hmat.c 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2019, Intel Corporation.
 *
 * Heterogeneous Memory Attributes Table (HMAT) representation
 *
 * This program parses and reports the platform's HMAT tables, and registers
 * the applicable attributes with the node's interfaces.
 */

11 12 13
#define pr_fmt(fmt) "acpi/hmat: " fmt
#define dev_fmt(fmt) "acpi/hmat: " fmt

14 15 16 17 18
#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/list.h>
19 20
#include <linux/mm.h>
#include <linux/platform_device.h>
21
#include <linux/list_sort.h>
22
#include <linux/memregion.h>
23 24
#include <linux/memory.h>
#include <linux/mutex.h>
25 26
#include <linux/node.h>
#include <linux/sysfs.h>
27
#include <linux/dax.h>
28

29
static u8 hmat_revision;
D
Dan Williams 已提交
30 31 32 33 34 35
static int hmat_disable __initdata;

void __init disable_hmat(void)
{
	hmat_disable = 1;
}
36

37 38 39 40 41
static LIST_HEAD(targets);
static LIST_HEAD(initiators);
static LIST_HEAD(localities);

static DEFINE_MUTEX(target_lock);
42 43 44 45 46 47 48 49 50 51 52 53 54 55

/*
 * The defined enum order is used to prioritize attributes to break ties when
 * selecting the best performing node.
 */
enum locality_types {
	WRITE_LATENCY,
	READ_LATENCY,
	WRITE_BANDWIDTH,
	READ_BANDWIDTH,
};

static struct memory_locality *localities_types[4];

56 57 58 59 60
struct target_cache {
	struct list_head node;
	struct node_cache_attrs cache_attrs;
};

61 62 63 64
struct memory_target {
	struct list_head node;
	unsigned int memory_pxm;
	unsigned int processor_pxm;
65
	struct resource memregions;
66
	struct node_hmem_attrs hmem_attrs[2];
67
	struct list_head caches;
68 69
	struct node_cache_attrs cache_attrs;
	bool registered;
70 71 72 73 74
};

struct memory_initiator {
	struct list_head node;
	unsigned int processor_pxm;
75
	bool has_cpu;
76 77 78 79 80 81 82
};

struct memory_locality {
	struct list_head node;
	struct acpi_hmat_locality *hmat_loc;
};

83
static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
84 85 86 87 88 89 90 91 92
{
	struct memory_initiator *initiator;

	list_for_each_entry(initiator, &initiators, node)
		if (initiator->processor_pxm == cpu_pxm)
			return initiator;
	return NULL;
}

93
static struct memory_target *find_mem_target(unsigned int mem_pxm)
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
{
	struct memory_target *target;

	list_for_each_entry(target, &targets, node)
		if (target->memory_pxm == mem_pxm)
			return target;
	return NULL;
}

static __init void alloc_memory_initiator(unsigned int cpu_pxm)
{
	struct memory_initiator *initiator;

	if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
		return;

	initiator = find_mem_initiator(cpu_pxm);
	if (initiator)
		return;

	initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
	if (!initiator)
		return;

	initiator->processor_pxm = cpu_pxm;
119
	initiator->has_cpu = node_state(pxm_to_node(cpu_pxm), N_CPU);
120 121 122
	list_add_tail(&initiator->node, &initiators);
}

123 124
static __init void alloc_memory_target(unsigned int mem_pxm,
		resource_size_t start, resource_size_t len)
125 126 127 128
{
	struct memory_target *target;

	target = find_mem_target(mem_pxm);
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
	if (!target) {
		target = kzalloc(sizeof(*target), GFP_KERNEL);
		if (!target)
			return;
		target->memory_pxm = mem_pxm;
		target->processor_pxm = PXM_INVAL;
		target->memregions = (struct resource) {
			.name	= "ACPI mem",
			.start	= 0,
			.end	= -1,
			.flags	= IORESOURCE_MEM,
		};
		list_add_tail(&target->node, &targets);
		INIT_LIST_HEAD(&target->caches);
	}
144

