tlb_uv.c 44.4 KB
Newer Older
1 2 3
/*
 *	SGI UltraViolet TLB flush routines.
 *
4
 *	(c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI.
5 6 7 8
 *
 *	This code is released under the GNU General Public License version 2 or
 *	later.
 */
9
#include <linux/seq_file.h>
10
#include <linux/proc_fs.h>
11
#include <linux/debugfs.h>
12
#include <linux/kernel.h>
13
#include <linux/slab.h>
14
#include <linux/delay.h>
15 16

#include <asm/mmu_context.h>
T
Tejun Heo 已提交
17
#include <asm/uv/uv.h>
18
#include <asm/uv/uv_mmrs.h>
19
#include <asm/uv/uv_hub.h>
20
#include <asm/uv/uv_bau.h>
I
Ingo Molnar 已提交
21
#include <asm/apic.h>
22
#include <asm/idle.h>
23
#include <asm/tsc.h>
24
#include <asm/irq_vectors.h>
25
#include <asm/timer.h>
26

27 28 29 30 31 32 33 34 35 36 37 38
/* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
static int timeout_base_ns[] = {
		20,
		160,
		1280,
		10240,
		81920,
		655360,
		5242880,
		167772160
};
static int timeout_us;
39
static int nobau;
40 41 42
static int baudisabled;
static spinlock_t disable_lock;
static cycles_t congested_cycles;
43

44 45 46 47 48 49 50 51 52 53 54 55 56
/* tunables: */
static int max_bau_concurrent = MAX_BAU_CONCURRENT;
static int max_bau_concurrent_constant = MAX_BAU_CONCURRENT;
static int plugged_delay = PLUGGED_DELAY;
static int plugsb4reset = PLUGSB4RESET;
static int timeoutsb4reset = TIMEOUTSB4RESET;
static int ipi_reset_limit = IPI_RESET_LIMIT;
static int complete_threshold = COMPLETE_THRESHOLD;
static int congested_response_us = CONGESTED_RESPONSE_US;
static int congested_reps = CONGESTED_REPS;
static int congested_period = CONGESTED_PERIOD;
static struct dentry *tunables_dir;
static struct dentry *tunables_file;
57

58 59 60 61 62 63
static int __init setup_nobau(char *arg)
{
	nobau = 1;
	return 0;
}
early_param("nobau", setup_nobau);
64

65 66 67 68 69
/* base pnode in this partition */
static int uv_partition_base_pnode __read_mostly;
/* position of pnode (which is nasid>>1): */
static int uv_nshift __read_mostly;
static unsigned long uv_mmask __read_mostly;
70

71 72
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
static DEFINE_PER_CPU(struct bau_control, bau_control);
73 74
static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);

75
/*
76 77
 * Determine the first node on a uvhub. 'Nodes' are used for kernel
 * memory allocation.
78
 */
79
static int __init uvhub_to_first_node(int uvhub)
80 81 82 83 84
{
	int node, b;

	for_each_online_node(node) {
		b = uv_node_to_blade_id(node);
85
		if (uvhub == b)
86 87
			return node;
	}
88
	return -1;
89 90 91
}

/*
92
 * Determine the apicid of the first cpu on a uvhub.
93
 */
94
static int __init uvhub_to_first_apicid(int uvhub)
95 96 97 98
{
	int cpu;

	for_each_present_cpu(cpu)
99
		if (uvhub == uv_cpu_to_blade_id(cpu))
100 101 102 103
			return per_cpu(x86_cpu_to_apicid, cpu);
	return -1;
}

104 105 106 107 108 109 110 111
/*
 * Free a software acknowledge hardware resource by clearing its Pending
 * bit. This will return a reply to the sender.
 * If the message has timed out, a reply has already been sent by the
 * hardware but the resource has not been released. In that case our
 * clear of the Timeout bit (as well) will free the resource. No reply will
 * be sent (the hardware will only do one reply per message).
 */
112 113
static inline void uv_reply_to_message(struct msg_desc *mdp,
				       struct bau_control *bcp)
114
{
115
	unsigned long dw;
116
	struct bau_payload_queue_entry *msg;
117

118 119 120 121 122 123 124
	msg = mdp->msg;
	if (!msg->canceled) {
		dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) |
						msg->sw_ack_vector;
		uv_write_local_mmr(
				UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
	}
125 126 127 128 129
	msg->replied_to = 1;
	msg->sw_ack_vector = 0;
}

/*
130
 * Process the receipt of a RETRY message
131
 */
132 133
static inline void uv_bau_process_retry_msg(struct msg_desc *mdp,
					    struct bau_control *bcp)
134
{
135 136 137 138 139 140 141 142
	int i;
	int cancel_count = 0;
	int slot2;
	unsigned long msg_res;
	unsigned long mmr = 0;
	struct bau_payload_queue_entry *msg;
	struct bau_payload_queue_entry *msg2;
	struct ptc_stats *stat;
143

144
	msg = mdp->msg;
145
	stat = bcp->statp;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
	stat->d_retries++;
	/*
	 * cancel any message from msg+1 to the retry itself
	 */
	for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
		if (msg2 > mdp->va_queue_last)
			msg2 = mdp->va_queue_first;
		if (msg2 == msg)
			break;

		/* same conditions for cancellation as uv_do_reset */
		if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
		    (msg2->sw_ack_vector) && ((msg2->sw_ack_vector &
			msg->sw_ack_vector) == 0) &&
		    (msg2->sending_cpu == msg->sending_cpu) &&
		    (msg2->msg_type != MSG_NOOP)) {
			slot2 = msg2 - mdp->va_queue_first;
			mmr = uv_read_local_mmr
				(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
165
			msg_res = msg2->sw_ack_vector;
166 167 168 169 170 171
			/*
			 * This is a message retry; clear the resources held
			 * by the previous message only if they timed out.
			 * If it has not timed out we have an unexpected
			 * situation to report.
			 */
172
			if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
173 174 175 176 177 178 179 180 181
				/*
				 * is the resource timed out?
				 * make everyone ignore the cancelled message.
				 */
				msg2->canceled = 1;
				stat->d_canceled++;
				cancel_count++;
				uv_write_local_mmr(
				    UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
182 183 184
					(msg_res << UV_SW_ACK_NPENDING) |
					 msg_res);
			}
185 186 187 188 189
		}
	}
	if (!cancel_count)
		stat->d_nocanceled++;
}
190

