bnxt_tc.c 59.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Broadcom NetXtreme-C/E network driver.
 *
 * Copyright (c) 2017 Broadcom Limited
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation.
 */

#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/if_vlan.h>
#include <net/flow_dissector.h>
#include <net/pkt_cls.h>
#include <net/tc_act/tc_gact.h>
#include <net/tc_act/tc_skbedit.h>
#include <net/tc_act/tc_mirred.h>
#include <net/tc_act/tc_vlan.h>
19
#include <net/tc_act/tc_pedit.h>
20
#include <net/tc_act/tc_tunnel_key.h>
21
#include <net/vxlan.h>
22 23 24 25 26 27 28 29 30 31

#include "bnxt_hsi.h"
#include "bnxt.h"
#include "bnxt_sriov.h"
#include "bnxt_tc.h"
#include "bnxt_vfr.h"

#define BNXT_FID_INVALID			0xffff
#define VLAN_TCI(vid, prio)	((vid) | ((prio) << VLAN_PRIO_SHIFT))

32 33 34 35 36 37 38 39 40
#define is_vlan_pcp_wildcarded(vlan_tci_mask)	\
	((ntohs(vlan_tci_mask) & VLAN_PRIO_MASK) == 0x0000)
#define is_vlan_pcp_exactmatch(vlan_tci_mask)	\
	((ntohs(vlan_tci_mask) & VLAN_PRIO_MASK) == VLAN_PRIO_MASK)
#define is_vlan_pcp_zero(vlan_tci)	\
	((ntohs(vlan_tci) & VLAN_PRIO_MASK) == 0x0000)
#define is_vid_exactmatch(vlan_tci_mask)	\
	((ntohs(vlan_tci_mask) & VLAN_VID_MASK) == VLAN_VID_MASK)

41 42
static bool is_wildcard(void *mask, int len);
static bool is_exactmatch(void *mask, int len);
43 44 45 46 47 48 49 50 51
/* Return the dst fid of the func for flow forwarding
 * For PFs: src_fid is the fid of the PF
 * For VF-reps: src_fid the fid of the VF
 */
static u16 bnxt_flow_get_dst_fid(struct bnxt *pf_bp, struct net_device *dev)
{
	struct bnxt *bp;

	/* check if dev belongs to the same switch */
52
	if (!netdev_port_same_parent_id(pf_bp->dev, dev)) {
53
		netdev_info(pf_bp->dev, "dev(ifindex=%d) not on same switch\n",
54 55 56 57 58
			    dev->ifindex);
		return BNXT_FID_INVALID;
	}

	/* Is dev a VF-rep? */
59
	if (bnxt_dev_is_vf_rep(dev))
60 61 62 63 64 65 66 67
		return bnxt_vf_rep_get_fid(dev);

	bp = netdev_priv(dev);
	return bp->pf.fw_fid;
}

static int bnxt_tc_parse_redir(struct bnxt *bp,
			       struct bnxt_tc_actions *actions,
68
			       const struct flow_action_entry *act)
69
{
70
	struct net_device *dev = act->dev;
71 72

	if (!dev) {
73
		netdev_info(bp->dev, "no dev in mirred action\n");
74 75 76 77 78 79 80 81
		return -EINVAL;
	}

	actions->flags |= BNXT_TC_ACTION_FLAG_FWD;
	actions->dst_dev = dev;
	return 0;
}

82 83
static int bnxt_tc_parse_vlan(struct bnxt *bp,
			      struct bnxt_tc_actions *actions,
84
			      const struct flow_action_entry *act)
85
{
86 87
	switch (act->id) {
	case FLOW_ACTION_VLAN_POP:
88
		actions->flags |= BNXT_TC_ACTION_FLAG_POP_VLAN;
89
		break;
90
	case FLOW_ACTION_VLAN_PUSH:
91
		actions->flags |= BNXT_TC_ACTION_FLAG_PUSH_VLAN;
92 93
		actions->push_vlan_tci = htons(act->vlan.vid);
		actions->push_vlan_tpid = act->vlan.proto;
94 95 96
		break;
	default:
		return -EOPNOTSUPP;
97
	}
98
	return 0;
99 100
}

101 102
static int bnxt_tc_parse_tunnel_set(struct bnxt *bp,
				    struct bnxt_tc_actions *actions,
103
				    const struct flow_action_entry *act)
104
{
105 106
	const struct ip_tunnel_info *tun_info = act->tunnel;
	const struct ip_tunnel_key *tun_key = &tun_info->key;
107 108

	if (ip_tunnel_info_af(tun_info) != AF_INET) {
109
		netdev_info(bp->dev, "only IPv4 tunnel-encap is supported\n");
110 111 112 113 114 115 116 117
		return -EOPNOTSUPP;
	}

	actions->tun_encap_key = *tun_key;
	actions->flags |= BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP;
	return 0;
}

118 119
/* Key & Mask from the stack comes unaligned in multiple iterations of 4 bytes
 * each(u32).
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
 * This routine consolidates such multiple unaligned values into one
 * field each for Key & Mask (for src and dst macs separately)
 * For example,
 *			Mask/Key	Offset	Iteration
 *			==========	======	=========
 *	dst mac		0xffffffff	0	1
 *	dst mac		0x0000ffff	4	2
 *
 *	src mac		0xffff0000	4	1
 *	src mac		0xffffffff	8	2
 *
 * The above combination coming from the stack will be consolidated as
 *			Mask/Key
 *			==============
 *	src mac:	0xffffffffffff
 *	dst mac:	0xffffffffffff
 */
static void bnxt_set_l2_key_mask(u32 part_key, u32 part_mask,
				 u8 *actual_key, u8 *actual_mask)
{
	u32 key = get_unaligned((u32 *)actual_key);
	u32 mask = get_unaligned((u32 *)actual_mask);

	part_key &= part_mask;
	part_key |= key & ~part_mask;

	put_unaligned(mask | part_mask, (u32 *)actual_mask);
	put_unaligned(part_key, (u32 *)actual_key);
}

static int
bnxt_fill_l2_rewrite_fields(struct bnxt_tc_actions *actions,
			    u16 *eth_addr, u16 *eth_addr_mask)
{
	u16 *p;
	int j;

	if (unlikely(bnxt_eth_addr_key_mask_invalid(eth_addr, eth_addr_mask)))
		return -EINVAL;

	if (!is_wildcard(&eth_addr_mask[0], ETH_ALEN)) {
		if (!is_exactmatch(&eth_addr_mask[0], ETH_ALEN))
			return -EINVAL;
		/* FW expects dmac to be in u16 array format */
		p = eth_addr;
		for (j = 0; j < 3; j++)
			actions->l2_rewrite_dmac[j] = cpu_to_be16(*(p + j));
	}

169 170
	if (!is_wildcard(&eth_addr_mask[ETH_ALEN / 2], ETH_ALEN)) {
		if (!is_exactmatch(&eth_addr_mask[ETH_ALEN / 2], ETH_ALEN))
171 172 173 174 175 176 177 178 179 180 181 182
			return -EINVAL;
		/* FW expects smac to be in u16 array format */
		p = &eth_addr[ETH_ALEN / 2];
		for (j = 0; j < 3; j++)
			actions->l2_rewrite_smac[j] = cpu_to_be16(*(p + j));
	}

	return 0;
}

static int
bnxt_tc_parse_pedit(struct bnxt *bp, struct bnxt_tc_actions *actions,
183
		    struct flow_action_entry *act, int act_idx, u8 *eth_addr,
184 185
		    u8 *eth_addr_mask)
{
186 187 188
	size_t offset_of_ip6_daddr = offsetof(struct ipv6hdr, daddr);
	size_t offset_of_ip6_saddr = offsetof(struct ipv6hdr, saddr);
	u32 mask, val, offset, idx;
189 190 191 192
	u8 htype;

	offset = act->mangle.offset;
	htype = act->mangle.htype;
193 194 195
	mask = ~act->mangle.mask;
	val = act->mangle.val;

196 197 198 199 200 201 202 203 204 205 206 207 208
	switch (htype) {
	case FLOW_ACT_MANGLE_HDR_TYPE_ETH:
		if (offset > PEDIT_OFFSET_SMAC_LAST_4_BYTES) {
			netdev_err(bp->dev,
				   "%s: eth_hdr: Invalid pedit field\n",
				   __func__);
			return -EINVAL;
		}
		actions->flags |= BNXT_TC_ACTION_FLAG_L2_REWRITE;

		bnxt_set_l2_key_mask(val, mask, &eth_addr[offset],
				     &eth_addr_mask[offset]);
		break;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	case FLOW_ACT_MANGLE_HDR_TYPE_IP4:
		actions->flags |= BNXT_TC_ACTION_FLAG_NAT_XLATE;
		actions->nat.l3_is_ipv4 = true;
		if (offset ==  offsetof(struct iphdr, saddr)) {
			actions->nat.src_xlate = true;
			actions->nat.l3.ipv4.saddr.s_addr = htonl(val);
		} else if (offset ==  offsetof(struct iphdr, daddr)) {
			actions->nat.src_xlate = false;
			actions->nat.l3.ipv4.daddr.s_addr = htonl(val);
		} else {
			netdev_err(bp->dev,
				   "%s: IPv4_hdr: Invalid pedit field\n",
				   __func__);
			return -EINVAL;
		}

		netdev_dbg(bp->dev, "nat.src_xlate = %d src IP: %pI4 dst ip : %pI4\n",
			   actions->nat.src_xlate, &actions->nat.l3.ipv4.saddr,
			   &actions->nat.l3.ipv4.daddr);
		break;

	case FLOW_ACT_MANGLE_HDR_TYPE_IP6:
		actions->flags |= BNXT_TC_ACTION_FLAG_NAT_XLATE;
		actions->nat.l3_is_ipv4 = false;
		if (offset >= offsetof(struct ipv6hdr, saddr) &&
		    offset < offset_of_ip6_daddr) {
			/* 16 byte IPv6 address comes in 4 iterations of
			 * 4byte chunks each
			 */
			actions->nat.src_xlate = true;
			idx = (offset - offset_of_ip6_saddr) / 4;
			/* First 4bytes will be copied to idx 0 and so on */
			actions->nat.l3.ipv6.saddr.s6_addr32[idx] = htonl(val);
		} else if (offset >= offset_of_ip6_daddr &&
			   offset < offset_of_ip6_daddr + 16) {
			actions->nat.src_xlate = false;
			idx = (offset - offset_of_ip6_daddr) / 4;
			actions->nat.l3.ipv6.saddr.s6_addr32[idx] = htonl(val);
		} else {
			netdev_err(bp->dev,
				   "%s: IPv6_hdr: Invalid pedit field\n",
				   __func__);
			return -EINVAL;
		}
		break;
	case FLOW_ACT_MANGLE_HDR_TYPE_TCP:
	case FLOW_ACT_MANGLE_HDR_TYPE_UDP:
		/* HW does not support L4 rewrite alone without L3
		 * rewrite
		 */
		if (!(actions->flags & BNXT_TC_ACTION_FLAG_NAT_XLATE)) {
			netdev_err(bp->dev,
				   "Need to specify L3 rewrite as well\n");
			return -EINVAL;
		}
		if (actions->nat.src_xlate)
			actions->nat.l4.ports.sport = htons(val);
		else
			actions->nat.l4.ports.dport = htons(val);
		netdev_dbg(bp->dev, "actions->nat.sport = %d dport = %d\n",
			   actions->nat.l4.ports.sport,
			   actions->nat.l4.ports.dport);
		break;
272 273 274 275 276 277 278 279
	default:
		netdev_err(bp->dev, "%s: Unsupported pedit hdr type\n",
			   __func__);
		return -EINVAL;
	}
	return 0;
}