145 146 147 148 149 150 151 152
	/*
	 * There are potentially multiple ranges per PXM, so record each
	 * in the per-target memregions resource tree.
	 */
	if (!__request_region(&target->memregions, start, len, "memory target",
				IORESOURCE_MEM))
		pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
				start, start + len, mem_pxm);
153 154
}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
static __init const char *hmat_data_type(u8 type)
{
	switch (type) {
	case ACPI_HMAT_ACCESS_LATENCY:
		return "Access Latency";
	case ACPI_HMAT_READ_LATENCY:
		return "Read Latency";
	case ACPI_HMAT_WRITE_LATENCY:
		return "Write Latency";
	case ACPI_HMAT_ACCESS_BANDWIDTH:
		return "Access Bandwidth";
	case ACPI_HMAT_READ_BANDWIDTH:
		return "Read Bandwidth";
	case ACPI_HMAT_WRITE_BANDWIDTH:
		return "Write Bandwidth";
	default:
		return "Reserved";
	}
}

static __init const char *hmat_data_type_suffix(u8 type)
{
	switch (type) {
	case ACPI_HMAT_ACCESS_LATENCY:
	case ACPI_HMAT_READ_LATENCY:
	case ACPI_HMAT_WRITE_LATENCY:
		return " nsec";
	case ACPI_HMAT_ACCESS_BANDWIDTH:
	case ACPI_HMAT_READ_BANDWIDTH:
	case ACPI_HMAT_WRITE_BANDWIDTH:
		return " MB/s";
	default:
		return "";
	}
}

191
static u32 hmat_normalize(u16 entry, u64 base, u8 type)
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
{
	u32 value;

	/*
	 * Check for invalid and overflow values
	 */
	if (entry == 0xffff || !entry)
		return 0;
	else if (base > (UINT_MAX / (entry)))
		return 0;

	/*
	 * Divide by the base unit for version 1, convert latency from
	 * picosenonds to nanoseconds if revision 2.
	 */
	value = entry * base;
	if (hmat_revision == 1) {
		if (value < 10)
			return 0;
		value = DIV_ROUND_UP(value, 10);
	} else if (hmat_revision == 2) {
		switch (type) {
		case ACPI_HMAT_ACCESS_LATENCY:
		case ACPI_HMAT_READ_LATENCY:
		case ACPI_HMAT_WRITE_LATENCY:
			value = DIV_ROUND_UP(value, 1000);
			break;
		default:
			break;
		}
	}
	return value;
}

226
static void hmat_update_target_access(struct memory_target *target,
227
				      u8 type, u32 value, int access)
228 229 230
{
	switch (type) {
	case ACPI_HMAT_ACCESS_LATENCY:
231 232
		target->hmem_attrs[access].read_latency = value;
		target->hmem_attrs[access].write_latency = value;
233 234
		break;
	case ACPI_HMAT_READ_LATENCY:
235
		target->hmem_attrs[access].read_latency = value;
236 237
		break;
	case ACPI_HMAT_WRITE_LATENCY:
238
		target->hmem_attrs[access].write_latency = value;
239 240
		break;
	case ACPI_HMAT_ACCESS_BANDWIDTH:
241 242
		target->hmem_attrs[access].read_bandwidth = value;
		target->hmem_attrs[access].write_bandwidth = value;
243 244
		break;
	case ACPI_HMAT_READ_BANDWIDTH:
245
		target->hmem_attrs[access].read_bandwidth = value;
246 247
		break;
	case ACPI_HMAT_WRITE_BANDWIDTH:
248
		target->hmem_attrs[access].write_bandwidth = value;
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
		break;
	default:
		break;
	}
}

static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
{
	struct memory_locality *loc;

	loc = kzalloc(sizeof(*loc), GFP_KERNEL);
	if (!loc) {
		pr_notice_once("Failed to allocate HMAT locality\n");
		return;
	}

	loc->hmat_loc = hmat_loc;
	list_add_tail(&loc->node, &localities);

	switch (hmat_loc->data_type) {
	case ACPI_HMAT_ACCESS_LATENCY:
		localities_types[READ_LATENCY] = loc;
		localities_types[WRITE_LATENCY] = loc;
		break;
	case ACPI_HMAT_READ_LATENCY:
		localities_types[READ_LATENCY] = loc;
		break;
	case ACPI_HMAT_WRITE_LATENCY:
		localities_types[WRITE_LATENCY] = loc;
		break;
	case ACPI_HMAT_ACCESS_BANDWIDTH:
		localities_types[READ_BANDWIDTH] = loc;
		localities_types[WRITE_BANDWIDTH] = loc;
		break;
	case ACPI_HMAT_READ_BANDWIDTH:
		localities_types[READ_BANDWIDTH] = loc;
		break;
	case ACPI_HMAT_WRITE_BANDWIDTH:
		localities_types[WRITE_BANDWIDTH] = loc;
		break;
	default:
		break;
	}
}