191 192 193 194 195 196 197 198 199 200 201 202
/*
 * Do all the things a cpu should do for a TLB shootdown message.
 * Other cpu's may come here at the same time for this message.
 */
static void uv_bau_process_message(struct msg_desc *mdp,
				   struct bau_control *bcp)
{
	int msg_ack_count;
	short socket_ack_count = 0;
	struct ptc_stats *stat;
	struct bau_payload_queue_entry *msg;
	struct bau_control *smaster = bcp->socket_master;
203

204 205 206 207
	/*
	 * This must be a normal message, or retry of a normal message
	 */
	msg = mdp->msg;
208
	stat = bcp->statp;
209 210
	if (msg->address == TLB_FLUSH_ALL) {
		local_flush_tlb();
211
		stat->d_alltlb++;
212 213
	} else {
		__flush_tlb_one(msg->address);
214
		stat->d_onetlb++;
215
	}
216 217 218 219 220 221 222 223 224 225
	stat->d_requestee++;

	/*
	 * One cpu on each uvhub has the additional job on a RETRY
	 * of releasing the resource held by the message that is
	 * being retried.  That message is identified by sending
	 * cpu number.
	 */
	if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
		uv_bau_process_retry_msg(mdp, bcp);
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	/*
	 * This is a sw_ack message, so we have to reply to it.
	 * Count each responding cpu on the socket. This avoids
	 * pinging the count's cache line back and forth between
	 * the sockets.
	 */
	socket_ack_count = atomic_add_short_return(1, (struct atomic_short *)
			&smaster->socket_acknowledge_count[mdp->msg_slot]);
	if (socket_ack_count == bcp->cpus_in_socket) {
		/*
		 * Both sockets dump their completed count total into
		 * the message's count.
		 */
		smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
		msg_ack_count = atomic_add_short_return(socket_ack_count,
				(struct atomic_short *)&msg->acknowledge_count);

		if (msg_ack_count == bcp->cpus_in_uvhub) {
			/*
			 * All cpus in uvhub saw it; reply
			 */
			uv_reply_to_message(mdp, bcp);
		}
	}
251

252
	return;
253 254 255
}

/*
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
 * Determine the first cpu on a uvhub.
 */
static int uvhub_to_first_cpu(int uvhub)
{
	int cpu;
	for_each_present_cpu(cpu)
		if (uvhub == uv_cpu_to_blade_id(cpu))
			return cpu;
	return -1;
}

/*
 * Last resort when we get a large number of destination timeouts is
 * to clear resources held by a given cpu.
 * Do this with IPI so that all messages in the BAU message queue
 * can be identified by their nonzero sw_ack_vector field.
272
 *
273 274 275
 * This is entered for a single cpu on the uvhub.
 * The sender want's this uvhub to free a specific message's
 * sw_ack resources.
276
 */
277 278
static void
uv_do_reset(void *ptr)
279
{
280
	int i;
281 282 283 284 285 286 287 288
	int slot;
	int count = 0;
	unsigned long mmr;
	unsigned long msg_res;
	struct bau_control *bcp;
	struct reset_args *rap;
	struct bau_payload_queue_entry *msg;
	struct ptc_stats *stat;
289

290 291
	bcp = &per_cpu(bau_control, smp_processor_id());
	rap = (struct reset_args *)ptr;
292
	stat = bcp->statp;
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	stat->d_resets++;

	/*
	 * We're looking for the given sender, and
	 * will free its sw_ack resource.
	 * If all cpu's finally responded after the timeout, its
	 * message 'replied_to' was set.
	 */
	for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
		/* uv_do_reset: same conditions for cancellation as
		   uv_bau_process_retry_msg() */
		if ((msg->replied_to == 0) &&
		    (msg->canceled == 0) &&
		    (msg->sending_cpu == rap->sender) &&
		    (msg->sw_ack_vector) &&
		    (msg->msg_type != MSG_NOOP)) {
			/*
			 * make everyone else ignore this message
			 */
			msg->canceled = 1;
			slot = msg - bcp->va_queue_first;
			count++;
			/*
			 * only reset the resource if it is still pending
			 */
			mmr = uv_read_local_mmr
					(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
320
			msg_res = msg->sw_ack_vector;
321 322 323 324
			if (mmr & msg_res) {
				stat->d_rcanceled++;
				uv_write_local_mmr(
				    UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
325 326
					(msg_res << UV_SW_ACK_NPENDING) |
					 msg_res);
327 328 329
			}
		}
	}
330
	return;
331 332 333
}

/*
334 335
 * Use IPI to get all target uvhubs to release resources held by
 * a given sending cpu number.
336
 */
337 338
static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution,
			      int sender)
339
{
340 341 342 343
	int uvhub;
	int cpu;
	cpumask_t mask;
	struct reset_args reset_args;
344

345
	reset_args.sender = sender;
346

347 348 349 350 351 352
	cpus_clear(mask);
	/* find a single cpu for each uvhub in this distribution mask */
	for (uvhub = 0;
		    uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE;
		    uvhub++) {
		if (!bau_uvhub_isset(uvhub, distribution))
353
			continue;
354 355 356
		/* find a cpu for this uvhub */
		cpu = uvhub_to_first_cpu(uvhub);
		cpu_set(cpu, mask);
357
	}
358 359 360 361 362 363 364 365 366 367 368 369 370 371
	/* IPI all cpus; Preemption is already disabled */
	smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1);
	return;
}

static inline unsigned long
cycles_2_us(unsigned long long cyc)
{
	unsigned long long ns;
	unsigned long us;
	ns =  (cyc * per_cpu(cyc2ns, smp_processor_id()))
						>> CYC2NS_SCALE_FACTOR;
	us = ns / 1000;
	return us;
372 373
}

374
/*
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
 * wait for all cpus on this hub to finish their sends and go quiet
 * leaves uvhub_quiesce set so that no new broadcasts are started by
 * bau_flush_send_and_wait()
 */
static inline void
quiesce_local_uvhub(struct bau_control *hmaster)
{
	atomic_add_short_return(1, (struct atomic_short *)
		 &hmaster->uvhub_quiesce);
}

/*
 * mark this quiet-requestor as done
 */
static inline void
end_uvhub_quiesce(struct bau_control *hmaster)
{
	atomic_add_short_return(-1, (struct atomic_short *)
		&hmaster->uvhub_quiesce);
}