280 281
static int bnxt_tc_parse_actions(struct bnxt *bp,
				 struct bnxt_tc_actions *actions,
282
				 struct flow_action *flow_action)
283
{
284 285 286 287 288 289 290 291 292 293
	/* Used to store the L2 rewrite mask for dmac (6 bytes) followed by
	 * smac (6 bytes) if rewrite of both is specified, otherwise either
	 * dmac or smac
	 */
	u16 eth_addr_mask[ETH_ALEN] = { 0 };
	/* Used to store the L2 rewrite key for dmac (6 bytes) followed by
	 * smac (6 bytes) if rewrite of both is specified, otherwise either
	 * dmac or smac
	 */
	u16 eth_addr[ETH_ALEN] = { 0 };
294
	struct flow_action_entry *act;
295
	int i, rc;
296

297
	if (!flow_action_has_entries(flow_action)) {
298
		netdev_info(bp->dev, "no actions\n");
299 300 301
		return -EINVAL;
	}

302 303 304
	flow_action_for_each(i, act, flow_action) {
		switch (act->id) {
		case FLOW_ACTION_DROP:
305 306
			actions->flags |= BNXT_TC_ACTION_FLAG_DROP;
			return 0; /* don't bother with other actions */
307 308
		case FLOW_ACTION_REDIRECT:
			rc = bnxt_tc_parse_redir(bp, actions, act);
309 310
			if (rc)
				return rc;
311 312 313 314 315
			break;
		case FLOW_ACTION_VLAN_POP:
		case FLOW_ACTION_VLAN_PUSH:
		case FLOW_ACTION_VLAN_MANGLE:
			rc = bnxt_tc_parse_vlan(bp, actions, act);
316 317
			if (rc)
				return rc;
318 319 320
			break;
		case FLOW_ACTION_TUNNEL_ENCAP:
			rc = bnxt_tc_parse_tunnel_set(bp, actions, act);
321 322
			if (rc)
				return rc;
323 324
			break;
		case FLOW_ACTION_TUNNEL_DECAP:
325
			actions->flags |= BNXT_TC_ACTION_FLAG_TUNNEL_DECAP;
326
			break;
327 328
		/* Packet edit: L2 rewrite, NAT, NAPT */
		case FLOW_ACTION_MANGLE:
329
			rc = bnxt_tc_parse_pedit(bp, actions, act, i,
330 331 332 333 334
						 (u8 *)eth_addr,
						 (u8 *)eth_addr_mask);
			if (rc)
				return rc;
			break;
335 336
		default:
			break;
337
		}
338 339
	}

340 341 342 343 344 345 346
	if (actions->flags & BNXT_TC_ACTION_FLAG_L2_REWRITE) {
		rc = bnxt_fill_l2_rewrite_fields(actions, eth_addr,
						 eth_addr_mask);
		if (rc)
			return rc;
	}

347 348 349 350 351 352 353 354 355 356 357
	if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) {
		if (actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) {
			/* dst_fid is PF's fid */
			actions->dst_fid = bp->pf.fw_fid;
		} else {
			/* find the FID from dst_dev */
			actions->dst_fid =
				bnxt_flow_get_dst_fid(bp, actions->dst_dev);
			if (actions->dst_fid == BNXT_FID_INVALID)
				return -EINVAL;
		}
358 359
	}

360
	return 0;
361 362 363
}

static int bnxt_tc_parse_flow(struct bnxt *bp,
364
			      struct flow_cls_offload *tc_flow_cmd,
365 366
			      struct bnxt_tc_flow *flow)
{
367
	struct flow_rule *rule = flow_cls_offload_flow_rule(tc_flow_cmd);
368
	struct flow_dissector *dissector = rule->match.dissector;
369 370 371 372

	/* KEY_CONTROL and KEY_BASIC are needed for forming a meaningful key */
	if ((dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CONTROL)) == 0 ||
	    (dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_BASIC)) == 0) {
373
		netdev_info(bp->dev, "cannot form TC key: used_keys = 0x%x\n",
374 375 376 377
			    dissector->used_keys);
		return -EOPNOTSUPP;
	}

378 379
	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
		struct flow_match_basic match;
380

381 382 383
		flow_rule_match_basic(rule, &match);
		flow->l2_key.ether_type = match.key->n_proto;
		flow->l2_mask.ether_type = match.mask->n_proto;
384

385 386 387 388
		if (match.key->n_proto == htons(ETH_P_IP) ||
		    match.key->n_proto == htons(ETH_P_IPV6)) {
			flow->l4_key.ip_proto = match.key->ip_proto;
			flow->l4_mask.ip_proto = match.mask->ip_proto;
389 390 391
		}
	}

392 393
	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
		struct flow_match_eth_addrs match;
394

395
		flow_rule_match_eth_addrs(rule, &match);
396
		flow->flags |= BNXT_TC_FLOW_FLAGS_ETH_ADDRS;
397 398 399 400
		ether_addr_copy(flow->l2_key.dmac, match.key->dst);
		ether_addr_copy(flow->l2_mask.dmac, match.mask->dst);
		ether_addr_copy(flow->l2_key.smac, match.key->src);
		ether_addr_copy(flow->l2_mask.smac, match.mask->src);
401 402
	}

403 404
	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
		struct flow_match_vlan match;
405

406
		flow_rule_match_vlan(rule, &match);
407
		flow->l2_key.inner_vlan_tci =
408 409
			cpu_to_be16(VLAN_TCI(match.key->vlan_id,
					     match.key->vlan_priority));
410
		flow->l2_mask.inner_vlan_tci =
411 412
			cpu_to_be16((VLAN_TCI(match.mask->vlan_id,
					      match.mask->vlan_priority)));
413 414 415 416 417
		flow->l2_key.inner_vlan_tpid = htons(ETH_P_8021Q);
		flow->l2_mask.inner_vlan_tpid = htons(0xffff);
		flow->l2_key.num_vlans = 1;
	}

418 419
	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
		struct flow_match_ipv4_addrs match;
420

421
		flow_rule_match_ipv4_addrs(rule, &match);
422
		flow->flags |= BNXT_TC_FLOW_FLAGS_IPV4_ADDRS;
423 424 425 426 427 428 429 430
		flow->l3_key.ipv4.daddr.s_addr = match.key->dst;
		flow->l3_mask.ipv4.daddr.s_addr = match.mask->dst;
		flow->l3_key.ipv4.saddr.s_addr = match.key->src;
		flow->l3_mask.ipv4.saddr.s_addr = match.mask->src;
	} else if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
		struct flow_match_ipv6_addrs match;

		flow_rule_match_ipv6_addrs(rule, &match);
431
		flow->flags |= BNXT_TC_FLOW_FLAGS_IPV6_ADDRS;
432 433 434 435
		flow->l3_key.ipv6.daddr = match.key->dst;
		flow->l3_mask.ipv6.daddr = match.mask->dst;
		flow->l3_key.ipv6.saddr = match.key->src;
		flow->l3_mask.ipv6.saddr = match.mask->src;
436 437
	}

438 439
	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
		struct flow_match_ports match;
440

441
		flow_rule_match_ports(rule, &match);
442
		flow->flags |= BNXT_TC_FLOW_FLAGS_PORTS;
443 444 445 446
		flow->l4_key.ports.dport = match.key->dst;
		flow->l4_mask.ports.dport = match.mask->dst;
		flow->l4_key.ports.sport = match.key->src;
		flow->l4_mask.ports.sport = match.mask->src;
447 448
	}

449 450
	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP)) {
		struct flow_match_icmp match;
451

452
		flow_rule_match_icmp(rule, &match);
453
		flow->flags |= BNXT_TC_FLOW_FLAGS_ICMP;
454 455 456 457
		flow->l4_key.icmp.type = match.key->type;
		flow->l4_key.icmp.code = match.key->code;
		flow->l4_mask.icmp.type = match.mask->type;
		flow->l4_mask.icmp.code = match.mask->code;
458 459
	}

460 461
	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
		struct flow_match_ipv4_addrs match;
462

463
		flow_rule_match_enc_ipv4_addrs(rule, &match);
464
		flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_IPV4_ADDRS;
465 466 467 468 469
		flow->tun_key.u.ipv4.dst = match.key->dst;
		flow->tun_mask.u.ipv4.dst = match.mask->dst;
		flow->tun_key.u.ipv4.src = match.key->src;
		flow->tun_mask.u.ipv4.src = match.mask->src;
	} else if (flow_rule_match_key(rule,
470 471 472 473
				      FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
		return -EOPNOTSUPP;
	}

474 475
	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
		struct flow_match_enc_keyid match;
476

477
		flow_rule_match_enc_keyid(rule, &match);
478
		flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_ID;
479 480
		flow->tun_key.tun_id = key32_to_tunnel_id(match.key->keyid);
		flow->tun_mask.tun_id = key32_to_tunnel_id(match.mask->keyid);
481 482
	}

483 484
	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
		struct flow_match_ports match;
485

