lut == NULL && *shaper == NULL);
	*lut = NULL;
	*shaper = NULL;

	if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
		*lut = pool->mpc_lut[mpcc_id];
		*shaper = pool->mpc_shaper[mpcc_id];
		state = &pool->mpc_lut[mpcc_id]->state;
		res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
		ret = true;
	}
	return ret;
}

bool dcn32_release_post_bldn_3dlut(
		struct resource_context *res_ctx,
		const struct resource_pool *pool,
		struct dc_3dlut **lut,
		struct dc_transfer_func **shaper)
{
	int i;
	bool ret = false;

	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
			res_ctx->is_mpc_3dlut_acquired[i] = false;
			pool->mpc_lut[i]->state.raw = 0;
			*lut = NULL;
			*shaper = NULL;
			ret = true;
			break;
		}
	}
	return ret;
}

static void dcn32_enable_phantom_plane(struct dc *dc,
		struct dc_state *context,
		struct dc_stream_state *phantom_stream,
		unsigned int dc_pipe_idx)
{
	struct dc_plane_state *phantom_plane = NULL;
	struct dc_plane_state *prev_phantom_plane = NULL;
	struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];

	while (curr_pipe) {
		if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
			phantom_plane = prev_phantom_plane;
		else
			phantom_plane = dc_create_plane_state(dc);

		memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
		memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
				sizeof(phantom_plane->scaling_quality));
		memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
		memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
		memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
		memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
				sizeof(phantom_plane->plane_size));
		memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
				sizeof(phantom_plane->tiling_info));
		memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
		phantom_plane->format = curr_pipe->plane_state->format;
		phantom_plane->rotation = curr_pipe->plane_state->rotation;
		phantom_plane->visible = curr_pipe->plane_state->visible;

		/* Shadow pipe has small viewport. */
		phantom_plane->clip_rect.y = 0;
1684
		phantom_plane->clip_rect.height = phantom_stream->src.height;
1685

1686 1687
		phantom_plane->is_phantom = true;

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
		dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context);

		curr_pipe = curr_pipe->bottom_pipe;
		prev_phantom_plane = phantom_plane;
	}
}

static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
		struct dc_state *context,
		display_e2e_pipe_params_st *pipes,
		unsigned int pipe_cnt,
		unsigned int dc_pipe_idx)
{
	struct dc_stream_state *phantom_stream = NULL;
	struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];

	phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink);
	phantom_stream->signal = SIGNAL_TYPE_VIRTUAL;
	phantom_stream->dpms_off = true;
	phantom_stream->mall_stream_config.type = SUBVP_PHANTOM;
	phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream;
	ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN;
	ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream;

	/* stream has limited viewport and small timing */
	memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
	memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
	memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
1716
	DC_FP_START();
1717
	dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
1718
	DC_FP_END();
1719 1720 1721 1722 1723

	dc_add_stream_to_ctx(dc, context, phantom_stream);
	return phantom_stream;
}

1724 1725
// return true if removed piped from ctx, false otherwise
bool dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context)
1726 1727 1728
{
	int i;
	bool removed_pipe = false;
1729 1730
	struct dc_plane_state *phantom_plane = NULL;
	struct dc_stream_state *phantom_stream = NULL;
1731 1732 1733 1734 1735

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
		// build scaling params for phantom pipes
		if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1736 1737 1738
			phantom_plane = pipe->plane_state;
			phantom_stream = pipe->stream;

1739 1740
			dc_rem_all_planes_for_stream(dc, pipe->stream, context);
			dc_remove_stream_from_ctx(dc, context, pipe->stream);
1741 1742 1743 1744 1745 1746 1747 1748

			/* Ref count is incremented on allocation and also when added to the context.
			 * Therefore we must call release for the the phantom plane and stream once
			 * they are removed from the ctx to finally decrement the refcount to 0 to free.
			 */
			dc_plane_state_release(phantom_plane);
			dc_stream_release(phantom_stream);