/*
 * Wait for completion of a broadcast software ack message
 * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
399
 */
400
static int uv_wait_completion(struct bau_desc *bau_desc,
401 402
	unsigned long mmr_offset, int right_shift, int this_cpu,
	struct bau_control *bcp, struct bau_control *smaster, long try)
403 404
{
	unsigned long descriptor_status;
405
	cycles_t ttime;
406
	struct ptc_stats *stat = bcp->statp;
407
	struct bau_control *hmaster;
408

409
	hmaster = bcp->uvhub_master;
410

411
	/* spin on the status MMR, waiting for it to go idle */
412 413 414 415 416
	while ((descriptor_status = (((unsigned long)
		uv_read_local_mmr(mmr_offset) >>
			right_shift) & UV_ACT_STATUS_MASK)) !=
			DESC_STATUS_IDLE) {
		/*
417 418 419 420
		 * Our software ack messages may be blocked because there are
		 * no swack resources available.  As long as none of them
		 * has timed out hardware will NACK our message and its
		 * state will stay IDLE.
421
		 */
422 423 424 425 426 427 428 429 430 431 432 433 434 435
		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
			stat->s_stimeout++;
			return FLUSH_GIVEUP;
		} else if (descriptor_status ==
					DESC_STATUS_DESTINATION_TIMEOUT) {
			stat->s_dtimeout++;
			ttime = get_cycles();

			/*
			 * Our retries may be blocked by all destination
			 * swack resources being consumed, and a timeout
			 * pending.  In that case hardware returns the
			 * ERROR that looks like a destination timeout.
			 */
436 437
			if (cycles_2_us(ttime - bcp->send_message) <
							timeout_us) {
438 439 440 441 442 443 444 445 446 447 448
				bcp->conseccompletes = 0;
				return FLUSH_RETRY_PLUGGED;
			}

			bcp->conseccompletes = 0;
			return FLUSH_RETRY_TIMEOUT;
		} else {
			/*
			 * descriptor_status is still BUSY
			 */
			cpu_relax();
449 450
		}
	}
451
	bcp->conseccompletes++;
452 453 454
	return FLUSH_COMPLETE;
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
static inline cycles_t
sec_2_cycles(unsigned long sec)
{
	unsigned long ns;
	cycles_t cyc;

	ns = sec * 1000000000;
	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
	return cyc;
}

/*
 * conditionally add 1 to *v, unless *v is >= u
 * return 0 if we cannot add 1 to *v because it is >= u
 * return 1 if we can add 1 to *v because it is < u
 * the add is atomic
 *
 * This is close to atomic_add_unless(), but this allows the 'u' value
 * to be lowered below the current 'v'.  atomic_add_unless can only stop
 * on equal.
 */
static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u)
{
	spin_lock(lock);
	if (atomic_read(v) >= u) {
		spin_unlock(lock);
		return 0;
	}
	atomic_inc(v);
	spin_unlock(lock);
	return 1;
}

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/*
 * Our retries are blocked by all destination swack resources being
 * in use, and a timeout is pending. In that case hardware immediately
 * returns the ERROR that looks like a destination timeout.
 */
static void
destination_plugged(struct bau_desc *bau_desc, struct bau_control *bcp,
			struct bau_control *hmaster, struct ptc_stats *stat)
{
	udelay(bcp->plugged_delay);
	bcp->plugged_tries++;
	if (bcp->plugged_tries >= bcp->plugsb4reset) {
		bcp->plugged_tries = 0;
		quiesce_local_uvhub(hmaster);
		spin_lock(&hmaster->queue_lock);
		uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu);
		spin_unlock(&hmaster->queue_lock);
		end_uvhub_quiesce(hmaster);
		bcp->ipi_attempts++;
		stat->s_resets_plug++;
	}
}

static void
destination_timeout(struct bau_desc *bau_desc, struct bau_control *bcp,
			struct bau_control *hmaster, struct ptc_stats *stat)
{
	hmaster->max_bau_concurrent = 1;
	bcp->timeout_tries++;
	if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
		bcp->timeout_tries = 0;
		quiesce_local_uvhub(hmaster);
		spin_lock(&hmaster->queue_lock);
		uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu);
		spin_unlock(&hmaster->queue_lock);
		end_uvhub_quiesce(hmaster);
		bcp->ipi_attempts++;
		stat->s_resets_timeout++;
	}
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
/*
 * Completions are taking a very long time due to a congested numalink
 * network.
 */
static void
disable_for_congestion(struct bau_control *bcp, struct ptc_stats *stat)
{
	int tcpu;
	struct bau_control *tbcp;

	/* let only one cpu do this disabling */
	spin_lock(&disable_lock);
	if (!baudisabled && bcp->period_requests &&
	    ((bcp->period_time / bcp->period_requests) > congested_cycles)) {
		/* it becomes this cpu's job to turn on the use of the
		   BAU again */
		baudisabled = 1;
		bcp->set_bau_off = 1;
		bcp->set_bau_on_time = get_cycles() +
			sec_2_cycles(bcp->congested_period);
		stat->s_bau_disabled++;
		for_each_present_cpu(tcpu) {
			tbcp = &per_cpu(bau_control, tcpu);
				tbcp->baudisabled = 1;
		}
	}
	spin_unlock(&disable_lock);
}

558 559 560
/**
 * uv_flush_send_and_wait
 *
561
 * Send a broadcast and wait for it to complete.
562
 *
563
 * The flush_mask contains the cpus the broadcast is to be sent to including
564
 * cpus that are on the local uvhub.
565
 *
566 567 568
 * Returns 0 if all flushing represented in the mask was done.
 * Returns 1 if it gives up entirely and the original cpu mask is to be
 * returned to the kernel.
569
 */
570 571
int uv_flush_send_and_wait(struct bau_desc *bau_desc,
			   struct cpumask *flush_mask, struct bau_control *bcp)
572 573
{
	int right_shift;
574 575 576 577 578
	int completion_status = 0;
	int seq_number = 0;
	long try = 0;
	int cpu = bcp->uvhub_cpu;
	int this_cpu = bcp->cpu;
579
	unsigned long mmr_offset;
580
	unsigned long index;
581 582
	cycles_t time1;
	cycles_t time2;
583
	cycles_t elapsed;
584
	struct ptc_stats *stat = bcp->statp;
585 586 587 588 589
	struct bau_control *smaster = bcp->socket_master;
	struct bau_control *hmaster = bcp->uvhub_master;