486
		flow_rule_match_enc_ports(rule, &match);
487
		flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_PORTS;
488 489 490 491
		flow->tun_key.tp_dst = match.key->dst;
		flow->tun_mask.tp_dst = match.mask->dst;
		flow->tun_key.tp_src = match.key->src;
		flow->tun_mask.tp_src = match.mask->src;
492 493
	}

494
	return bnxt_tc_parse_actions(bp, &flow->actions, &rule->action);
495 496
}

497 498
static int bnxt_hwrm_cfa_flow_free(struct bnxt *bp,
				   struct bnxt_tc_flow_node *flow_node)
499
{
500 501 502 503
	struct hwrm_cfa_flow_free_input req = { 0 };
	int rc;

	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_FREE, -1, -1);
504 505 506 507
	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
		req.ext_flow_handle = flow_node->ext_flow_handle;
	else
		req.flow_handle = flow_node->flow_handle;
508 509 510

	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
	if (rc)
511
		netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc);
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	return rc;
}

static int ipv6_mask_len(struct in6_addr *mask)
{
	int mask_len = 0, i;

	for (i = 0; i < 4; i++)
		mask_len += inet_mask_len(mask->s6_addr32[i]);

	return mask_len;
}

static bool is_wildcard(void *mask, int len)
{
	const u8 *p = mask;
	int i;

	for (i = 0; i < len; i++) {
		if (p[i] != 0)
			return false;
	}
	return true;
536 537
}

538 539 540 541 542 543 544 545 546 547 548 549
static bool is_exactmatch(void *mask, int len)
{
	const u8 *p = mask;
	int i;

	for (i = 0; i < len; i++)
		if (p[i] != 0xff)
			return false;

	return true;
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
static bool is_vlan_tci_allowed(__be16  vlan_tci_mask,
				__be16  vlan_tci)
{
	/* VLAN priority must be either exactly zero or fully wildcarded and
	 * VLAN id must be exact match.
	 */
	if (is_vid_exactmatch(vlan_tci_mask) &&
	    ((is_vlan_pcp_exactmatch(vlan_tci_mask) &&
	      is_vlan_pcp_zero(vlan_tci)) ||
	     is_vlan_pcp_wildcarded(vlan_tci_mask)))
		return true;

	return false;
}

565 566 567 568 569 570 571 572 573 574 575 576
static bool bits_set(void *key, int len)
{
	const u8 *p = key;
	int i;

	for (i = 0; i < len; i++)
		if (p[i] != 0)
			return true;

	return false;
}

577
static int bnxt_hwrm_cfa_flow_alloc(struct bnxt *bp, struct bnxt_tc_flow *flow,
578
				    __le16 ref_flow_handle,
579 580
				    __le32 tunnel_handle,
				    struct bnxt_tc_flow_node *flow_node)
581
{
582 583 584 585
	struct bnxt_tc_actions *actions = &flow->actions;
	struct bnxt_tc_l3_key *l3_mask = &flow->l3_mask;
	struct bnxt_tc_l3_key *l3_key = &flow->l3_key;
	struct hwrm_cfa_flow_alloc_input req = { 0 };
586
	struct hwrm_cfa_flow_alloc_output *resp;
587 588 589 590 591 592 593
	u16 flow_flags = 0, action_flags = 0;
	int rc;

	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_ALLOC, -1, -1);

	req.src_fid = cpu_to_le16(flow->src_fid);
	req.ref_flow_handle = ref_flow_handle;
594

595 596 597 598 599 600 601 602 603
	if (actions->flags & BNXT_TC_ACTION_FLAG_L2_REWRITE) {
		memcpy(req.l2_rewrite_dmac, actions->l2_rewrite_dmac,
		       ETH_ALEN);
		memcpy(req.l2_rewrite_smac, actions->l2_rewrite_smac,
		       ETH_ALEN);
		action_flags |=
			CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
	}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	if (actions->flags & BNXT_TC_ACTION_FLAG_NAT_XLATE) {
		if (actions->nat.l3_is_ipv4) {
			action_flags |=
				CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_IPV4_ADDRESS;

			if (actions->nat.src_xlate) {
				action_flags |=
					CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_SRC;
				/* L3 source rewrite */
				req.nat_ip_address[0] =
					actions->nat.l3.ipv4.saddr.s_addr;
				/* L4 source port */
				if (actions->nat.l4.ports.sport)
					req.nat_port =
						actions->nat.l4.ports.sport;
			} else {
				action_flags |=
					CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_DEST;
				/* L3 destination rewrite */
				req.nat_ip_address[0] =
					actions->nat.l3.ipv4.daddr.s_addr;
				/* L4 destination port */
				if (actions->nat.l4.ports.dport)
					req.nat_port =
						actions->nat.l4.ports.dport;
			}
			netdev_dbg(bp->dev,
				   "req.nat_ip_address: %pI4 src_xlate: %d req.nat_port: %x\n",
				   req.nat_ip_address, actions->nat.src_xlate,
				   req.nat_port);
		} else {
			if (actions->nat.src_xlate) {
				action_flags |=
					CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_SRC;
				/* L3 source rewrite */
				memcpy(req.nat_ip_address,
				       actions->nat.l3.ipv6.saddr.s6_addr32,
				       sizeof(req.nat_ip_address));
				/* L4 source port */
				if (actions->nat.l4.ports.sport)
					req.nat_port =
						actions->nat.l4.ports.sport;
			} else {
				action_flags |=
					CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_DEST;
				/* L3 destination rewrite */
				memcpy(req.nat_ip_address,
				       actions->nat.l3.ipv6.daddr.s6_addr32,
				       sizeof(req.nat_ip_address));
				/* L4 destination port */
				if (actions->nat.l4.ports.dport)
					req.nat_port =
						actions->nat.l4.ports.dport;
			}
			netdev_dbg(bp->dev,
				   "req.nat_ip_address: %pI6 src_xlate: %d req.nat_port: %x\n",
				   req.nat_ip_address, actions->nat.src_xlate,
				   req.nat_port);
		}
	}

665 666 667 668 669 670 671
	if (actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP ||
	    actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) {
		req.tunnel_handle = tunnel_handle;
		flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_TUNNEL;
		action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_TUNNEL;
	}

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	req.ethertype = flow->l2_key.ether_type;
	req.ip_proto = flow->l4_key.ip_proto;

	if (flow->flags & BNXT_TC_FLOW_FLAGS_ETH_ADDRS) {
		memcpy(req.dmac, flow->l2_key.dmac, ETH_ALEN);
		memcpy(req.smac, flow->l2_key.smac, ETH_ALEN);
	}

	if (flow->l2_key.num_vlans > 0) {
		flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_NUM_VLAN_ONE;
		/* FW expects the inner_vlan_tci value to be set
		 * in outer_vlan_tci when num_vlans is 1 (which is
		 * always the case in TC.)
		 */
		req.outer_vlan_tci = flow->l2_key.inner_vlan_tci;
	}

	/* If all IP and L4 fields are wildcarded then this is an L2 flow */
690
	if (is_wildcard(l3_mask, sizeof(*l3_mask)) &&
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	    is_wildcard(&flow->l4_mask, sizeof(flow->l4_mask))) {
		flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_L2;
	} else {
		flow_flags |= flow->l2_key.ether_type == htons(ETH_P_IP) ?
				CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV4 :
				CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV6;

		if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV4_ADDRS) {
			req.ip_dst[0] = l3_key->ipv4.daddr.s_addr;
			req.ip_dst_mask_len =
				inet_mask_len(l3_mask->ipv4.daddr.s_addr);
			req.ip_src[0] = l3_key->ipv4.saddr.s_addr;
			req.ip_src_mask_len =
				inet_mask_len(l3_mask->ipv4.saddr.s_addr);
		} else if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV6_ADDRS) {
			memcpy(req.ip_dst, l3_key->ipv6.daddr.s6_addr32,
			       sizeof(req.ip_dst));
			req.ip_dst_mask_len =
					ipv6_mask_len(&l3_mask->ipv6.daddr);
			memcpy(req.ip_src, l3_key->ipv6.saddr.s6_addr32,
			       sizeof(req.ip_src));
			req.ip_src_mask_len =
					ipv6_mask_len(&l3_mask->ipv6.saddr);
		}
	}

	if (flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) {
		req.l4_src_port = flow->l4_key.ports.sport;
		req.l4_src_port_mask = flow->l4_mask.ports.sport;
		req.l4_dst_port = flow->l4_key.ports.dport;
		req.l4_dst_port_mask = flow->l4_mask.ports.dport;
	} else if (flow->flags & BNXT_TC_FLOW_FLAGS_ICMP) {
		/* l4 ports serve as type/code when ip_proto is ICMP */
		req.l4_src_port = htons(flow->l4_key.icmp.type);
		req.l4_src_port_mask = htons(flow->l4_mask.icmp.type);
		req.l4_dst_port = htons(flow->l4_key.icmp.code);
		req.l4_dst_port_mask = htons(flow->l4_mask.icmp.code);
	}
	req.flags = cpu_to_le16(flow_flags);

	if (actions->flags & BNXT_TC_ACTION_FLAG_DROP) {
		action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_DROP;
	} else {
		if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) {
			action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_FWD;
			req.dst_fid = cpu_to_le16(actions->dst_fid);
		}
		if (actions->flags & BNXT_TC_ACTION_FLAG_PUSH_VLAN) {
			action_flags |=
			    CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
			req.l2_rewrite_vlan_tpid = actions->push_vlan_tpid;
			req.l2_rewrite_vlan_tci = actions->push_vlan_tci;
			memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN);
			memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN);
		}
		if (actions->flags & BNXT_TC_ACTION_FLAG_POP_VLAN) {
			action_flags |=
			    CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
			/* Rewrite config with tpid = 0 implies vlan pop */
			req.l2_rewrite_vlan_tpid = 0;
			memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN);
			memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN);
		}
	}
	req.action_flags = cpu_to_le16(action_flags);

	mutex_lock(&bp->hwrm_cmd_lock);
	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
759 760
	if (!rc) {
		resp = bnxt_get_hwrm_resp_addr(bp, &req);
761 762 763 764 765 766 767 768 769 770 771 772 773 774
		/* CFA_FLOW_ALLOC response interpretation:
		 *		    fw with	     fw with
		 *		    16-bit	     64-bit
		 *		    flow handle      flow handle
		 *		    ===========	     ===========
		 * flow_handle      flow handle      flow context id
		 * ext_flow_handle  INVALID	     flow handle
		 * flow_id	    INVALID	     flow counter id
		 */
		flow_node->flow_handle = resp->flow_handle;
		if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) {
			flow_node->ext_flow_handle = resp->ext_flow_handle;
			flow_node->flow_id = resp->flow_id;
		}
775
	}
776 777
	mutex_unlock(&bp->hwrm_cmd_lock);
	return rc;
778 779
}