1749 1750 1751 1752 1753 1754 1755 1756
			removed_pipe = true;
		}

		// Clear all phantom stream info
		if (pipe->stream) {
			pipe->stream->mall_stream_config.type = SUBVP_NONE;
			pipe->stream->mall_stream_config.paired_stream = NULL;
		}
1757 1758 1759 1760

		if (pipe->plane_state) {
			pipe->plane_state->is_phantom = false;
		}
1761
	}
1762
	return removed_pipe;
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
}

/* TODO: Input to this function should indicate which pipe indexes (or streams)
 * require a phantom pipe / stream
 */
void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
		display_e2e_pipe_params_st *pipes,
		unsigned int pipe_cnt,
		unsigned int index)
{
	struct dc_stream_state *phantom_stream = NULL;
	unsigned int i;

	// The index of the DC pipe passed into this function is guarenteed to
	// be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
	// already have phantom pipe assigned, etc.) by previous checks.
	phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
	dcn32_enable_phantom_plane(dc, context, phantom_stream, index);

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];

		// Build scaling params for phantom pipes which were newly added.
		// We determine which phantom pipes were added by comparing with
		// the phantom stream.
		if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
				pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
			pipe->stream->use_dynamic_meta = false;
			pipe->plane_state->flip_immediate = false;
			if (!resource_build_scaling_params(pipe)) {
				// Log / remove phantom pipes since failed to build scaling params
			}
		}
	}
}

bool dcn32_validate_bandwidth(struct dc *dc,
		struct dc_state *context,
		bool fast_validate)
{
	bool out = false;

	BW_VAL_TRACE_SETUP();

	int vlevel = 0;
	int pipe_cnt = 0;
	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
1810
	struct mall_temp_config mall_temp_config;
1811 1812 1813 1814 1815 1816 1817

	/* To handle Freesync properly, setting FreeSync DML parameters
	 * to its default state for the first stage of validation
	 */
	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
	context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;

1818 1819
	DC_LOGGER_INIT(dc->ctx->logger);

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	/* For fast validation, there are situations where a shallow copy of
	 * of the dc->current_state is created for the validation. In this case
	 * we want to save and restore the mall config because we always
	 * teardown subvp at the beginning of validation (and don't attempt
	 * to add it back if it's fast validation). If we don't restore the
	 * subvp config in cases of fast validation + shallow copy of the
	 * dc->current_state, the dc->current_state will have a partially
	 * removed subvp state when we did not intend to remove it.
	 */
	if (fast_validate) {
		memset(&mall_temp_config, 0, sizeof(mall_temp_config));
		dcn32_save_mall_state(dc, context, &mall_temp_config);
	}

1834 1835
	BW_VAL_TRACE_COUNT();

1836
	DC_FP_START();
1837
	out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
1838
	DC_FP_END();
1839

1840 1841 1842
	if (fast_validate)
		dcn32_restore_mall_state(dc, context, &mall_temp_config);

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	if (pipe_cnt == 0)
		goto validate_out;

	if (!out)
		goto validate_fail;

	BW_VAL_TRACE_END_VOLTAGE_LEVEL();

	if (fast_validate) {
		BW_VAL_TRACE_SKIP(fast);
		goto validate_out;
	}

	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);

	BW_VAL_TRACE_END_WATERMARKS();

	goto validate_out;

validate_fail:
	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));

	BW_VAL_TRACE_SKIP(fail);
	out = false;

validate_out:
	kfree(pipes);

	BW_VAL_TRACE_FINISH();

	return out;
}

int dcn32_populate_dml_pipes_from_context(
	struct dc *dc, struct dc_state *context,
	display_e2e_pipe_params_st *pipes,
	bool fast_validate)
{
	int i, pipe_cnt;
	struct resource_context *res_ctx = &context->res_ctx;
	struct pipe_ctx *pipe;
1885
	bool subvp_in_use = false;
1886
	uint8_t is_pipe_split_expected[MAX_PIPES] = {0};
1887
	struct dc_crtc_timing *timing;
1888 1889 1890