	if (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
			&hmaster->active_descriptor_count,
590
			hmaster->max_bau_concurrent)) {
591 592 593 594 595
		stat->s_throttles++;
		do {
			cpu_relax();
		} while (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
			&hmaster->active_descriptor_count,
596
			hmaster->max_bau_concurrent));
597 598 599
	}
	while (hmaster->uvhub_quiesce)
		cpu_relax();
600 601 602 603 604 605 606 607 608 609 610

	if (cpu < UV_CPUS_PER_ACT_STATUS) {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
		right_shift = cpu * UV_ACT_STATUS_SIZE;
	} else {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
		right_shift =
		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
	}
	time1 = get_cycles();
	do {
611
		if (try == 0) {
612
			bau_desc->header.msg_type = MSG_REGULAR;
613 614 615 616 617 618
			seq_number = bcp->message_number++;
		} else {
			bau_desc->header.msg_type = MSG_RETRY;
			stat->s_retry_messages++;
		}
		bau_desc->header.sequence = seq_number;
619
		index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
620 621
			bcp->uvhub_cpu;
		bcp->send_message = get_cycles();
622
		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
623
		try++;
624
		completion_status = uv_wait_completion(bau_desc, mmr_offset,
625 626 627
			right_shift, this_cpu, bcp, smaster, try);

		if (completion_status == FLUSH_RETRY_PLUGGED) {
628
			destination_plugged(bau_desc, bcp, hmaster, stat);
629
		} else if (completion_status == FLUSH_RETRY_TIMEOUT) {
630
			destination_timeout(bau_desc, bcp, hmaster, stat);
631
		}
632
		if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
633 634 635 636 637 638 639
			bcp->ipi_attempts = 0;
			completion_status = FLUSH_GIVEUP;
			break;
		}
		cpu_relax();
	} while ((completion_status == FLUSH_RETRY_PLUGGED) ||
		 (completion_status == FLUSH_RETRY_TIMEOUT));
640
	time2 = get_cycles();
641 642 643 644 645 646 647
	bcp->plugged_tries = 0;
	bcp->timeout_tries = 0;
	if ((completion_status == FLUSH_COMPLETE) &&
	    (bcp->conseccompletes > bcp->complete_threshold) &&
	    (hmaster->max_bau_concurrent <
					hmaster->max_bau_concurrent_constant))
			hmaster->max_bau_concurrent++;
648 649 650
	while (hmaster->uvhub_quiesce)
		cpu_relax();
	atomic_dec(&hmaster->active_descriptor_count);
651 652 653
	if (time2 > time1) {
		elapsed = time2 - time1;
		stat->s_time += elapsed;
654 655 656 657 658 659 660 661
		if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
			bcp->period_requests++;
			bcp->period_time += elapsed;
			if ((elapsed > congested_cycles) &&
			    (bcp->period_requests > bcp->congested_reps)) {
				disable_for_congestion(bcp, stat);
			}
		}
662
	} else
663
		stat->s_requestor--;
664 665 666 667
	if (completion_status == FLUSH_COMPLETE && try > 1)
		stat->s_retriesok++;
	else if (completion_status == FLUSH_GIVEUP) {
		stat->s_giveup++;
668
		return 1;
669
	}
670
	return 0;
671 672
}

673 674 675
/**
 * uv_flush_tlb_others - globally purge translation cache of a virtual
 * address or all TLB's
T
Tejun Heo 已提交
676
 * @cpumask: mask of all cpu's in which the address is to be removed
677 678
 * @mm: mm_struct containing virtual address range
 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
T
Tejun Heo 已提交
679
 * @cpu: the current cpu
680 681 682 683 684 685
 *
 * This is the entry point for initiating any UV global TLB shootdown.
 *
 * Purges the translation caches of all specified processors of the given
 * virtual address, or purges all TLB's on specified processors.
 *
T
Tejun Heo 已提交
686 687
 * The caller has derived the cpumask from the mm_struct.  This function
 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
688
 *
689 690
 * The cpumask is converted into a uvhubmask of the uvhubs containing
 * those cpus.
691
 *
T
Tejun Heo 已提交
692 693 694 695 696
 * Note that this function should be called with preemption disabled.
 *
 * Returns NULL if all remote flushing was done.
 * Returns pointer to cpumask if some remote flushing remains to be
 * done.  The returned pointer is valid till preemption is re-enabled.
697
 */
T
Tejun Heo 已提交
698 699 700
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
					  struct mm_struct *mm,
					  unsigned long va, unsigned int cpu)
701
{
702 703
	int tcpu;
	int uvhub;
704
	int locals = 0;
705 706
	int remotes = 0;
	int hubs = 0;
707
	struct bau_desc *bau_desc;
708 709 710
	struct cpumask *flush_mask;
	struct ptc_stats *stat;
	struct bau_control *bcp;
711
	struct bau_control *tbcp;
T
Tejun Heo 已提交
712

713
	/* kernel was booted 'nobau' */
714 715
	if (nobau)
		return cpumask;
T
Tejun Heo 已提交
716

717
	bcp = &per_cpu(bau_control, cpu);
718
	stat = bcp->statp;
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

	/* bau was disabled due to slow response */
	if (bcp->baudisabled) {
		/* the cpu that disabled it must re-enable it */
		if (bcp->set_bau_off) {
			if (get_cycles() >= bcp->set_bau_on_time) {
				stat->s_bau_reenabled++;
				baudisabled = 0;
				for_each_present_cpu(tcpu) {
					tbcp = &per_cpu(bau_control, tcpu);
					tbcp->baudisabled = 0;
					tbcp->period_requests = 0;
					tbcp->period_time = 0;
				}
			}
		}
		return cpumask;
	}
737

738 739
	/*
	 * Each sending cpu has a per-cpu mask which it fills from the caller's
740 741
	 * cpu mask.  All cpus are converted to uvhubs and copied to the
	 * activation descriptor.
742 743
	 */
	flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
744
	/* don't actually do a shootdown of the local cpu */
745 746
	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
	if (cpu_isset(cpu, *cpumask))
747
		stat->s_ntargself++;
748

749 750 751
	bau_desc = bcp->descriptor_base;
	bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu;
	bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
752 753

	/* cpu statistics */
754 755 756
	for_each_cpu(tcpu, flush_mask) {
		uvhub = uv_cpu_to_blade_id(tcpu);
		bau_uvhub_set(uvhub, &bau_desc->distribution);
757 758
		if (uvhub == bcp->uvhub)
			locals++;
759
		else
760
			remotes++;
761
	}
762 763
	if ((locals + remotes) == 0)
		return NULL;
764
	stat->s_requestor++;
765 766 767
	stat->s_ntargcpu += remotes + locals;
	stat->s_ntargremotes += remotes;
	stat->s_ntarglocals += locals;
768
	remotes = bau_uvhub_weight(&bau_desc->distribution);
769 770 771 772 773 774 775 776 777 778