780 781 782 783 784 785
static int hwrm_cfa_decap_filter_alloc(struct bnxt *bp,
				       struct bnxt_tc_flow *flow,
				       struct bnxt_tc_l2_key *l2_info,
				       __le32 ref_decap_handle,
				       __le32 *decap_filter_handle)
{
786
	struct hwrm_cfa_decap_filter_alloc_input req = { 0 };
787
	struct hwrm_cfa_decap_filter_alloc_output *resp;
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
	struct ip_tunnel_key *tun_key = &flow->tun_key;
	u32 enables = 0;
	int rc;

	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_DECAP_FILTER_ALLOC, -1, -1);

	req.flags = cpu_to_le32(CFA_DECAP_FILTER_ALLOC_REQ_FLAGS_OVS_TUNNEL);
	enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE |
		   CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL;
	req.tunnel_type = CFA_DECAP_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
	req.ip_protocol = CFA_DECAP_FILTER_ALLOC_REQ_IP_PROTOCOL_UDP;

	if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_ID) {
		enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_TUNNEL_ID;
		/* tunnel_id is wrongly defined in hsi defn. as __le32 */
		req.tunnel_id = tunnel_id_to_key32(tun_key->tun_id);
	}

	if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_ETH_ADDRS) {
807
		enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_MACADDR;
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
		ether_addr_copy(req.dst_macaddr, l2_info->dmac);
	}
	if (l2_info->num_vlans) {
		enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_T_IVLAN_VID;
		req.t_ivlan_vid = l2_info->inner_vlan_tci;
	}

	enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE;
	req.ethertype = htons(ETH_P_IP);

	if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_IPV4_ADDRS) {
		enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |
			   CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |
			   CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE;
		req.ip_addr_type = CFA_DECAP_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
		req.dst_ipaddr[0] = tun_key->u.ipv4.dst;
		req.src_ipaddr[0] = tun_key->u.ipv4.src;
	}

	if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_PORTS) {
		enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_PORT;
		req.dst_port = tun_key->tp_dst;
	}

	/* Eventhough the decap_handle returned by hwrm_cfa_decap_filter_alloc
	 * is defined as __le32, l2_ctxt_ref_id is defined in HSI as __le16.
	 */
	req.l2_ctxt_ref_id = (__force __le16)ref_decap_handle;
	req.enables = cpu_to_le32(enables);

	mutex_lock(&bp->hwrm_cmd_lock);
	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
840 841
	if (!rc) {
		resp = bnxt_get_hwrm_resp_addr(bp, &req);
842
		*decap_filter_handle = resp->decap_filter_id;
843
	} else {
844
		netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc);
845
	}
846 847 848
	mutex_unlock(&bp->hwrm_cmd_lock);

	return rc;
849 850 851 852 853
}

static int hwrm_cfa_decap_filter_free(struct bnxt *bp,
				      __le32 decap_filter_handle)
{
854 855 856 857 858 859 860 861
	struct hwrm_cfa_decap_filter_free_input req = { 0 };
	int rc;

	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_DECAP_FILTER_FREE, -1, -1);
	req.decap_filter_id = decap_filter_handle;

	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
	if (rc)
862
		netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc);
863

864
	return rc;
865 866 867 868 869 870 871
}

static int hwrm_cfa_encap_record_alloc(struct bnxt *bp,
				       struct ip_tunnel_key *encap_key,
				       struct bnxt_tc_l2_key *l2_info,
				       __le32 *encap_record_handle)
{
872
	struct hwrm_cfa_encap_record_alloc_input req = { 0 };
873
	struct hwrm_cfa_encap_record_alloc_output *resp;
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	struct hwrm_cfa_encap_data_vxlan *encap =
			(struct hwrm_cfa_encap_data_vxlan *)&req.encap_data;
	struct hwrm_vxlan_ipv4_hdr *encap_ipv4 =
				(struct hwrm_vxlan_ipv4_hdr *)encap->l3;
	int rc;

	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ENCAP_RECORD_ALLOC, -1, -1);

	req.encap_type = CFA_ENCAP_RECORD_ALLOC_REQ_ENCAP_TYPE_VXLAN;

	ether_addr_copy(encap->dst_mac_addr, l2_info->dmac);
	ether_addr_copy(encap->src_mac_addr, l2_info->smac);
	if (l2_info->num_vlans) {
		encap->num_vlan_tags = l2_info->num_vlans;
		encap->ovlan_tci = l2_info->inner_vlan_tci;
		encap->ovlan_tpid = l2_info->inner_vlan_tpid;
	}

	encap_ipv4->ver_hlen = 4 << VXLAN_IPV4_HDR_VER_HLEN_VERSION_SFT;
	encap_ipv4->ver_hlen |= 5 << VXLAN_IPV4_HDR_VER_HLEN_HEADER_LENGTH_SFT;
	encap_ipv4->ttl = encap_key->ttl;

	encap_ipv4->dest_ip_addr = encap_key->u.ipv4.dst;
	encap_ipv4->src_ip_addr = encap_key->u.ipv4.src;
	encap_ipv4->protocol = IPPROTO_UDP;

	encap->dst_port = encap_key->tp_dst;
	encap->vni = tunnel_id_to_key32(encap_key->tun_id);

	mutex_lock(&bp->hwrm_cmd_lock);
	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
905 906
	if (!rc) {
		resp = bnxt_get_hwrm_resp_addr(bp, &req);
907
		*encap_record_handle = resp->encap_record_id;
908
	} else {
909
		netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc);
910
	}
911 912 913
	mutex_unlock(&bp->hwrm_cmd_lock);

	return rc;
914 915 916 917 918
}

static int hwrm_cfa_encap_record_free(struct bnxt *bp,
				      __le32 encap_record_handle)
{
919 920 921 922 923 924 925 926
	struct hwrm_cfa_encap_record_free_input req = { 0 };
	int rc;

	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ENCAP_RECORD_FREE, -1, -1);
	req.encap_record_id = encap_record_handle;

	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
	if (rc)
927
		netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc);
928

929
	return rc;
930 931
}

932 933 934 935
static int bnxt_tc_put_l2_node(struct bnxt *bp,
			       struct bnxt_tc_flow_node *flow_node)
{
	struct bnxt_tc_l2_node *l2_node = flow_node->l2_node;
936
	struct bnxt_tc_info *tc_info = bp->tc_info;
937 938 939 940 941 942 943 944 945
	int rc;

	/* remove flow_node from the L2 shared flow list */
	list_del(&flow_node->l2_list_node);
	if (--l2_node->refcount == 0) {
		rc =  rhashtable_remove_fast(&tc_info->l2_table, &l2_node->node,
					     tc_info->l2_ht_params);
		if (rc)
			netdev_err(bp->dev,
946
				   "Error: %s: rhashtable_remove_fast: %d\n",
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
				   __func__, rc);
		kfree_rcu(l2_node, rcu);
	}
	return 0;
}

static struct bnxt_tc_l2_node *
bnxt_tc_get_l2_node(struct bnxt *bp, struct rhashtable *l2_table,
		    struct rhashtable_params ht_params,
		    struct bnxt_tc_l2_key *l2_key)
{
	struct bnxt_tc_l2_node *l2_node;
	int rc;

	l2_node = rhashtable_lookup_fast(l2_table, l2_key, ht_params);
	if (!l2_node) {
		l2_node = kzalloc(sizeof(*l2_node), GFP_KERNEL);
		if (!l2_node) {
			rc = -ENOMEM;
			return NULL;
		}

		l2_node->key = *l2_key;
		rc = rhashtable_insert_fast(l2_table, &l2_node->node,
					    ht_params);
		if (rc) {
973
			kfree_rcu(l2_node, rcu);
974
			netdev_err(bp->dev,
975
				   "Error: %s: rhashtable_insert_fast: %d\n",
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
				   __func__, rc);
			return NULL;
		}
		INIT_LIST_HEAD(&l2_node->common_l2_flows);
	}
	return l2_node;
}

/* Get the ref_flow_handle for a flow by checking if there are any other
 * flows that share the same L2 key as this flow.
 */
static int
bnxt_tc_get_ref_flow_handle(struct bnxt *bp, struct bnxt_tc_flow *flow,
			    struct bnxt_tc_flow_node *flow_node,
			    __le16 *ref_flow_handle)
{
992
	struct bnxt_tc_info *tc_info = bp->tc_info;
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	struct bnxt_tc_flow_node *ref_flow_node;
	struct bnxt_tc_l2_node *l2_node;

	l2_node = bnxt_tc_get_l2_node(bp, &tc_info->l2_table,
				      tc_info->l2_ht_params,
				      &flow->l2_key);
	if (!l2_node)
		return -1;

	/* If any other flow is using this l2_node, use it's flow_handle
	 * as the ref_flow_handle
	 */
	if (l2_node->refcount > 0) {
		ref_flow_node = list_first_entry(&l2_node->common_l2_flows,
						 struct bnxt_tc_flow_node,
						 l2_list_node);
		*ref_flow_handle = ref_flow_node->flow_handle;
	} else {
		*ref_flow_handle = cpu_to_le16(0xffff);
	}

	/* Insert the l2_node into the flow_node so that subsequent flows
	 * with a matching l2 key can use the flow_handle of this flow
	 * as their ref_flow_handle
	 */
	flow_node->l2_node = l2_node;
	list_add(&flow_node->l2_list_node, &l2_node->common_l2_flows);
	l2_node->refcount++;
	return 0;
}