	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	/* Determine whether we will apply ODM 2to1 policy:
	 * Applies to single display and where the number of planes is less than 3.
	 * For 3 plane case ( 2 MPO planes ), we will not set the policy for the MPO pipes.
	 *
	 * Apply pipe split policy first so we can predict the pipe split correctly
	 * (dcn32_predict_pipe_split).
	 */
	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
		if (!res_ctx->pipe_ctx[i].stream)
			continue;
		pipe = &res_ctx->pipe_ctx[i];
		timing = &pipe->stream->timing;

		pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1905 1906 1907 1908
		if (context->stream_count == 1 &&
				context->stream_status[0].plane_count <= 1 &&
				!dc_is_hdmi_signal(res_ctx->pipe_ctx[i].stream->signal) &&
				is_h_timing_divisible_by_2(res_ctx->pipe_ctx[i].stream) &&
1909
				pipe->stream->timing.pix_clk_100hz * 100 > DCN3_2_VMIN_DISPCLK_HZ &&
1910 1911
				dc->debug.enable_single_display_2to1_odm_policy) {
			pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1912 1913 1914 1915
		}
		pipe_cnt++;
	}

1916 1917 1918 1919 1920 1921 1922 1923
	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {

		if (!res_ctx->pipe_ctx[i].stream)
			continue;
		pipe = &res_ctx->pipe_ctx[i];
		timing = &pipe->stream->timing;

		pipes[pipe_cnt].pipe.src.gpuvm = true;
1924 1925 1926
		DC_FP_START();
		dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt);
		DC_FP_END();
1927 1928 1929 1930 1931 1932 1933 1934
		pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
		pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
		pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
		pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;

		switch (pipe->stream->mall_stream_config.type) {
		case SUBVP_MAIN:
			pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
1935
			subvp_in_use = true;
1936 1937 1938
			break;
		case SUBVP_PHANTOM:
			pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
1939 1940 1941
			pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
			// Disallow unbounded req for SubVP according to DCHUB programming guide
			pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
			break;
		case SUBVP_NONE:
			pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
			pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
			break;
		default:
			break;
		}

		pipes[pipe_cnt].dout.dsc_input_bpc = 0;
		if (pipes[pipe_cnt].dout.dsc_enable) {
			switch (timing->display_color_depth) {
			case COLOR_DEPTH_888:
				pipes[pipe_cnt].dout.dsc_input_bpc = 8;
				break;
			case COLOR_DEPTH_101010:
				pipes[pipe_cnt].dout.dsc_input_bpc = 10;
				break;
			case COLOR_DEPTH_121212:
				pipes[pipe_cnt].dout.dsc_input_bpc = 12;
				break;
			default:
				ASSERT(0);
				break;
			}
		}
1968

1969 1970 1971 1972
		DC_FP_START();
		is_pipe_split_expected[i] = dcn32_predict_pipe_split(context, &pipes[pipe_cnt]);
		DC_FP_END();

1973 1974 1975
		pipe_cnt++;
	}

1976 1977 1978 1979
	/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
	 * the DET available for each pipe). Use the DET override input to maintain our driver
	 * policy.
	 */
1980
	dcn32_set_det_allocations(dc, context, pipes);
1981

1982 1983 1984 1985 1986 1987 1988 1989
	// In general cases we want to keep the dram clock change requirement
	// (prefer configs that support MCLK switch). Only override to false
	// for SubVP
	if (subvp_in_use)
		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
	else
		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;

1990 1991 1992 1993 1994 1995 1996
	return pipe_cnt;
}

static struct dc_cap_funcs cap_funcs = {
	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
};

1997 1998 1999 2000
void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
				display_e2e_pipe_params_st *pipes,
				int pipe_cnt,
				int vlevel)
2001 2002
{
    DC_FP_START();
2003
    dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
2004 2005 2006
    DC_FP_END();
}