294 295 296 297
static __init int hmat_parse_locality(union acpi_subtable_headers *header,
				      const unsigned long end)
{
	struct acpi_hmat_locality *hmat_loc = (void *)header;
298
	struct memory_target *target;
299 300 301
	unsigned int init, targ, total_size, ipds, tpds;
	u32 *inits, *targs, value;
	u16 *entries;
302
	u8 type, mem_hier;
303 304

	if (hmat_loc->header.length < sizeof(*hmat_loc)) {
305
		pr_notice("HMAT: Unexpected locality header length: %u\n",
306 307 308 309 310
			 hmat_loc->header.length);
		return -EINVAL;
	}

	type = hmat_loc->data_type;
311
	mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
312 313 314 315 316
	ipds = hmat_loc->number_of_initiator_Pds;
	tpds = hmat_loc->number_of_target_Pds;
	total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
		     sizeof(*inits) * ipds + sizeof(*targs) * tpds;
	if (hmat_loc->header.length < total_size) {
317
		pr_notice("HMAT: Unexpected locality header length:%u, minimum required:%u\n",
318 319 320 321
			 hmat_loc->header.length, total_size);
		return -EINVAL;
	}

322
	pr_info("HMAT: Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
323 324 325 326 327 328 329
		hmat_loc->flags, hmat_data_type(type), ipds, tpds,
		hmat_loc->entry_base_unit);

	inits = (u32 *)(hmat_loc + 1);
	targs = inits + ipds;
	entries = (u16 *)(targs + tpds);
	for (init = 0; init < ipds; init++) {
330
		alloc_memory_initiator(inits[init]);
331 332 333 334
		for (targ = 0; targ < tpds; targ++) {
			value = hmat_normalize(entries[init * tpds + targ],
					       hmat_loc->entry_base_unit,
					       type);
335
			pr_info("  Initiator-Target[%u-%u]:%u%s\n",
336 337
				inits[init], targs[targ], value,
				hmat_data_type_suffix(type));
338 339 340

			if (mem_hier == ACPI_HMAT_MEMORY) {
				target = find_mem_target(targs[targ]);
341 342 343 344 345 346
				if (target && target->processor_pxm == inits[init]) {
					hmat_update_target_access(target, type, value, 0);
					/* If the node has a CPU, update access 1 */
					if (node_state(pxm_to_node(inits[init]), N_CPU))
						hmat_update_target_access(target, type, value, 1);
				}
347
			}
348 349 350
		}
	}

351 352 353
	if (mem_hier == ACPI_HMAT_MEMORY)
		hmat_add_locality(hmat_loc);

354 355 356 357 358 359 360
	return 0;
}

static __init int hmat_parse_cache(union acpi_subtable_headers *header,
				   const unsigned long end)
{
	struct acpi_hmat_cache *cache = (void *)header;
361 362
	struct memory_target *target;
	struct target_cache *tcache;
363 364 365
	u32 attrs;

	if (cache->header.length < sizeof(*cache)) {
366
		pr_notice("HMAT: Unexpected cache header length: %u\n",
367 368 369 370 371
			 cache->header.length);
		return -EINVAL;
	}

	attrs = cache->cache_attributes;
372
	pr_info("HMAT: Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
373 374 375
		cache->memory_PD, cache->cache_size, attrs,
		cache->number_of_SMBIOShandles);

376 377 378 379 380 381 382 383 384 385 386 387 388
	target = find_mem_target(cache->memory_PD);
	if (!target)
		return 0;

	tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
	if (!tcache) {
		pr_notice_once("Failed to allocate HMAT cache info\n");
		return 0;
	}

	tcache->cache_attrs.size = cache->cache_size;
	tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
	tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
389 390 391

	switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
	case ACPI_HMAT_CA_DIRECT_MAPPED:
392
		tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
393 394
		break;
	case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
395
		tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
396 397 398
		break;
	case ACPI_HMAT_CA_NONE:
	default:
399
		tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
400 401 402 403 404
		break;
	}

	switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
	case ACPI_HMAT_CP_WB:
405
		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
406 407
		break;
	case ACPI_HMAT_CP_WT:
408
		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
409 410 411
		break;
	case ACPI_HMAT_CP_NONE:
	default:
412
		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
413 414
		break;
	}
415
	list_add_tail(&tcache->node, &target->caches);
416