/* After the flow parsing is done, this routine is used for checking
 * if there are any aspects of the flow that prevent it from being
 * offloaded.
 */
static bool bnxt_tc_can_offload(struct bnxt *bp, struct bnxt_tc_flow *flow)
{
	/* If L4 ports are specified then ip_proto must be TCP or UDP */
	if ((flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) &&
	    (flow->l4_key.ip_proto != IPPROTO_TCP &&
	     flow->l4_key.ip_proto != IPPROTO_UDP)) {
1034
		netdev_info(bp->dev, "Cannot offload non-TCP/UDP (%d) ports\n",
1035 1036 1037 1038
			    flow->l4_key.ip_proto);
		return false;
	}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	/* Currently source/dest MAC cannot be partial wildcard  */
	if (bits_set(&flow->l2_key.smac, sizeof(flow->l2_key.smac)) &&
	    !is_exactmatch(flow->l2_mask.smac, sizeof(flow->l2_mask.smac))) {
		netdev_info(bp->dev, "Wildcard match unsupported for Source MAC\n");
		return false;
	}
	if (bits_set(&flow->l2_key.dmac, sizeof(flow->l2_key.dmac)) &&
	    !is_exactmatch(&flow->l2_mask.dmac, sizeof(flow->l2_mask.dmac))) {
		netdev_info(bp->dev, "Wildcard match unsupported for Dest MAC\n");
		return false;
	}

	/* Currently VLAN fields cannot be partial wildcard */
	if (bits_set(&flow->l2_key.inner_vlan_tci,
		     sizeof(flow->l2_key.inner_vlan_tci)) &&
1054 1055 1056
	    !is_vlan_tci_allowed(flow->l2_mask.inner_vlan_tci,
				 flow->l2_key.inner_vlan_tci)) {
		netdev_info(bp->dev, "Unsupported VLAN TCI\n");
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		return false;
	}
	if (bits_set(&flow->l2_key.inner_vlan_tpid,
		     sizeof(flow->l2_key.inner_vlan_tpid)) &&
	    !is_exactmatch(&flow->l2_mask.inner_vlan_tpid,
			   sizeof(flow->l2_mask.inner_vlan_tpid))) {
		netdev_info(bp->dev, "Wildcard match unsupported for VLAN TPID\n");
		return false;
	}

	/* Currently Ethertype must be set */
	if (!is_exactmatch(&flow->l2_mask.ether_type,
			   sizeof(flow->l2_mask.ether_type))) {
		netdev_info(bp->dev, "Wildcard match unsupported for Ethertype\n");
		return false;
	}

1074 1075 1076
	return true;
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
/* Returns the final refcount of the node on success
 * or a -ve error code on failure
 */
static int bnxt_tc_put_tunnel_node(struct bnxt *bp,
				   struct rhashtable *tunnel_table,
				   struct rhashtable_params *ht_params,
				   struct bnxt_tc_tunnel_node *tunnel_node)
{
	int rc;

	if (--tunnel_node->refcount == 0) {
		rc =  rhashtable_remove_fast(tunnel_table, &tunnel_node->node,
					     *ht_params);
		if (rc) {
1091
			netdev_err(bp->dev, "rhashtable_remove_fast rc=%d\n", rc);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
			rc = -1;
		}
		kfree_rcu(tunnel_node, rcu);
		return rc;
	} else {
		return tunnel_node->refcount;
	}
}

/* Get (or add) either encap or decap tunnel node from/to the supplied
 * hash table.
 */
static struct bnxt_tc_tunnel_node *
bnxt_tc_get_tunnel_node(struct bnxt *bp, struct rhashtable *tunnel_table,
			struct rhashtable_params *ht_params,
			struct ip_tunnel_key *tun_key)
{
	struct bnxt_tc_tunnel_node *tunnel_node;
	int rc;

	tunnel_node = rhashtable_lookup_fast(tunnel_table, tun_key, *ht_params);
	if (!tunnel_node) {
		tunnel_node = kzalloc(sizeof(*tunnel_node), GFP_KERNEL);
		if (!tunnel_node) {
			rc = -ENOMEM;
			goto err;
		}

		tunnel_node->key = *tun_key;
		tunnel_node->tunnel_handle = INVALID_TUNNEL_HANDLE;
		rc = rhashtable_insert_fast(tunnel_table, &tunnel_node->node,
					    *ht_params);
		if (rc) {
			kfree_rcu(tunnel_node, rcu);
			goto err;
		}
	}
	tunnel_node->refcount++;
	return tunnel_node;
err:
1132
	netdev_info(bp->dev, "error rc=%d\n", rc);
1133 1134 1135 1136 1137 1138 1139 1140 1141
	return NULL;
}

static int bnxt_tc_get_ref_decap_handle(struct bnxt *bp,
					struct bnxt_tc_flow *flow,
					struct bnxt_tc_l2_key *l2_key,
					struct bnxt_tc_flow_node *flow_node,
					__le32 *ref_decap_handle)
{
1142
	struct bnxt_tc_info *tc_info = bp->tc_info;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	struct bnxt_tc_flow_node *ref_flow_node;
	struct bnxt_tc_l2_node *decap_l2_node;

	decap_l2_node = bnxt_tc_get_l2_node(bp, &tc_info->decap_l2_table,
					    tc_info->decap_l2_ht_params,
					    l2_key);
	if (!decap_l2_node)
		return -1;

	/* If any other flow is using this decap_l2_node, use it's decap_handle
	 * as the ref_decap_handle
	 */
	if (decap_l2_node->refcount > 0) {
		ref_flow_node =
			list_first_entry(&decap_l2_node->common_l2_flows,
					 struct bnxt_tc_flow_node,
					 decap_l2_list_node);
		*ref_decap_handle = ref_flow_node->decap_node->tunnel_handle;
	} else {
		*ref_decap_handle = INVALID_TUNNEL_HANDLE;
	}

	/* Insert the l2_node into the flow_node so that subsequent flows
	 * with a matching decap l2 key can use the decap_filter_handle of
	 * this flow as their ref_decap_handle
	 */
	flow_node->decap_l2_node = decap_l2_node;
	list_add(&flow_node->decap_l2_list_node,
		 &decap_l2_node->common_l2_flows);
	decap_l2_node->refcount++;
	return 0;
}

static void bnxt_tc_put_decap_l2_node(struct bnxt *bp,
				      struct bnxt_tc_flow_node *flow_node)
{
	struct bnxt_tc_l2_node *decap_l2_node = flow_node->decap_l2_node;
1180
	struct bnxt_tc_info *tc_info = bp->tc_info;
1181 1182 1183 1184 1185 1186 1187 1188 1189
	int rc;

	/* remove flow_node from the decap L2 sharing flow list */
	list_del(&flow_node->decap_l2_list_node);
	if (--decap_l2_node->refcount == 0) {
		rc =  rhashtable_remove_fast(&tc_info->decap_l2_table,
					     &decap_l2_node->node,
					     tc_info->decap_l2_ht_params);
		if (rc)
1190
			netdev_err(bp->dev, "rhashtable_remove_fast rc=%d\n", rc);
1191 1192 1193 1194 1195 1196 1197 1198
		kfree_rcu(decap_l2_node, rcu);
	}
}

static void bnxt_tc_put_decap_handle(struct bnxt *bp,
				     struct bnxt_tc_flow_node *flow_node)
{
	__le32 decap_handle = flow_node->decap_node->tunnel_handle;
1199
	struct bnxt_tc_info *tc_info = bp->tc_info;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	int rc;

	if (flow_node->decap_l2_node)
		bnxt_tc_put_decap_l2_node(bp, flow_node);

	rc = bnxt_tc_put_tunnel_node(bp, &tc_info->decap_table,
				     &tc_info->decap_ht_params,
				     flow_node->decap_node);
	if (!rc && decap_handle != INVALID_TUNNEL_HANDLE)
		hwrm_cfa_decap_filter_free(bp, decap_handle);
}

static int bnxt_tc_resolve_tunnel_hdrs(struct bnxt *bp,
				       struct ip_tunnel_key *tun_key,
1214
				       struct bnxt_tc_l2_key *l2_info)
1215
{
1216
#ifdef CONFIG_INET
1217
	struct net_device *real_dst_dev = bp->dev;
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	struct flowi4 flow = { {0} };
	struct net_device *dst_dev;
	struct neighbour *nbr;
	struct rtable *rt;
	int rc;

	flow.flowi4_proto = IPPROTO_UDP;
	flow.fl4_dport = tun_key->tp_dst;
	flow.daddr = tun_key->u.ipv4.dst;

	rt = ip_route_output_key(dev_net(real_dst_dev), &flow);
	if (IS_ERR(rt)) {
1230
		netdev_info(bp->dev, "no route to %pI4b\n", &flow.daddr);
1231 1232 1233 1234 1235 1236 1237 1238
		return -EOPNOTSUPP;
	}

	/* The route must either point to the real_dst_dev or a dst_dev that
	 * uses the real_dst_dev.
	 */
	dst_dev = rt->dst.dev;
	if (is_vlan_dev(dst_dev)) {
1239
#if IS_ENABLED(CONFIG_VLAN_8021Q)
1240 1241 1242 1243
		struct vlan_dev_priv *vlan = vlan_dev_priv(dst_dev);

		if (vlan->real_dev != real_dst_dev) {
			netdev_info(bp->dev,
1244
				    "dst_dev(%s) doesn't use PF-if(%s)\n",
1245 1246 1247 1248 1249 1250 1251 1252
				    netdev_name(dst_dev),
				    netdev_name(real_dst_dev));
			rc = -EOPNOTSUPP;
			goto put_rt;
		}
		l2_info->inner_vlan_tci = htons(vlan->vlan_id);
		l2_info->inner_vlan_tpid = vlan->vlan_proto;
		l2_info->num_vlans = 1;
1253
#endif
1254 1255
	} else if (dst_dev != real_dst_dev) {
		netdev_info(bp->dev,
1256
			    "dst_dev(%s) for %pI4b is not PF-if(%s)\n",
1257 1258 1259 1260 1261 1262 1263 1264
			    netdev_name(dst_dev), &flow.daddr,
			    netdev_name(real_dst_dev));
		rc = -EOPNOTSUPP;
		goto put_rt;
	}

	nbr = dst_neigh_lookup(&rt->dst, &flow.daddr);
	if (!nbr) {
1265
		netdev_info(bp->dev, "can't lookup neighbor for %pI4b\n",
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			    &flow.daddr);
		rc = -EOPNOTSUPP;
		goto put_rt;
	}

	tun_key->u.ipv4.src = flow.saddr;
	tun_key->ttl = ip4_dst_hoplimit(&rt->dst);
	neigh_ha_snapshot(l2_info->dmac, nbr, dst_dev);
	ether_addr_copy(l2_info->smac, dst_dev->dev_addr);
	neigh_release(nbr);
	ip_rt_put(rt);

	return 0;
put_rt:
	ip_rt_put(rt);
	return rc;
1282 1283 1284
#else
	return -EOPNOTSUPP;
#endif
1285 1286 1287 1288 1289 1290 1291
}

static int bnxt_tc_get_decap_handle(struct bnxt *bp, struct bnxt_tc_flow *flow,
				    struct bnxt_tc_flow_node *flow_node,
				    __le32 *decap_filter_handle)
{
	struct ip_tunnel_key *decap_key = &flow->tun_key;
1292
	struct bnxt_tc_info *tc_info = bp->tc_info;
1293 1294 1295 1296 1297 1298 1299 1300 1301
	struct bnxt_tc_l2_key l2_info = { {0} };
	struct bnxt_tc_tunnel_node *decap_node;
	struct ip_tunnel_key tun_key = { 0 };
	struct bnxt_tc_l2_key *decap_l2_info;
	__le32 ref_decap_handle;
	int rc;