2007
static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2008
{
2009
	DC_FP_START();
2010
	dcn32_update_bw_bounding_box_fpu(dc, bw_params);
2011
	DC_FP_END();
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
}

static struct resource_funcs dcn32_res_pool_funcs = {
	.destroy = dcn32_destroy_resource_pool,
	.link_enc_create = dcn32_link_encoder_create,
	.link_enc_create_minimal = NULL,
	.panel_cntl_create = dcn32_panel_cntl_create,
	.validate_bandwidth = dcn32_validate_bandwidth,
	.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
	.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
2022
	.acquire_idle_pipe_for_head_pipe_in_layer = dcn32_acquire_idle_pipe_for_head_pipe_in_layer,
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
	.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
	.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
	.update_bw_bounding_box = dcn32_update_bw_bounding_box,
	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
	.add_phantom_pipes = dcn32_add_phantom_pipes,
	.remove_phantom_pipes = dcn32_remove_phantom_pipes,
};


static bool dcn32_resource_construct(
	uint8_t num_virtual_links,
	struct dc *dc,
	struct dcn32_resource_pool *pool)
{
	int i, j;
	struct dc_context *ctx = dc->ctx;
	struct irq_service_init_data init_data;
	struct ddc_service_init_data ddc_init_data = {0};
	uint32_t pipe_fuses = 0;
	uint32_t num_pipes  = 4;

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	#undef REG_STRUCT
	#define REG_STRUCT bios_regs
		bios_regs_init();

	#undef REG_STRUCT
	#define REG_STRUCT clk_src_regs
		clk_src_regs_init(0, A),
		clk_src_regs_init(1, B),
		clk_src_regs_init(2, C),
		clk_src_regs_init(3, D),
		clk_src_regs_init(4, E);
	#undef REG_STRUCT
	#define REG_STRUCT abm_regs
		abm_regs_init(0),
		abm_regs_init(1),
		abm_regs_init(2),
		abm_regs_init(3);

	#undef REG_STRUCT
	#define REG_STRUCT dccg_regs
		dccg_regs_init();

2073
	DC_FP_START();
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

	ctx->dc_bios->regs = &bios_regs;

	pool->base.res_cap = &res_cap_dcn32;
	/* max number of pipes for ASIC before checking for pipe fuses */
	num_pipes  = pool->base.res_cap->num_timing_generator;
	pipe_fuses = REG_READ(CC_DC_PIPE_DIS);

	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
		if (pipe_fuses & 1 << i)
			num_pipes--;

	if (pipe_fuses & 1)
		ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!

	if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
		ASSERT(0); //Entire DCN is harvested!

	/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
	 * value will be changed, update max_num_dpp and max_num_otg for dml.
	 */
	dcn3_2_ip.max_num_dpp = num_pipes;
	dcn3_2_ip.max_num_otg = num_pipes;

	pool->base.funcs = &dcn32_res_pool_funcs;

	/*************************************************
	 *  Resource + asic cap harcoding                *
	 *************************************************/
	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
	pool->base.timing_generator_count = num_pipes;
	pool->base.pipe_count = num_pipes;
	pool->base.mpcc_count = num_pipes;
	dc->caps.max_downscale_ratio = 600;
	dc->caps.i2c_speed_in_khz = 100;
	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
2110 2111
	/* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
	dc->caps.max_cursor_size = 64;
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	dc->caps.min_horizontal_blanking_period = 80;
	dc->caps.dmdata_alloc_size = 2048;
	dc->caps.mall_size_per_mem_channel = 0;
	dc->caps.mall_size_total = 0;
	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;

	dc->caps.cache_line_size = 64;
	dc->caps.cache_num_ways = 16;
	dc->caps.max_cab_allocation_bytes = 67108864; // 64MB = 1024 * 1024 * 64
	dc->caps.subvp_fw_processing_delay_us = 15;
2122
	dc->caps.subvp_drr_max_vblank_margin_us = 40;
2123
	dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
2124
	dc->caps.subvp_swath_height_margin_lines = 16;
2125 2126
	dc->caps.subvp_pstate_allow_width_us = 20;
	dc->caps.subvp_vertical_int_margin_us = 30;
2127
	dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin
2128 2129 2130 2131 2132 2133