417 418 419 420 421 422 423
	return 0;
}

static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
					      const unsigned long end)
{
	struct acpi_hmat_proximity_domain *p = (void *)header;
424
	struct memory_target *target = NULL;
425 426

	if (p->header.length != sizeof(*p)) {
427
		pr_notice("HMAT: Unexpected address range header length: %u\n",
428 429 430 431 432
			 p->header.length);
		return -EINVAL;
	}

	if (hmat_revision == 1)
433
		pr_info("HMAT: Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
434 435 436
			p->reserved3, p->reserved4, p->flags, p->processor_PD,
			p->memory_PD);
	else
437
		pr_info("HMAT: Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
438 439
			p->flags, p->processor_PD, p->memory_PD);

440 441
	if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) ||
	    hmat_revision > 1) {
442 443 444 445 446 447 448 449 450 451 452 453 454
		target = find_mem_target(p->memory_PD);
		if (!target) {
			pr_debug("HMAT: Memory Domain missing from SRAT\n");
			return -EINVAL;
		}
	}
	if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
		int p_node = pxm_to_node(p->processor_PD);

		if (p_node == NUMA_NO_NODE) {
			pr_debug("HMAT: Invalid Processor Domain\n");
			return -EINVAL;
		}
455
		target->processor_pxm = p->processor_PD;
456 457
	}

458 459 460 461 462 463 464 465 466 467 468 469
	return 0;
}

static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
				      const unsigned long end)
{
	struct acpi_hmat_structure *hdr = (void *)header;

	if (!hdr)
		return -EINVAL;

	switch (hdr->type) {
470
	case ACPI_HMAT_TYPE_PROXIMITY:
471 472 473 474 475 476 477 478 479 480
		return hmat_parse_proximity_domain(header, end);
	case ACPI_HMAT_TYPE_LOCALITY:
		return hmat_parse_locality(header, end);
	case ACPI_HMAT_TYPE_CACHE:
		return hmat_parse_cache(header, end);
	default:
		return -EINVAL;
	}
}

481 482 483 484 485 486 487 488 489
static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
					  const unsigned long end)
{
	struct acpi_srat_mem_affinity *ma = (void *)header;

	if (!ma)
		return -EINVAL;
	if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
		return 0;
490
	alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
491 492 493
	return 0;
}

494
static u32 hmat_initiator_perf(struct memory_target *target,
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
			       struct memory_initiator *initiator,
			       struct acpi_hmat_locality *hmat_loc)
{
	unsigned int ipds, tpds, i, idx = 0, tdx = 0;
	u32 *inits, *targs;
	u16 *entries;

	ipds = hmat_loc->number_of_initiator_Pds;
	tpds = hmat_loc->number_of_target_Pds;
	inits = (u32 *)(hmat_loc + 1);
	targs = inits + ipds;
	entries = (u16 *)(targs + tpds);

	for (i = 0; i < ipds; i++) {
		if (inits[i] == initiator->processor_pxm) {
			idx = i;
			break;
		}
	}

	if (i == ipds)
		return 0;

	for (i = 0; i < tpds; i++) {
		if (targs[i] == target->memory_pxm) {
			tdx = i;
			break;
		}
	}
	if (i == tpds)
		return 0;

	return hmat_normalize(entries[idx * tpds + tdx],
			      hmat_loc->entry_base_unit,
			      hmat_loc->data_type);
}

532
static bool hmat_update_best(u8 type, u32 value, u32 *best)
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
{
	bool updated = false;

	if (!value)
		return false;

	switch (type) {
	case ACPI_HMAT_ACCESS_LATENCY:
	case ACPI_HMAT_READ_LATENCY:
	case ACPI_HMAT_WRITE_LATENCY:
		if (!*best || *best > value) {
			*best = value;
			updated = true;
		}
		break;
	case ACPI_HMAT_ACCESS_BANDWIDTH:
	case ACPI_HMAT_READ_BANDWIDTH:
	case ACPI_HMAT_WRITE_BANDWIDTH:
		if (!*best || *best < value) {
			*best = value;
			updated = true;
		}
		break;
	}

	return updated;
}

static int initiator_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct memory_initiator *ia;
	struct memory_initiator *ib;
	unsigned long *p_nodes = priv;

	ia = list_entry(a, struct memory_initiator, node);
	ib = list_entry(b, struct memory_initiator, node);

	set_bit(ia->processor_pxm, p_nodes);
	set_bit(ib->processor_pxm, p_nodes);