	/* Check if there's another flow using the same tunnel decap.
	 * If not, add this tunnel to the table and resolve the other
1302 1303
	 * tunnel header fileds. Ignore src_port in the tunnel_key,
	 * since it is not required for decap filters.
1304
	 */
1305
	decap_key->tp_src = 0;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	decap_node = bnxt_tc_get_tunnel_node(bp, &tc_info->decap_table,
					     &tc_info->decap_ht_params,
					     decap_key);
	if (!decap_node)
		return -ENOMEM;

	flow_node->decap_node = decap_node;

	if (decap_node->tunnel_handle != INVALID_TUNNEL_HANDLE)
		goto done;

	/* Resolve the L2 fields for tunnel decap
	 * Resolve the route for remote vtep (saddr) of the decap key
	 * Find it's next-hop mac addrs
	 */
	tun_key.u.ipv4.dst = flow->tun_key.u.ipv4.src;
	tun_key.tp_dst = flow->tun_key.tp_dst;
1323
	rc = bnxt_tc_resolve_tunnel_hdrs(bp, &tun_key, &l2_info);
1324 1325 1326 1327
	if (rc)
		goto put_decap;

	decap_l2_info = &decap_node->l2_info;
1328
	/* decap smac is wildcarded */
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	ether_addr_copy(decap_l2_info->dmac, l2_info.smac);
	if (l2_info.num_vlans) {
		decap_l2_info->num_vlans = l2_info.num_vlans;
		decap_l2_info->inner_vlan_tpid = l2_info.inner_vlan_tpid;
		decap_l2_info->inner_vlan_tci = l2_info.inner_vlan_tci;
	}
	flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_ETH_ADDRS;

	/* For getting a decap_filter_handle we first need to check if
	 * there are any other decap flows that share the same tunnel L2
	 * key and if so, pass that flow's decap_filter_handle as the
	 * ref_decap_handle for this flow.
	 */
	rc = bnxt_tc_get_ref_decap_handle(bp, flow, decap_l2_info, flow_node,
					  &ref_decap_handle);
	if (rc)
		goto put_decap;

	/* Issue the hwrm cmd to allocate a decap filter handle */
	rc = hwrm_cfa_decap_filter_alloc(bp, flow, decap_l2_info,
					 ref_decap_handle,
					 &decap_node->tunnel_handle);
	if (rc)
		goto put_decap_l2;

done:
	*decap_filter_handle = decap_node->tunnel_handle;
	return 0;

put_decap_l2:
	bnxt_tc_put_decap_l2_node(bp, flow_node);
put_decap:
	bnxt_tc_put_tunnel_node(bp, &tc_info->decap_table,
				&tc_info->decap_ht_params,
				flow_node->decap_node);
	return rc;
}

static void bnxt_tc_put_encap_handle(struct bnxt *bp,
				     struct bnxt_tc_tunnel_node *encap_node)
{
	__le32 encap_handle = encap_node->tunnel_handle;
1371
	struct bnxt_tc_info *tc_info = bp->tc_info;
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	int rc;

	rc = bnxt_tc_put_tunnel_node(bp, &tc_info->encap_table,
				     &tc_info->encap_ht_params, encap_node);
	if (!rc && encap_handle != INVALID_TUNNEL_HANDLE)
		hwrm_cfa_encap_record_free(bp, encap_handle);
}

/* Lookup the tunnel encap table and check if there's an encap_handle
 * alloc'd already.
 * If not, query L2 info via a route lookup and issue an encap_record_alloc
 * cmd to FW.
 */
static int bnxt_tc_get_encap_handle(struct bnxt *bp, struct bnxt_tc_flow *flow,
				    struct bnxt_tc_flow_node *flow_node,
				    __le32 *encap_handle)
{
	struct ip_tunnel_key *encap_key = &flow->actions.tun_encap_key;
1390
	struct bnxt_tc_info *tc_info = bp->tc_info;
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	struct bnxt_tc_tunnel_node *encap_node;
	int rc;

	/* Check if there's another flow using the same tunnel encap.
	 * If not, add this tunnel to the table and resolve the other
	 * tunnel header fileds
	 */
	encap_node = bnxt_tc_get_tunnel_node(bp, &tc_info->encap_table,
					     &tc_info->encap_ht_params,
					     encap_key);
	if (!encap_node)
		return -ENOMEM;

	flow_node->encap_node = encap_node;

	if (encap_node->tunnel_handle != INVALID_TUNNEL_HANDLE)
		goto done;

1409
	rc = bnxt_tc_resolve_tunnel_hdrs(bp, encap_key, &encap_node->l2_info);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	if (rc)
		goto put_encap;

	/* Allocate a new tunnel encap record */
	rc = hwrm_cfa_encap_record_alloc(bp, encap_key, &encap_node->l2_info,
					 &encap_node->tunnel_handle);
	if (rc)
		goto put_encap;

done:
	*encap_handle = encap_node->tunnel_handle;
	return 0;

put_encap:
	bnxt_tc_put_tunnel_node(bp, &tc_info->encap_table,
				&tc_info->encap_ht_params, encap_node);
	return rc;
}

static void bnxt_tc_put_tunnel_handle(struct bnxt *bp,
				      struct bnxt_tc_flow *flow,
				      struct bnxt_tc_flow_node *flow_node)
{
	if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP)
		bnxt_tc_put_decap_handle(bp, flow_node);
	else if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP)
		bnxt_tc_put_encap_handle(bp, flow_node->encap_node);
}

static int bnxt_tc_get_tunnel_handle(struct bnxt *bp,
				     struct bnxt_tc_flow *flow,
				     struct bnxt_tc_flow_node *flow_node,
				     __le32 *tunnel_handle)
{
	if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP)
		return bnxt_tc_get_decap_handle(bp, flow, flow_node,
						tunnel_handle);
	else if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP)
		return bnxt_tc_get_encap_handle(bp, flow, flow_node,
						tunnel_handle);
	else
		return 0;
}
1453 1454 1455
static int __bnxt_tc_del_flow(struct bnxt *bp,
			      struct bnxt_tc_flow_node *flow_node)
{
1456
	struct bnxt_tc_info *tc_info = bp->tc_info;
1457 1458 1459
	int rc;

	/* send HWRM cmd to free the flow-id */
1460
	bnxt_hwrm_cfa_flow_free(bp, flow_node);
1461 1462 1463

	mutex_lock(&tc_info->lock);

1464 1465 1466
	/* release references to any tunnel encap/decap nodes */
	bnxt_tc_put_tunnel_handle(bp, &flow_node->flow, flow_node);

1467 1468 1469 1470 1471 1472 1473 1474
	/* release reference to l2 node */
	bnxt_tc_put_l2_node(bp, flow_node);

	mutex_unlock(&tc_info->lock);

	rc = rhashtable_remove_fast(&tc_info->flow_table, &flow_node->node,
				    tc_info->flow_ht_params);
	if (rc)
1475
		netdev_err(bp->dev, "Error: %s: rhashtable_remove_fast rc=%d\n",
1476 1477 1478 1479 1480 1481
			   __func__, rc);

	kfree_rcu(flow_node, rcu);
	return 0;
}

1482 1483 1484
static void bnxt_tc_set_flow_dir(struct bnxt *bp, struct bnxt_tc_flow *flow,
				 u16 src_fid)
{
1485
	flow->l2_key.dir = (bp->pf.fw_fid == src_fid) ? BNXT_DIR_RX : BNXT_DIR_TX;
1486 1487
}

1488 1489 1490 1491 1492 1493 1494 1495 1496
static void bnxt_tc_set_src_fid(struct bnxt *bp, struct bnxt_tc_flow *flow,
				u16 src_fid)
{
	if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP)
		flow->src_fid = bp->pf.fw_fid;
	else
		flow->src_fid = src_fid;
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/* Add a new flow or replace an existing flow.
 * Notes on locking:
 * There are essentially two critical sections here.
 * 1. while adding a new flow
 *    a) lookup l2-key
 *    b) issue HWRM cmd and get flow_handle
 *    c) link l2-key with flow
 * 2. while deleting a flow
 *    a) unlinking l2-key from flow
 * A lock is needed to protect these two critical sections.
 *
 * The hash-tables are already protected by the rhashtable API.
 */
static int bnxt_tc_add_flow(struct bnxt *bp, u16 src_fid,
1511
			    struct flow_cls_offload *tc_flow_cmd)
1512 1513
{
	struct bnxt_tc_flow_node *new_node, *old_node;
1514
	struct bnxt_tc_info *tc_info = bp->tc_info;
1515
	struct bnxt_tc_flow *flow;
1516
	__le32 tunnel_handle = 0;
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	__le16 ref_flow_handle;
	int rc;

	/* allocate memory for the new flow and it's node */
	new_node = kzalloc(sizeof(*new_node), GFP_KERNEL);
	if (!new_node) {
		rc = -ENOMEM;
		goto done;
	}
	new_node->cookie = tc_flow_cmd->cookie;
	flow = &new_node->flow;

	rc = bnxt_tc_parse_flow(bp, tc_flow_cmd, flow);
	if (rc)
		goto free_node;
1532 1533

	bnxt_tc_set_src_fid(bp, flow, src_fid);
1534
	bnxt_tc_set_flow_dir(bp, flow, flow->src_fid);
1535

1536
	if (!bnxt_tc_can_offload(bp, flow)) {
1537
		rc = -EOPNOTSUPP;
1538 1539
		kfree_rcu(new_node, rcu);
		return rc;
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	}

	/* If a flow exists with the same cookie, delete it */
	old_node = rhashtable_lookup_fast(&tc_info->flow_table,
					  &tc_flow_cmd->cookie,
					  tc_info->flow_ht_params);
	if (old_node)
		__bnxt_tc_del_flow(bp, old_node);