	dc->caps.max_slave_planes = 2;
	dc->caps.max_slave_yuv_planes = 2;
	dc->caps.max_slave_rgb_planes = 2;
	dc->caps.post_blend_color_processing = true;
	dc->caps.force_dp_tps4_for_cp2520 = true;
2134 2135
	if (dc->config.forceHBR2CP2520)
		dc->caps.force_dp_tps4_for_cp2520 = false;
2136
	dc->caps.dp_hpo = true;
2137
	dc->caps.dp_hdmi21_pcon_support = true;
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	dc->caps.edp_dsc_support = true;
	dc->caps.extended_aux_timeout_support = true;
	dc->caps.dmcub_support = true;

	/* Color pipeline capabilities */
	dc->caps.color.dpp.dcn_arch = 1;
	dc->caps.color.dpp.input_lut_shared = 0;
	dc->caps.color.dpp.icsc = 1;
	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
	dc->caps.color.dpp.post_csc = 1;
	dc->caps.color.dpp.gamma_corr = 1;
	dc->caps.color.dpp.dgam_rom_for_yuv = 0;

	dc->caps.color.dpp.hw_3d_lut = 1;
2157
	dc->caps.color.dpp.ogam_ram = 0;  // no OGAM in DPP since DCN1
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	// no OGAM ROM on DCN2 and later ASICs
	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
	dc->caps.color.dpp.ocsc = 0;

	dc->caps.color.mpc.gamut_remap = 1;
	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
	dc->caps.color.mpc.ogam_ram = 1;
	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
	dc->caps.color.mpc.ocsc = 1;

	/* Use pipe context based otg sync logic */
	dc->config.use_pipe_ctx_sync_logic = true;

	/* read VBIOS LTTPR caps */
	{
		if (ctx->dc_bios->funcs->get_lttpr_caps) {
			enum bp_result bp_query_result;
			uint8_t is_vbios_lttpr_enable = 0;

			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
		}

		/* interop bit is implicit */
		{
			dc->caps.vbios_lttpr_aware = true;
		}
	}

	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
		dc->debug = debug_defaults_drv;
	else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
		dc->debug = debug_defaults_diags;
	} else
		dc->debug = debug_defaults_diags;
	// Init the vm_helper
	if (dc->vm_helper)
		vm_helper_init(dc->vm_helper, 16);

	/*************************************************
	 *  Create resources                             *
	 *************************************************/

	/* Clock Sources for Pixel Clock*/
	pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
			dcn32_clock_source_create(ctx, ctx->dc_bios,
				CLOCK_SOURCE_COMBO_PHY_PLL0,
				&clk_src_regs[0], false);
	pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
			dcn32_clock_source_create(ctx, ctx->dc_bios,
				CLOCK_SOURCE_COMBO_PHY_PLL1,
				&clk_src_regs[1], false);
	pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
			dcn32_clock_source_create(ctx, ctx->dc_bios,
				CLOCK_SOURCE_COMBO_PHY_PLL2,
				&clk_src_regs[2], false);
	pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
			dcn32_clock_source_create(ctx, ctx->dc_bios,
				CLOCK_SOURCE_COMBO_PHY_PLL3,
				&clk_src_regs[3], false);
	pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
			dcn32_clock_source_create(ctx, ctx->dc_bios,
				CLOCK_SOURCE_COMBO_PHY_PLL4,
				&clk_src_regs[4], false);

	pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;

	/* todo: not reuse phy_pll registers */
	pool->base.dp_clock_source =
			dcn32_clock_source_create(ctx, ctx->dc_bios,
				CLOCK_SOURCE_ID_DP_DTO,
				&clk_src_regs[0], true);

	for (i = 0; i < pool->base.clk_src_count; i++) {
		if (pool->base.clock_sources[i] == NULL) {
			dm_error("DC: failed to create clock sources!\n");
			BREAK_TO_DEBUGGER();
			goto create_fail;
		}
	}

	/* DCCG */
	pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
	if (pool->base.dccg == NULL) {
		dm_error("DC: failed to create dccg!\n");
		BREAK_TO_DEBUGGER();
		goto create_fail;
	}