	return ia->processor_pxm - ib->processor_pxm;
}

576
static void hmat_register_target_initiators(struct memory_target *target)
577 578 579 580 581 582
{
	static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
	struct memory_initiator *initiator;
	unsigned int mem_nid, cpu_nid;
	struct memory_locality *loc = NULL;
	u32 best = 0;
583
	bool access0done = false;
584 585 586 587 588 589 590 591 592 593 594
	int i;

	mem_nid = pxm_to_node(target->memory_pxm);
	/*
	 * If the Address Range Structure provides a local processor pxm, link
	 * only that one. Otherwise, find the best performance attributes and
	 * register all initiators that match.
	 */
	if (target->processor_pxm != PXM_INVAL) {
		cpu_nid = pxm_to_node(target->processor_pxm);
		register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
595 596 597 598 599
		access0done = true;
		if (node_state(cpu_nid, N_CPU)) {
			register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
			return;
		}
600 601 602 603 604 605 606 607 608 609 610 611 612
	}

	if (list_empty(&localities))
		return;

	/*
	 * We need the initiator list sorted so we can use bitmap_clear for
	 * previously set initiators when we find a better memory accessor.
	 * We'll also use the sorting to prime the candidate nodes with known
	 * initiators.
	 */
	bitmap_zero(p_nodes, MAX_NUMNODES);
	list_sort(p_nodes, &initiators, initiator_cmp);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	if (!access0done) {
		for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
			loc = localities_types[i];
			if (!loc)
				continue;

			best = 0;
			list_for_each_entry(initiator, &initiators, node) {
				u32 value;

				if (!test_bit(initiator->processor_pxm, p_nodes))
					continue;

				value = hmat_initiator_perf(target, initiator,
							    loc->hmat_loc);
				if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
					bitmap_clear(p_nodes, 0, initiator->processor_pxm);
				if (value != best)
					clear_bit(initiator->processor_pxm, p_nodes);
			}
			if (best)
				hmat_update_target_access(target, loc->hmat_loc->data_type,
							  best, 0);
		}

		for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
			cpu_nid = pxm_to_node(i);
			register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
		}
	}

	/* Access 1 ignores Generic Initiators */
	bitmap_zero(p_nodes, MAX_NUMNODES);
	list_sort(p_nodes, &initiators, initiator_cmp);
	best = 0;
648 649 650 651 652 653 654 655 656
	for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
		loc = localities_types[i];
		if (!loc)
			continue;

		best = 0;
		list_for_each_entry(initiator, &initiators, node) {
			u32 value;

657 658 659 660
			if (!initiator->has_cpu) {
				clear_bit(initiator->processor_pxm, p_nodes);
				continue;
			}
661 662 663 664 665 666 667 668 669 670
			if (!test_bit(initiator->processor_pxm, p_nodes))
				continue;

			value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
			if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
				bitmap_clear(p_nodes, 0, initiator->processor_pxm);
			if (value != best)
				clear_bit(initiator->processor_pxm, p_nodes);
		}
		if (best)
671
			hmat_update_target_access(target, loc->hmat_loc->data_type, best, 1);
672 673 674
	}
	for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
		cpu_nid = pxm_to_node(i);
675
		register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
676 677 678
	}
}

679
static void hmat_register_target_cache(struct memory_target *target)
680 681 682 683 684 685 686 687
{
	unsigned mem_nid = pxm_to_node(target->memory_pxm);
	struct target_cache *tcache;

	list_for_each_entry(tcache, &target->caches, node)
		node_add_cache(mem_nid, &tcache->cache_attrs);
}

688
static void hmat_register_target_perf(struct memory_target *target, int access)
689 690
{
	unsigned mem_nid = pxm_to_node(target->memory_pxm);
691
	node_set_perf_attrs(mem_nid, &target->hmem_attrs[access], access);
692 693
}

694
static void hmat_register_target_devices(struct memory_target *target)
695 696 697 698 699 700 701 702 703 704
{
	struct resource *res;

	/*
	 * Do not bother creating devices if no driver is available to
	 * consume them.
	 */
	if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
		return;

705
	for (res = target->memregions.child; res; res = res->sibling) {
706
		int target_nid = pxm_to_node(target->memory_pxm);
707 708 709

		hmem_register_device(target_nid, res);
	}
710 711
}

712
static void hmat_register_target(struct memory_target *target)
713
{
714 715
	int nid = pxm_to_node(target->memory_pxm);

716 717 718 719 720 721
	/*
	 * Devices may belong to either an offline or online
	 * node, so unconditionally add them.
	 */
	hmat_register_target_devices(target);