	/* Check if the L2 part of the flow has been offloaded already.
	 * If so, bump up it's refcnt and get it's reference handle.
	 */
	mutex_lock(&tc_info->lock);
	rc = bnxt_tc_get_ref_flow_handle(bp, flow, new_node, &ref_flow_handle);
	if (rc)
		goto unlock;

1557 1558 1559 1560 1561
	/* If the flow involves tunnel encap/decap, get tunnel_handle */
	rc = bnxt_tc_get_tunnel_handle(bp, flow, new_node, &tunnel_handle);
	if (rc)
		goto put_l2;

1562 1563
	/* send HWRM cmd to alloc the flow */
	rc = bnxt_hwrm_cfa_flow_alloc(bp, flow, ref_flow_handle,
1564
				      tunnel_handle, new_node);
1565
	if (rc)
1566
		goto put_tunnel;
1567

1568 1569
	flow->lastused = jiffies;
	spin_lock_init(&flow->stats_lock);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	/* add new flow to flow-table */
	rc = rhashtable_insert_fast(&tc_info->flow_table, &new_node->node,
				    tc_info->flow_ht_params);
	if (rc)
		goto hwrm_flow_free;

	mutex_unlock(&tc_info->lock);
	return 0;

hwrm_flow_free:
1580
	bnxt_hwrm_cfa_flow_free(bp, new_node);
1581 1582
put_tunnel:
	bnxt_tc_put_tunnel_handle(bp, flow, new_node);
1583 1584 1585 1586 1587
put_l2:
	bnxt_tc_put_l2_node(bp, new_node);
unlock:
	mutex_unlock(&tc_info->lock);
free_node:
1588
	kfree_rcu(new_node, rcu);
1589
done:
1590
	netdev_err(bp->dev, "Error: %s: cookie=0x%lx error=%d\n",
1591 1592 1593 1594 1595
		   __func__, tc_flow_cmd->cookie, rc);
	return rc;
}

static int bnxt_tc_del_flow(struct bnxt *bp,
1596
			    struct flow_cls_offload *tc_flow_cmd)
1597
{
1598
	struct bnxt_tc_info *tc_info = bp->tc_info;
1599 1600 1601 1602 1603
	struct bnxt_tc_flow_node *flow_node;

	flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
					   &tc_flow_cmd->cookie,
					   tc_info->flow_ht_params);
1604
	if (!flow_node)
1605 1606 1607 1608 1609 1610
		return -EINVAL;

	return __bnxt_tc_del_flow(bp, flow_node);
}

static int bnxt_tc_get_flow_stats(struct bnxt *bp,
1611
				  struct flow_cls_offload *tc_flow_cmd)
1612
{
1613
	struct bnxt_tc_flow_stats stats, *curr_stats, *prev_stats;
1614
	struct bnxt_tc_info *tc_info = bp->tc_info;
1615
	struct bnxt_tc_flow_node *flow_node;
1616 1617
	struct bnxt_tc_flow *flow;
	unsigned long lastused;
1618 1619 1620 1621

	flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
					   &tc_flow_cmd->cookie,
					   tc_info->flow_ht_params);
1622
	if (!flow_node)
1623 1624
		return -1;

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	flow = &flow_node->flow;
	curr_stats = &flow->stats;
	prev_stats = &flow->prev_stats;

	spin_lock(&flow->stats_lock);
	stats.packets = curr_stats->packets - prev_stats->packets;
	stats.bytes = curr_stats->bytes - prev_stats->bytes;
	*prev_stats = *curr_stats;
	lastused = flow->lastused;
	spin_unlock(&flow->stats_lock);

1636 1637
	flow_stats_update(&tc_flow_cmd->stats, stats.bytes, stats.packets,
			  lastused);
1638 1639 1640
	return 0;
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
static void bnxt_fill_cfa_stats_req(struct bnxt *bp,
				    struct bnxt_tc_flow_node *flow_node,
				    __le16 *flow_handle, __le32 *flow_id)
{
	u16 handle;

	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) {
		*flow_id = flow_node->flow_id;

		/* If flow_id is used to fetch flow stats then:
		 * 1. lower 12 bits of flow_handle must be set to all 1s.
		 * 2. 15th bit of flow_handle must specify the flow
		 *    direction (TX/RX).
		 */
1655
		if (flow_node->flow.l2_key.dir == BNXT_DIR_RX)
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
			handle = CFA_FLOW_INFO_REQ_FLOW_HANDLE_DIR_RX |
				 CFA_FLOW_INFO_REQ_FLOW_HANDLE_MAX_MASK;
		else
			handle = CFA_FLOW_INFO_REQ_FLOW_HANDLE_MAX_MASK;

		*flow_handle = cpu_to_le16(handle);
	} else {
		*flow_handle = flow_node->flow_handle;
	}
}

1667 1668 1669 1670 1671
static int
bnxt_hwrm_cfa_flow_stats_get(struct bnxt *bp, int num_flows,
			     struct bnxt_tc_stats_batch stats_batch[])
{
	struct hwrm_cfa_flow_stats_input req = { 0 };
1672
	struct hwrm_cfa_flow_stats_output *resp;
1673
	__le16 *req_flow_handles = &req.flow_handle_0;
1674
	__le32 *req_flow_ids = &req.flow_id_0;
1675 1676 1677 1678 1679 1680 1681
	int rc, i;

	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_STATS, -1, -1);
	req.num_flows = cpu_to_le16(num_flows);
	for (i = 0; i < num_flows; i++) {
		struct bnxt_tc_flow_node *flow_node = stats_batch[i].flow_node;

1682 1683
		bnxt_fill_cfa_stats_req(bp, flow_node,
					&req_flow_handles[i], &req_flow_ids[i]);
1684 1685 1686 1687 1688
	}

	mutex_lock(&bp->hwrm_cmd_lock);
	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
	if (!rc) {
1689 1690 1691 1692 1693 1694
		__le64 *resp_packets;
		__le64 *resp_bytes;

		resp = bnxt_get_hwrm_resp_addr(bp, &req);
		resp_packets = &resp->packet_0;
		resp_bytes = &resp->byte_0;
1695 1696 1697 1698 1699 1700 1701 1702

		for (i = 0; i < num_flows; i++) {
			stats_batch[i].hw_stats.packets =
						le64_to_cpu(resp_packets[i]);
			stats_batch[i].hw_stats.bytes =
						le64_to_cpu(resp_bytes[i]);
		}
	} else {
1703
		netdev_info(bp->dev, "error rc=%d\n", rc);
1704 1705
	}
	mutex_unlock(&bp->hwrm_cmd_lock);
1706

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	return rc;
}

/* Add val to accum while handling a possible wraparound
 * of val. Eventhough val is of type u64, its actual width
 * is denoted by mask and will wrap-around beyond that width.
 */
static void accumulate_val(u64 *accum, u64 val, u64 mask)
{
#define low_bits(x, mask)		((x) & (mask))
#define high_bits(x, mask)		((x) & ~(mask))
	bool wrapped = val < low_bits(*accum, mask);

	*accum = high_bits(*accum, mask) + val;
	if (wrapped)
		*accum += (mask + 1);
}

/* The HW counters' width is much less than 64bits.
 * Handle possible wrap-around while updating the stat counters
 */
static void bnxt_flow_stats_accum(struct bnxt_tc_info *tc_info,
				  struct bnxt_tc_flow_stats *acc_stats,
				  struct bnxt_tc_flow_stats *hw_stats)
{
	accumulate_val(&acc_stats->bytes, hw_stats->bytes, tc_info->bytes_mask);
	accumulate_val(&acc_stats->packets, hw_stats->packets,
		       tc_info->packets_mask);
}

static int
bnxt_tc_flow_stats_batch_update(struct bnxt *bp, int num_flows,
				struct bnxt_tc_stats_batch stats_batch[])
{
1741
	struct bnxt_tc_info *tc_info = bp->tc_info;
1742 1743 1744
	int rc, i;

	rc = bnxt_hwrm_cfa_flow_stats_get(bp, num_flows, stats_batch);
1745 1746 1747
	if (rc)
		return rc;

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	for (i = 0; i < num_flows; i++) {
		struct bnxt_tc_flow_node *flow_node = stats_batch[i].flow_node;
		struct bnxt_tc_flow *flow = &flow_node->flow;

		spin_lock(&flow->stats_lock);
		bnxt_flow_stats_accum(tc_info, &flow->stats,
				      &stats_batch[i].hw_stats);
		if (flow->stats.packets != flow->prev_stats.packets)
			flow->lastused = jiffies;
		spin_unlock(&flow->stats_lock);
	}

1760 1761 1762
	return 0;
}

1763 1764 1765 1766 1767
static int
bnxt_tc_flow_stats_batch_prep(struct bnxt *bp,
			      struct bnxt_tc_stats_batch stats_batch[],
			      int *num_flows)
{
1768
	struct bnxt_tc_info *tc_info = bp->tc_info;
1769 1770 1771 1772
	struct rhashtable_iter *iter = &tc_info->iter;
	void *flow_node;
	int rc, i;

1773
	rhashtable_walk_start(iter);
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

	rc = 0;
	for (i = 0; i < BNXT_FLOW_STATS_BATCH_MAX; i++) {
		flow_node = rhashtable_walk_next(iter);
		if (IS_ERR(flow_node)) {
			i = 0;
			if (PTR_ERR(flow_node) == -EAGAIN) {
				continue;
			} else {
				rc = PTR_ERR(flow_node);
				goto done;
			}
		}

		/* No more flows */
		if (!flow_node)
			goto done;

		stats_batch[i].flow_node = flow_node;
	}
done:
	rhashtable_walk_stop(iter);
	*num_flows = i;
	return rc;
}

void bnxt_tc_flow_stats_work(struct bnxt *bp)
{
1802
	struct bnxt_tc_info *tc_info = bp->tc_info;
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	int num_flows, rc;

	num_flows = atomic_read(&tc_info->flow_table.nelems);
	if (!num_flows)
		return;

	rhashtable_walk_enter(&tc_info->flow_table, &tc_info->iter);

	for (;;) {
		rc = bnxt_tc_flow_stats_batch_prep(bp, tc_info->stats_batch,
						   &num_flows);
		if (rc) {
			if (rc == -EAGAIN)
				continue;
			break;
		}

		if (!num_flows)
			break;

		bnxt_tc_flow_stats_batch_update(bp, num_flows,
						tc_info->stats_batch);
	}

	rhashtable_walk_exit(&tc_info->iter);
}

1830
int bnxt_tc_setup_flower(struct bnxt *bp, u16 src_fid,
1831
			 struct flow_cls_offload *cls_flower)
1832 1833
{
	switch (cls_flower->command) {
1834
	case FLOW_CLS_REPLACE:
1835
		return bnxt_tc_add_flow(bp, src_fid, cls_flower);
1836
	case FLOW_CLS_DESTROY:
1837
		return bnxt_tc_del_flow(bp, cls_flower);
1838
	case FLOW_CLS_STATS:
1839 1840 1841
		return bnxt_tc_get_flow_stats(bp, cls_flower);
	default:
		return -EOPNOTSUPP;
1842 1843 1844
	}
}