	/* uvhub statistics */
	hubs = bau_uvhub_weight(&bau_desc->distribution);
	if (locals) {
		stat->s_ntarglocaluvhub++;
		stat->s_ntargremoteuvhub += (hubs - 1);
	} else
		stat->s_ntargremoteuvhub += hubs;
	stat->s_ntarguvhub += hubs;
	if (hubs >= 16)
779
		stat->s_ntarguvhub16++;
780
	else if (hubs >= 8)
781
		stat->s_ntarguvhub8++;
782
	else if (hubs >= 4)
783
		stat->s_ntarguvhub4++;
784
	else if (hubs >= 2)
785 786 787
		stat->s_ntarguvhub2++;
	else
		stat->s_ntarguvhub1++;
788 789

	bau_desc->payload.address = va;
T
Tejun Heo 已提交
790
	bau_desc->payload.sending_cpu = cpu;
791

792
	/*
793 794
	 * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
	 * or 1 if it gave up and the original cpumask should be returned.
795
	 */
796 797 798 799
	if (!uv_flush_send_and_wait(bau_desc, flush_mask, bcp))
		return NULL;
	else
		return cpumask;
800 801 802 803 804 805 806 807
}

/*
 * The BAU message interrupt comes here. (registered by set_intr_gate)
 * See entry_64.S
 *
 * We received a broadcast assist message.
 *
808
 * Interrupts are disabled; this interrupt could represent
809 810
 * the receipt of several messages.
 *
811 812
 * All cores/threads on this hub get this interrupt.
 * The last one to see it does the software ack.
813
 * (the resource will not be freed until noninterruptable cpus see this
814
 *  interrupt; hardware may timeout the s/w ack and reply ERROR)
815
 */
816
void uv_bau_message_interrupt(struct pt_regs *regs)
817 818
{
	int count = 0;
819 820 821 822 823 824 825 826
	cycles_t time_start;
	struct bau_payload_queue_entry *msg;
	struct bau_control *bcp;
	struct ptc_stats *stat;
	struct msg_desc msgdesc;

	time_start = get_cycles();
	bcp = &per_cpu(bau_control, smp_processor_id());
827
	stat = bcp->statp;
828 829 830
	msgdesc.va_queue_first = bcp->va_queue_first;
	msgdesc.va_queue_last = bcp->va_queue_last;
	msg = bcp->bau_msg_head;
831 832
	while (msg->sw_ack_vector) {
		count++;
833 834 835 836
		msgdesc.msg_slot = msg - msgdesc.va_queue_first;
		msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1;
		msgdesc.msg = msg;
		uv_bau_process_message(&msgdesc, bcp);
837
		msg++;
838 839 840
		if (msg > msgdesc.va_queue_last)
			msg = msgdesc.va_queue_first;
		bcp->bau_msg_head = msg;
841
	}
842
	stat->d_time += (get_cycles() - time_start);
843
	if (!count)
844
		stat->d_nomsg++;
845
	else if (count > 1)
846 847
		stat->d_multmsg++;
	ack_APIC_irq();
848 849
}

C
Cliff Wickman 已提交
850 851 852
/*
 * uv_enable_timeouts
 *
853
 * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have
C
Cliff Wickman 已提交
854 855 856 857
 * shootdown message timeouts enabled.  The timeout does not cause
 * an interrupt, but causes an error message to be returned to
 * the sender.
 */
858
static void uv_enable_timeouts(void)
859
{
860 861
	int uvhub;
	int nuvhubs;
862
	int pnode;
C
Cliff Wickman 已提交
863
	unsigned long mmr_image;
864

865
	nuvhubs = uv_num_possible_blades();
866

867 868
	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
		if (!uv_blade_nr_possible_cpus(uvhub))
869
			continue;
C
Cliff Wickman 已提交
870

871
		pnode = uv_blade_to_pnode(uvhub);
C
Cliff Wickman 已提交
872 873 874 875 876 877 878 879 880
		mmr_image =
		    uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
		/*
		 * Set the timeout period and then lock it in, in three
		 * steps; captures and locks in the period.
		 *
		 * To program the period, the SOFT_ACK_MODE must be off.
		 */
		mmr_image &= ~((unsigned long)1 <<
881
		    UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
C
Cliff Wickman 已提交
882 883 884 885 886 887
		uv_write_global_mmr64
		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
		/*
		 * Set the 4-bit period.
		 */
		mmr_image &= ~((unsigned long)0xf <<
888
		     UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
C
Cliff Wickman 已提交
889
		mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
890
		     UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
C
Cliff Wickman 已提交
891 892 893 894 895 896 897 898
		uv_write_global_mmr64
		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
		/*
		 * Subsequent reversals of the timebase bit (3) cause an
		 * immediate timeout of one or all INTD resources as
		 * indicated in bits 2:0 (7 causes all of them to timeout).
		 */
		mmr_image |= ((unsigned long)1 <<
899
		    UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
C
Cliff Wickman 已提交
900 901
		uv_write_global_mmr64
		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
902 903 904
	}
}

905
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
906 907 908 909 910 911
{
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

912
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
913 914 915 916 917 918 919
{
	(*offset)++;
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

920
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
921 922 923
{
}

924
static inline unsigned long long
925
microsec_2_cycles(unsigned long microsec)
926 927 928 929
{
	unsigned long ns;
	unsigned long long cyc;

930
	ns = microsec * 1000;
931 932 933 934
	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
	return cyc;
}