	/* DML */
	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment))
		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);

	/* IRQ Service */
	init_data.ctx = dc->ctx;
	pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
	if (!pool->base.irqs)
		goto create_fail;

	/* HUBBUB */
	pool->base.hubbub = dcn32_hubbub_create(ctx);
	if (pool->base.hubbub == NULL) {
		BREAK_TO_DEBUGGER();
		dm_error("DC: failed to create hubbub!\n");
		goto create_fail;
	}

	/* HUBPs, DPPs, OPPs, TGs, ABMs */
	for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {

		/* if pipe is disabled, skip instance of HW pipe,
		 * i.e, skip ASIC register instance
		 */
		if (pipe_fuses & 1 << i)
			continue;

		/* HUBPs */
		pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
		if (pool->base.hubps[j] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error(
				"DC: failed to create hubps!\n");
			goto create_fail;
		}

		/* DPPs */
		pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
		if (pool->base.dpps[j] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error(
				"DC: failed to create dpps!\n");
			goto create_fail;
		}

		/* OPPs */
		pool->base.opps[j] = dcn32_opp_create(ctx, i);
		if (pool->base.opps[j] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error(
				"DC: failed to create output pixel processor!\n");
			goto create_fail;
		}

		/* TGs */
		pool->base.timing_generators[j] = dcn32_timing_generator_create(
				ctx, i);
		if (pool->base.timing_generators[j] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error("DC: failed to create tg!\n");
			goto create_fail;
		}

		/* ABMs */
		pool->base.multiple_abms[j] = dmub_abm_create(ctx,
				&abm_regs[i],
				&abm_shift,
				&abm_mask);
		if (pool->base.multiple_abms[j] == NULL) {
			dm_error("DC: failed to create abm for pipe %d!\n", i);
			BREAK_TO_DEBUGGER();
			goto create_fail;
		}

		/* index for resource pool arrays for next valid pipe */
		j++;
	}

	/* PSR */
	pool->base.psr = dmub_psr_create(ctx);
	if (pool->base.psr == NULL) {
		dm_error("DC: failed to create psr obj!\n");
		BREAK_TO_DEBUGGER();
		goto create_fail;
	}

	/* MPCCs */
	pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
	if (pool->base.mpc == NULL) {
		BREAK_TO_DEBUGGER();
		dm_error("DC: failed to create mpc!\n");
		goto create_fail;
	}

	/* DSCs */
	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
		pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
		if (pool->base.dscs[i] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error("DC: failed to create display stream compressor %d!\n", i);
			goto create_fail;
		}
	}

	/* DWB */
	if (!dcn32_dwbc_create(ctx, &pool->base)) {
		BREAK_TO_DEBUGGER();
		dm_error("DC: failed to create dwbc!\n");
		goto create_fail;
	}

	/* MMHUBBUB */
	if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
		BREAK_TO_DEBUGGER();
		dm_error("DC: failed to create mcif_wb!\n");
		goto create_fail;
	}

	/* AUX and I2C */
	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
		pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
		if (pool->base.engines[i] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error(
				"DC:failed to create aux engine!!\n");
			goto create_fail;
		}
		pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
		if (pool->base.hw_i2cs[i] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error(
				"DC:failed to create hw i2c!!\n");
			goto create_fail;
		}
		pool->base.sw_i2cs[i] = NULL;
	}

	/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
	if (!resource_construct(num_virtual_links, dc, &pool->base,
			(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
			&res_create_funcs : &res_create_maximus_funcs)))
			goto create_fail;

	/* HW Sequencer init functions and Plane caps */
	dcn32_hw_sequencer_init_functions(dc);

	dc->caps.max_planes =  pool->base.pipe_count;

	for (i = 0; i < dc->caps.max_planes; ++i)
		dc->caps.planes[i] = plane_cap;

	dc->cap_funcs = cap_funcs;