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
static int bnxt_tc_setup_indr_block_cb(enum tc_setup_type type,
				       void *type_data, void *cb_priv)
{
	struct bnxt_flower_indr_block_cb_priv *priv = cb_priv;
	struct flow_cls_offload *flower = type_data;
	struct bnxt *bp = priv->bp;

	if (flower->common.chain_index)
		return -EOPNOTSUPP;

	switch (type) {
	case TC_SETUP_CLSFLOWER:
		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, flower);
	default:
		return -EOPNOTSUPP;
	}
}

static struct bnxt_flower_indr_block_cb_priv *
bnxt_tc_indr_block_cb_lookup(struct bnxt *bp, struct net_device *netdev)
{
	struct bnxt_flower_indr_block_cb_priv *cb_priv;

	/* All callback list access should be protected by RTNL. */
	ASSERT_RTNL();

	list_for_each_entry(cb_priv, &bp->tc_indr_block_list, list)
		if (cb_priv->tunnel_netdev == netdev)
			return cb_priv;

	return NULL;
}

static void bnxt_tc_setup_indr_rel(void *cb_priv)
{
	struct bnxt_flower_indr_block_cb_priv *priv = cb_priv;

	list_del(&priv->list);
	kfree(priv);
}

static int bnxt_tc_setup_indr_block(struct net_device *netdev, struct bnxt *bp,
				    struct flow_block_offload *f)
{
	struct bnxt_flower_indr_block_cb_priv *cb_priv;
	struct flow_block_cb *block_cb;

	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
		return -EOPNOTSUPP;

	switch (f->command) {
	case FLOW_BLOCK_BIND:
		cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL);
		if (!cb_priv)
			return -ENOMEM;

		cb_priv->tunnel_netdev = netdev;
		cb_priv->bp = bp;
		list_add(&cb_priv->list, &bp->tc_indr_block_list);

		block_cb = flow_block_cb_alloc(bnxt_tc_setup_indr_block_cb,
					       cb_priv, cb_priv,
					       bnxt_tc_setup_indr_rel);
		if (IS_ERR(block_cb)) {
			list_del(&cb_priv->list);
			kfree(cb_priv);
			return PTR_ERR(block_cb);
		}

		flow_block_cb_add(block_cb, f);
		list_add_tail(&block_cb->driver_list, &bnxt_block_cb_list);
		break;
	case FLOW_BLOCK_UNBIND:
		cb_priv = bnxt_tc_indr_block_cb_lookup(bp, netdev);
		if (!cb_priv)
			return -ENOENT;

		block_cb = flow_block_cb_lookup(f->block,
						bnxt_tc_setup_indr_block_cb,
						cb_priv);
		if (!block_cb)
			return -ENOENT;

		flow_block_cb_remove(block_cb, f);
		list_del(&block_cb->driver_list);
		break;
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int bnxt_tc_setup_indr_cb(struct net_device *netdev, void *cb_priv,
				 enum tc_setup_type type, void *type_data)
{
	switch (type) {
	case TC_SETUP_BLOCK:
		return bnxt_tc_setup_indr_block(netdev, cb_priv, type_data);
	default:
		return -EOPNOTSUPP;
	}
}

static bool bnxt_is_netdev_indr_offload(struct net_device *netdev)
{
	return netif_is_vxlan(netdev);
}

static int bnxt_tc_indr_block_event(struct notifier_block *nb,
				    unsigned long event, void *ptr)
{
	struct net_device *netdev;
	struct bnxt *bp;
	int rc;

	netdev = netdev_notifier_info_to_dev(ptr);
	if (!bnxt_is_netdev_indr_offload(netdev))
		return NOTIFY_OK;

	bp = container_of(nb, struct bnxt, tc_netdev_nb);

	switch (event) {
	case NETDEV_REGISTER:
		rc = __flow_indr_block_cb_register(netdev, bp,
						   bnxt_tc_setup_indr_cb,
						   bp);
		if (rc)
			netdev_info(bp->dev,
1973
				    "Failed to register indirect blk: dev: %s\n",
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
				    netdev->name);
		break;
	case NETDEV_UNREGISTER:
		__flow_indr_block_cb_unregister(netdev,
						bnxt_tc_setup_indr_cb,
						bp);
		break;
	}

	return NOTIFY_DONE;
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
static const struct rhashtable_params bnxt_tc_flow_ht_params = {
	.head_offset = offsetof(struct bnxt_tc_flow_node, node),
	.key_offset = offsetof(struct bnxt_tc_flow_node, cookie),
	.key_len = sizeof(((struct bnxt_tc_flow_node *)0)->cookie),
	.automatic_shrinking = true
};

static const struct rhashtable_params bnxt_tc_l2_ht_params = {
	.head_offset = offsetof(struct bnxt_tc_l2_node, node),
	.key_offset = offsetof(struct bnxt_tc_l2_node, key),
	.key_len = BNXT_TC_L2_KEY_LEN,
	.automatic_shrinking = true
};

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
static const struct rhashtable_params bnxt_tc_decap_l2_ht_params = {
	.head_offset = offsetof(struct bnxt_tc_l2_node, node),
	.key_offset = offsetof(struct bnxt_tc_l2_node, key),
	.key_len = BNXT_TC_L2_KEY_LEN,
	.automatic_shrinking = true
};

static const struct rhashtable_params bnxt_tc_tunnel_ht_params = {
	.head_offset = offsetof(struct bnxt_tc_tunnel_node, node),
	.key_offset = offsetof(struct bnxt_tc_tunnel_node, key),
	.key_len = sizeof(struct ip_tunnel_key),
	.automatic_shrinking = true
};

2014 2015 2016 2017 2018
/* convert counter width in bits to a mask */
#define mask(width)		((u64)~0 >> (64 - (width)))

int bnxt_init_tc(struct bnxt *bp)
{
2019
	struct bnxt_tc_info *tc_info;
2020 2021
	int rc;

2022
	if (bp->hwrm_spec_code < 0x10803) {
2023 2024 2025 2026
		netdev_warn(bp->dev,
			    "Firmware does not support TC flower offload.\n");
		return -ENOTSUPP;
	}
2027 2028 2029 2030

	tc_info = kzalloc(sizeof(*tc_info), GFP_KERNEL);
	if (!tc_info)
		return -ENOMEM;
2031 2032 2033 2034 2035 2036 2037 2038 2039
	mutex_init(&tc_info->lock);

	/* Counter widths are programmed by FW */
	tc_info->bytes_mask = mask(36);
	tc_info->packets_mask = mask(28);

	tc_info->flow_ht_params = bnxt_tc_flow_ht_params;
	rc = rhashtable_init(&tc_info->flow_table, &tc_info->flow_ht_params);
	if (rc)
2040
		goto free_tc_info;
2041 2042 2043 2044 2045 2046

	tc_info->l2_ht_params = bnxt_tc_l2_ht_params;
	rc = rhashtable_init(&tc_info->l2_table, &tc_info->l2_ht_params);
	if (rc)
		goto destroy_flow_table;

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	tc_info->decap_l2_ht_params = bnxt_tc_decap_l2_ht_params;
	rc = rhashtable_init(&tc_info->decap_l2_table,
			     &tc_info->decap_l2_ht_params);
	if (rc)
		goto destroy_l2_table;

	tc_info->decap_ht_params = bnxt_tc_tunnel_ht_params;
	rc = rhashtable_init(&tc_info->decap_table,
			     &tc_info->decap_ht_params);
	if (rc)
		goto destroy_decap_l2_table;

	tc_info->encap_ht_params = bnxt_tc_tunnel_ht_params;
	rc = rhashtable_init(&tc_info->encap_table,
			     &tc_info->encap_ht_params);
	if (rc)
		goto destroy_decap_table;

2065 2066 2067
	tc_info->enabled = true;
	bp->dev->hw_features |= NETIF_F_HW_TC;
	bp->dev->features |= NETIF_F_HW_TC;
2068
	bp->tc_info = tc_info;
2069 2070 2071 2072 2073 2074 2075 2076 2077

	/* init indirect block notifications */
	INIT_LIST_HEAD(&bp->tc_indr_block_list);
	bp->tc_netdev_nb.notifier_call = bnxt_tc_indr_block_event;
	rc = register_netdevice_notifier(&bp->tc_netdev_nb);
	if (!rc)
		return 0;

	rhashtable_destroy(&tc_info->encap_table);
2078

2079 2080 2081 2082 2083 2084
destroy_decap_table:
	rhashtable_destroy(&tc_info->decap_table);
destroy_decap_l2_table:
	rhashtable_destroy(&tc_info->decap_l2_table);
destroy_l2_table:
	rhashtable_destroy(&tc_info->l2_table);
2085 2086
destroy_flow_table:
	rhashtable_destroy(&tc_info->flow_table);
2087 2088
free_tc_info:
	kfree(tc_info);
2089 2090 2091 2092 2093
	return rc;
}

void bnxt_shutdown_tc(struct bnxt *bp)
{
2094
	struct bnxt_tc_info *tc_info = bp->tc_info;
2095

2096
	if (!bnxt_tc_flower_enabled(bp))
2097 2098
		return;

2099
	unregister_netdevice_notifier(&bp->tc_netdev_nb);
2100 2101
	rhashtable_destroy(&tc_info->flow_table);
	rhashtable_destroy(&tc_info->l2_table);
2102 2103 2104
	rhashtable_destroy(&tc_info->decap_l2_table);
	rhashtable_destroy(&tc_info->decap_table);
	rhashtable_destroy(&tc_info->encap_table);
2105 2106
	kfree(tc_info);
	bp->tc_info = NULL;
2107
}