935
/*
936 937
 * Display the statistics thru /proc.
 * 'data' points to the cpu number
938
 */
939
static int uv_ptc_seq_show(struct seq_file *file, void *data)
940 941 942 943 944 945 946 947
{
	struct ptc_stats *stat;
	int cpu;

	cpu = *(loff_t *)data;

	if (!cpu) {
		seq_printf(file,
948 949 950
			"# cpu sent stime self locals remotes ncpus localhub ");
		seq_printf(file,
			"remotehub numuvhubs numuvhubs16 numuvhubs8 ");
951
		seq_printf(file,
952
			"numuvhubs4 numuvhubs2 numuvhubs1 dto ");
953 954 955 956 957
		seq_printf(file,
			"retries rok resetp resett giveup sto bz throt ");
		seq_printf(file,
			"sw_ack recv rtime all ");
		seq_printf(file,
958 959 960
			"one mult none retry canc nocan reset rcan ");
		seq_printf(file,
			"disable enable\n");
961 962 963
	}
	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
		stat = &per_cpu(ptcstats, cpu);
964 965 966 967
		/* source side statistics */
		seq_printf(file,
			"cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
			   cpu, stat->s_requestor, cycles_2_us(stat->s_time),
968 969 970 971 972
			   stat->s_ntargself, stat->s_ntarglocals,
			   stat->s_ntargremotes, stat->s_ntargcpu,
			   stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
			   stat->s_ntarguvhub, stat->s_ntarguvhub16);
		seq_printf(file, "%ld %ld %ld %ld %ld ",
973 974
			   stat->s_ntarguvhub8, stat->s_ntarguvhub4,
			   stat->s_ntarguvhub2, stat->s_ntarguvhub1,
975
			   stat->s_dtimeout);
976 977 978 979 980
		seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
			   stat->s_retry_messages, stat->s_retriesok,
			   stat->s_resets_plug, stat->s_resets_timeout,
			   stat->s_giveup, stat->s_stimeout,
			   stat->s_busy, stat->s_throttles);
981

982 983
		/* destination side statistics */
		seq_printf(file,
984
			   "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
985
			   uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
986
					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
987 988 989 990 991
			   stat->d_requestee, cycles_2_us(stat->d_time),
			   stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
			   stat->d_nomsg, stat->d_retries, stat->d_canceled,
			   stat->d_nocanceled, stat->d_resets,
			   stat->d_rcanceled);
992 993
		seq_printf(file, "%ld %ld\n",
			stat->s_bau_disabled, stat->s_bau_reenabled);
994 995 996 997 998
	}

	return 0;
}

999 1000 1001 1002 1003 1004
/*
 * Display the tunables thru debugfs
 */
static ssize_t tunables_read(struct file *file, char __user *userbuf,
						size_t count, loff_t *ppos)
{
1005
	char *buf;
1006 1007
	int ret;

1008
	buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n",
1009 1010 1011 1012 1013 1014 1015
		"max_bau_concurrent plugged_delay plugsb4reset",
		"timeoutsb4reset ipi_reset_limit complete_threshold",
		"congested_response_us congested_reps congested_period",
		max_bau_concurrent, plugged_delay, plugsb4reset,
		timeoutsb4reset, ipi_reset_limit, complete_threshold,
		congested_response_us, congested_reps, congested_period);

1016 1017 1018 1019 1020 1021
	if (!buf)
		return -ENOMEM;

	ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
	kfree(buf);
	return ret;
1022 1023
}

1024
/*
1025
 * -1: resetf the statistics
1026 1027
 *  0: display meaning of the statistics
 */
1028
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
1029
				 size_t count, loff_t *data)
1030
{
1031 1032
	int cpu;
	long input_arg;
1033
	char optstr[64];
1034
	struct ptc_stats *stat;
1035

1036
	if (count == 0 || count > sizeof(optstr))
1037
		return -EINVAL;
1038 1039 1040
	if (copy_from_user(optstr, user, count))
		return -EFAULT;
	optstr[count - 1] = '\0';
1041
	if (strict_strtol(optstr, 10, &input_arg) < 0) {
1042 1043 1044 1045
		printk(KERN_DEBUG "%s is invalid\n", optstr);
		return -EINVAL;
	}

1046
	if (input_arg == 0) {
1047
		printk(KERN_DEBUG "# cpu:      cpu number\n");
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		printk(KERN_DEBUG "Sender statistics:\n");
		printk(KERN_DEBUG
		"sent:     number of shootdown messages sent\n");
		printk(KERN_DEBUG
		"stime:    time spent sending messages\n");
		printk(KERN_DEBUG
		"numuvhubs: number of hubs targeted with shootdown\n");
		printk(KERN_DEBUG
		"numuvhubs16: number times 16 or more hubs targeted\n");
		printk(KERN_DEBUG
		"numuvhubs8: number times 8 or more hubs targeted\n");
		printk(KERN_DEBUG
		"numuvhubs4: number times 4 or more hubs targeted\n");
		printk(KERN_DEBUG
		"numuvhubs2: number times 2 or more hubs targeted\n");
		printk(KERN_DEBUG
		"numuvhubs1: number times 1 hub targeted\n");
		printk(KERN_DEBUG
		"numcpus:  number of cpus targeted with shootdown\n");
		printk(KERN_DEBUG
		"dto:      number of destination timeouts\n");
		printk(KERN_DEBUG
		"retries:  destination timeout retries sent\n");
		printk(KERN_DEBUG
		"rok:   :  destination timeouts successfully retried\n");
		printk(KERN_DEBUG
		"resetp:   ipi-style resource resets for plugs\n");
		printk(KERN_DEBUG
		"resett:   ipi-style resource resets for timeouts\n");
		printk(KERN_DEBUG
		"giveup:   fall-backs to ipi-style shootdowns\n");
		printk(KERN_DEBUG
		"sto:      number of source timeouts\n");
		printk(KERN_DEBUG
		"bz:       number of stay-busy's\n");
		printk(KERN_DEBUG
		"throt:    number times spun in throttle\n");
		printk(KERN_DEBUG "Destination side statistics:\n");
1086
		printk(KERN_DEBUG
1087
		"sw_ack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
1088
		printk(KERN_DEBUG
1089
		"recv:     shootdown messages received\n");
1090
		printk(KERN_DEBUG
1091
		"rtime:    time spent processing messages\n");
1092
		printk(KERN_DEBUG
1093
		"all:      shootdown all-tlb messages\n");
1094
		printk(KERN_DEBUG
1095
		"one:      shootdown one-tlb messages\n");
1096
		printk(KERN_DEBUG
1097
		"mult:     interrupts that found multiple messages\n");
1098
		printk(KERN_DEBUG
1099
		"none:     interrupts that found no messages\n");
1100
		printk(KERN_DEBUG
1101
		"retry:    number of retry messages processed\n");
1102
		printk(KERN_DEBUG
1103
		"canc:     number messages canceled by retries\n");
1104
		printk(KERN_DEBUG
1105
		"nocan:    number retries that found nothing to cancel\n");
1106
		printk(KERN_DEBUG
1107 1108 1109
		"reset:    number of ipi-style reset requests processed\n");
		printk(KERN_DEBUG
		"rcan:     number messages canceled by reset requests\n");
1110 1111 1112 1113
		printk(KERN_DEBUG
		"disable:  number times use of the BAU was disabled\n");
		printk(KERN_DEBUG
		"enable:   number times use of the BAU was re-enabled\n");
1114 1115 1116 1117 1118
	} else if (input_arg == -1) {
		for_each_present_cpu(cpu) {
			stat = &per_cpu(ptcstats, cpu);
			memset(stat, 0, sizeof(struct ptc_stats));
		}
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	}

	return count;
}

static int local_atoi(const char *name)
{
	int val = 0;

	for (;; name++) {
		switch (*name) {
		case '0' ... '9':
			val = 10*val+(*name-'0');
			break;
		default:
			return val;
1135
		}
1136
	}
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
}