	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
		ddc_init_data.ctx = dc->ctx;
		ddc_init_data.link = NULL;
		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
		ddc_init_data.id.enum_id = 0;
		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
		pool->base.oem_device = dal_ddc_service_create(&ddc_init_data);
	} else {
		pool->base.oem_device = NULL;
	}

2419 2420 2421
	if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0))
		dc->config.sdpif_request_limit_words_per_umc = 16;

2422
	DC_FP_END();
2423 2424 2425 2426 2427

	return true;

create_fail:

2428
	DC_FP_END();
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451

	dcn32_resource_destruct(pool);

	return false;
}

struct resource_pool *dcn32_create_resource_pool(
		const struct dc_init_data *init_data,
		struct dc *dc)
{
	struct dcn32_resource_pool *pool =
		kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);

	if (!pool)
		return NULL;

	if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
		return &pool->base;

	BREAK_TO_DEBUGGER();
	kfree(pool);
	return NULL;
}
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
		struct resource_context *res_ctx,
		const struct resource_pool *pool,
		const struct pipe_ctx *primary_pipe)
{
	int i;
	struct pipe_ctx *secondary_pipe = NULL;
	struct pipe_ctx *next_odm_mpo_pipe = NULL;
	int primary_index, preferred_pipe_idx;
	struct pipe_ctx *old_primary_pipe = NULL;

	/*
	 * Modified from find_idle_secondary_pipe
	 * With windowed MPO and ODM, we want to avoid the case where we want a
	 *  free pipe for the left side but the free pipe is being used on the
	 *  right side.
	 * Add check on current_state if the primary_pipe is the left side,
	 *  to check the right side ( primary_pipe->next_odm_pipe ) to see if
	 *  it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
	 * - If so, then don't use this pipe
	 * EXCEPTION - 3 plane ( 2 MPO plane ) case
	 * - in this case, the primary pipe has already gotten a free pipe for the
	 *  MPO window in the left
	 * - when it tries to get a free pipe for the MPO window on the right,
	 *  it will see that it is already assigned to the right side
	 *  ( primary_pipe->next_odm_pipe ).  But in this case, we want this
	 *  free pipe, since it will be for the right side.  So add an
	 *  additional condition, that skipping the free pipe on the right only
	 *  applies if the primary pipe has no bottom pipe currently assigned
	 */
	if (primary_pipe) {
		primary_index = primary_pipe->pipe_idx;
		old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
		if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
			&& (!primary_pipe->bottom_pipe))
			next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;

		preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
		if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
			!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
			secondary_pipe->pipe_idx = preferred_pipe_idx;
		}
	}

	/*
	 * search backwards for the second pipe to keep pipe
	 * assignment more consistent
	 */
	if (!secondary_pipe)
		for (i = pool->pipe_count - 1; i >= 0; i--) {
			if ((res_ctx->pipe_ctx[i].stream == NULL) &&
				!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
				secondary_pipe = &res_ctx->pipe_ctx[i];
				secondary_pipe->pipe_idx = i;
				break;
			}
		}

	return secondary_pipe;
}

struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
		struct dc_state *state,
		const struct resource_pool *pool,
		struct dc_stream_state *stream,
		struct pipe_ctx *head_pipe)
{
	struct resource_context *res_ctx = &state->res_ctx;
	struct pipe_ctx *idle_pipe, *pipe;
	struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
	int head_index;

	if (!head_pipe)
		ASSERT(0);

	/*
	 * Modified from dcn20_acquire_idle_pipe_for_layer
	 * Check if head_pipe in old_context already has bottom_pipe allocated.
	 * - If so, check if that pipe is available in the current context.
	 * --  If so, reuse pipe from old_context
	 */
	head_index = head_pipe->pipe_idx;
	pipe = &old_ctx->pipe_ctx[head_index];
	if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
		idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
		idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
	} else {
		idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
		if (!idle_pipe)
			return NULL;
	}

	idle_pipe->stream = head_pipe->stream;
	idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
	idle_pipe->stream_res.opp = head_pipe->stream_res.opp;

	idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
	idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
	idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
	idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;

	return idle_pipe;
}