722 723 724 725 726 727 728 729
	/*
	 * Skip offline nodes. This can happen when memory
	 * marked EFI_MEMORY_SP, "specific purpose", is applied
	 * to all the memory in a promixity domain leading to
	 * the node being marked offline / unplugged, or if
	 * memory-only "hotplug" node is offline.
	 */
	if (nid == NUMA_NO_NODE || !node_online(nid))
730 731
		return;

732 733 734 735
	mutex_lock(&target_lock);
	if (!target->registered) {
		hmat_register_target_initiators(target);
		hmat_register_target_cache(target);
736 737
		hmat_register_target_perf(target, 0);
		hmat_register_target_perf(target, 1);
738 739 740
		target->registered = true;
	}
	mutex_unlock(&target_lock);
741 742
}

743
static void hmat_register_targets(void)
744 745 746
{
	struct memory_target *target;

747 748
	list_for_each_entry(target, &targets, node)
		hmat_register_target(target);
749 750
}

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
static int hmat_callback(struct notifier_block *self,
			 unsigned long action, void *arg)
{
	struct memory_target *target;
	struct memory_notify *mnb = arg;
	int pxm, nid = mnb->status_change_nid;

	if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
		return NOTIFY_OK;

	pxm = node_to_pxm(nid);
	target = find_mem_target(pxm);
	if (!target)
		return NOTIFY_OK;

	hmat_register_target(target);
	return NOTIFY_OK;
}

static struct notifier_block hmat_callback_nb = {
	.notifier_call = hmat_callback,
	.priority = 2,
};

775 776 777 778 779
static __init void hmat_free_structures(void)
{
	struct memory_target *target, *tnext;
	struct memory_locality *loc, *lnext;
	struct memory_initiator *initiator, *inext;
780
	struct target_cache *tcache, *cnext;
781 782

	list_for_each_entry_safe(target, tnext, &targets, node) {
783 784
		struct resource *res, *res_next;

785 786 787 788
		list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
			list_del(&tcache->node);
			kfree(tcache);
		}
789

790
		list_del(&target->node);
791 792 793 794 795 796 797
		res = target->memregions.child;
		while (res) {
			res_next = res->sibling;
			__release_region(&target->memregions, res->start,
					resource_size(res));
			res = res_next;
		}
798 799 800 801 802 803 804 805 806 807 808 809 810 811
		kfree(target);
	}

	list_for_each_entry_safe(initiator, inext, &initiators, node) {
		list_del(&initiator->node);
		kfree(initiator);
	}

	list_for_each_entry_safe(loc, lnext, &localities, node) {
		list_del(&loc->node);
		kfree(loc);
	}
}

812 813 814 815 816 817
static __init int hmat_init(void)
{
	struct acpi_table_header *tbl;
	enum acpi_hmat_type i;
	acpi_status status;

D
Dan Williams 已提交
818
	if (srat_disabled() || hmat_disable)
819 820
		return 0;

821 822 823 824 825 826 827 828 829 830 831
	status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
	if (ACPI_FAILURE(status))
		return 0;

	if (acpi_table_parse_entries(ACPI_SIG_SRAT,
				sizeof(struct acpi_table_srat),
				ACPI_SRAT_TYPE_MEMORY_AFFINITY,
				srat_parse_mem_affinity, 0) < 0)
		goto out_put;
	acpi_put_table(tbl);

832 833
	status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
	if (ACPI_FAILURE(status))
834
		goto out_put;
835 836 837 838 839 840 841 842 843 844 845

	hmat_revision = tbl->revision;
	switch (hmat_revision) {
	case 1:
	case 2:
		break;
	default:
		pr_notice("Ignoring HMAT: Unknown revision:%d\n", hmat_revision);
		goto out_put;
	}

846
	for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
847 848 849 850 851 852 853
		if (acpi_table_parse_entries(ACPI_SIG_HMAT,
					     sizeof(struct acpi_table_hmat), i,
					     hmat_parse_subtable, 0) < 0) {
			pr_notice("Ignoring HMAT: Invalid table");
			goto out_put;
		}
	}
854
	hmat_register_targets();
855 856 857 858

	/* Keep the table and structures if the notifier may use them */
	if (!register_hotmemory_notifier(&hmat_callback_nb))
		return 0;
859
out_put:
860
	hmat_free_structures();
861 862 863
	acpi_put_table(tbl);
	return 0;
}
864
device_initcall(hmat_init);