/*
 * set the tunables
 * 0 values reset them to defaults
 */
static ssize_t tunables_write(struct file *file, const char __user *user,
				 size_t count, loff_t *data)
{
	int cpu;
	int cnt = 0;
	int val;
	char *p;
	char *q;
	char instr[64];
	struct bau_control *bcp;
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	if (count == 0 || count > sizeof(instr)-1)
		return -EINVAL;
	if (copy_from_user(instr, user, count))
		return -EFAULT;

	instr[count] = '\0';
	/* count the fields */
	p = instr + strspn(instr, WHITESPACE);
	q = p;
	for (; *p; p = q + strspn(q, WHITESPACE)) {
		q = p + strcspn(p, WHITESPACE);
		cnt++;
		if (q == p)
			break;
	}
	if (cnt != 9) {
		printk(KERN_INFO "bau tunable error: should be 9 numbers\n");
		return -EINVAL;
	}

	p = instr + strspn(instr, WHITESPACE);
	q = p;
	for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
		q = p + strcspn(p, WHITESPACE);
		val = local_atoi(p);
		switch (cnt) {
		case 0:
			if (val == 0) {
				max_bau_concurrent = MAX_BAU_CONCURRENT;
				max_bau_concurrent_constant =
							MAX_BAU_CONCURRENT;
				continue;
			}
			bcp = &per_cpu(bau_control, smp_processor_id());
			if (val < 1 || val > bcp->cpus_in_uvhub) {
				printk(KERN_DEBUG
				"Error: BAU max concurrent %d is invalid\n",
				val);
				return -EINVAL;
			}
			max_bau_concurrent = val;
			max_bau_concurrent_constant = val;
			continue;
		case 1:
			if (val == 0)
				plugged_delay = PLUGGED_DELAY;
			else
				plugged_delay = val;
			continue;
		case 2:
			if (val == 0)
				plugsb4reset = PLUGSB4RESET;
			else
				plugsb4reset = val;
			continue;
		case 3:
			if (val == 0)
				timeoutsb4reset = TIMEOUTSB4RESET;
			else
				timeoutsb4reset = val;
			continue;
		case 4:
			if (val == 0)
				ipi_reset_limit = IPI_RESET_LIMIT;
			else
				ipi_reset_limit = val;
			continue;
		case 5:
			if (val == 0)
				complete_threshold = COMPLETE_THRESHOLD;
			else
				complete_threshold = val;
			continue;
		case 6:
			if (val == 0)
				congested_response_us = CONGESTED_RESPONSE_US;
			else
				congested_response_us = val;
			continue;
		case 7:
			if (val == 0)
				congested_reps = CONGESTED_REPS;
			else
				congested_reps = val;
			continue;
		case 8:
			if (val == 0)
				congested_period = CONGESTED_PERIOD;
			else
				congested_period = val;
			continue;
		}
		if (q == p)
			break;
	}
	for_each_present_cpu(cpu) {
		bcp = &per_cpu(bau_control, cpu);
		bcp->max_bau_concurrent = max_bau_concurrent;
		bcp->max_bau_concurrent_constant = max_bau_concurrent;
		bcp->plugged_delay = plugged_delay;
		bcp->plugsb4reset = plugsb4reset;
		bcp->timeoutsb4reset = timeoutsb4reset;
		bcp->ipi_reset_limit = ipi_reset_limit;
		bcp->complete_threshold = complete_threshold;
		bcp->congested_response_us = congested_response_us;
		bcp->congested_reps = congested_reps;
		bcp->congested_period = congested_period;
	}
1262 1263 1264 1265
	return count;
}

static const struct seq_operations uv_ptc_seq_ops = {
1266 1267 1268 1269
	.start		= uv_ptc_seq_start,
	.next		= uv_ptc_seq_next,
	.stop		= uv_ptc_seq_stop,
	.show		= uv_ptc_seq_show
1270 1271
};

1272
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
1273 1274 1275 1276
{
	return seq_open(file, &uv_ptc_seq_ops);
}

1277 1278 1279 1280 1281
static int tunables_open(struct inode *inode, struct file *file)
{
	return 0;
}

1282
static const struct file_operations proc_uv_ptc_operations = {
1283 1284 1285 1286 1287
	.open		= uv_ptc_proc_open,
	.read		= seq_read,
	.write		= uv_ptc_proc_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
1288 1289
};

1290 1291 1292 1293
static const struct file_operations tunables_fops = {
	.open		= tunables_open,
	.read		= tunables_read,
	.write		= tunables_write,
1294
	.llseek		= default_llseek,
1295 1296
};

1297
static int __init uv_ptc_init(void)
1298
{
1299
	struct proc_dir_entry *proc_uv_ptc;
1300 1301 1302 1303

	if (!is_uv_system())
		return 0;

1304 1305
	proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
				  &proc_uv_ptc_operations);
1306 1307 1308 1309 1310
	if (!proc_uv_ptc) {
		printk(KERN_ERR "unable to create %s proc entry\n",
		       UV_PTC_BASENAME);
		return -EINVAL;
	}
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

	tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
	if (!tunables_dir) {
		printk(KERN_ERR "unable to create debugfs directory %s\n",
		       UV_BAU_TUNABLES_DIR);
		return -EINVAL;
	}
	tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
			tunables_dir, NULL, &tunables_fops);
	if (!tunables_file) {
		printk(KERN_ERR "unable to create debugfs file %s\n",
		       UV_BAU_TUNABLES_FILE);
		return -EINVAL;
	}
1325 1326 1327 1328
	return 0;
}

/*
1329
 * initialize the sending side's sending buffers
1330
 */
1331
static void
1332
uv_activation_descriptor_init(int node, int pnode)
1333 1334
{
	int i;
1335
	int cpu;
1336 1337
	unsigned long pa;
	unsigned long m;
1338
	unsigned long n;
1339 1340 1341
	struct bau_desc *bau_desc;
	struct bau_desc *bd2;
	struct bau_control *bcp;
1342

1343 1344
	/*
	 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
1345
	 * per cpu; and one per cpu on the uvhub (UV_ADP_SIZE)
1346
	 */
1347 1348
	bau_desc = kmalloc_node(sizeof(struct bau_desc) * UV_ADP_SIZE
				* UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
1349
	BUG_ON(!bau_desc);
1350

1351 1352
	pa = uv_gpa(bau_desc); /* need the real nasid*/
	n = pa >> uv_nshift;
1353
	m = pa & uv_mmask;
1354

1355 1356
	uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
			      (n << UV_DESC_BASE_PNODE_SHIFT | m));
1357

1358 1359 1360
	/*
	 * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
	 * cpu even though we only use the first one; one descriptor can
1361
	 * describe a broadcast to 256 uv hubs.
1362
	 */
1363 1364 1365 1366
	for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
		i++, bd2++) {
		memset(bd2, 0, sizeof(struct bau_desc));
		bd2->header.sw_ack_flag = 1;
1367
		/*
1368
		 * base_dest_nodeid is the nasid of the first uvhub
1369 1370
		 * in the partition. The bit map will indicate uvhub numbers,
		 * which are 0-N in a partition. Pnodes are unique system-wide.
1371
		 */
1372
		bd2->header.base_dest_nodeid = UV_PNODE_TO_NASID(uv_partition_base_pnode);
1373 1374 1375
		bd2->header.dest_subnodeid = 0x10; /* the LB */
		bd2->header.command = UV_NET_ENDPOINT_INTD;
		bd2->header.int_both = 1;
1376 1377 1378 1379 1380
		/*
		 * all others need to be set to zero:
		 *   fairness chaining multilevel count replied_to
		 */
	}
1381 1382 1383 1384 1385 1386
	for_each_present_cpu(cpu) {
		if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
			continue;
		bcp = &per_cpu(bau_control, cpu);
		bcp->descriptor_base = bau_desc;
	}
1387 1388 1389 1390
}

/*
 * initialize the destination side's receiving buffers
1391 1392 1393
 * entered for each uvhub in the partition
 * - node is first node (kernel memory notion) on the uvhub
 * - pnode is the uvhub's physical identifier
1394
 */
1395 1396
static void
uv_payload_queue_init(int node, int pnode)
1397
{
1398
	int pn;
1399
	int cpu;
1400
	char *cp;
1401 1402 1403 1404
	unsigned long pa;
	struct bau_payload_queue_entry *pqp;
	struct bau_payload_queue_entry *pqp_malloc;
	struct bau_control *bcp;
1405

1406 1407 1408
	pqp = kmalloc_node((DEST_Q_SIZE + 1)
			   * sizeof(struct bau_payload_queue_entry),
			   GFP_KERNEL, node);
1409
	BUG_ON(!pqp);
1410
	pqp_malloc = pqp;
1411

1412 1413
	cp = (char *)pqp + 31;
	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

	for_each_present_cpu(cpu) {
		if (pnode != uv_cpu_to_pnode(cpu))
			continue;
		/* for every cpu on this pnode: */
		bcp = &per_cpu(bau_control, cpu);
		bcp->va_queue_first = pqp;
		bcp->bau_msg_head = pqp;
		bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
	}
1424 1425 1426 1427
	/*
	 * need the pnode of where the memory was really allocated
	 */
	pa = uv_gpa(pqp);
1428
	pn = pa >> uv_nshift;
1429 1430
	uv_write_global_mmr64(pnode,
			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
1431
			      ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
1432 1433 1434 1435 1436
			      uv_physnodeaddr(pqp));
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
			      uv_physnodeaddr(pqp));
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
			      (unsigned long)
1437 1438
			      uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1)));
	/* in effect, all msg_type's are set to MSG_NOOP */
1439
	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
1440
}
1441

1442
/*
1443
 * Initialization of each UV hub's structures
1444
 */
1445
static void __init uv_init_uvhub(int uvhub, int vector)
1446
{
1447
	int node;
1448 1449
	int pnode;
	unsigned long apicid;
1450 1451 1452 1453 1454

	node = uvhub_to_first_node(uvhub);
	pnode = uv_blade_to_pnode(uvhub);
	uv_activation_descriptor_init(node, pnode);
	uv_payload_queue_init(node, pnode);
1455 1456 1457 1458
	/*
	 * the below initialization can't be in firmware because the
	 * messaging IRQ will be determined by the OS
	 */
1459
	apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1460
	uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
1461 1462 1463
				      ((apicid << 32) | vector));
}

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/*
 * We will set BAU_MISC_CONTROL with a timeout period.
 * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
 * So the destination timeout period has be be calculated from them.
 */
static int
calculate_destination_timeout(void)
{
	unsigned long mmr_image;
	int mult1;
	int mult2;
	int index;
	int base;
	int ret;
	unsigned long ts_ns;

	mult1 = UV_INTD_SOFT_ACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
	mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
	index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
	mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
	mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
	base = timeout_base_ns[index];
	ts_ns = base * mult1 * mult2;
	ret = ts_ns / 1000;
	return ret;
}

1491 1492 1493
/*
 * initialize the bau_control structure for each cpu
 */
1494
static int __init uv_init_per_cpu(int nuvhubs)
1495
{
1496
	int i;
1497 1498 1499
	int cpu;
	int pnode;
	int uvhub;
C
Cliff Wickman 已提交
1500
	int have_hmaster;
1501
	short socket = 0;
1502
	unsigned short socket_mask;
C
Cliff Wickman 已提交
1503
	unsigned char *uvhub_mask;
1504 1505 1506 1507 1508 1509 1510
	struct bau_control *bcp;
	struct uvhub_desc *bdp;
	struct socket_desc *sdp;
	struct bau_control *hmaster = NULL;
	struct bau_control *smaster = NULL;
	struct socket_desc {
		short num_cpus;
1511
		short cpu_number[MAX_CPUS_PER_SOCKET];
1512 1513
	};
	struct uvhub_desc {
1514
		unsigned short socket_mask;
1515 1516 1517 1518 1519 1520 1521
		short num_cpus;
		short uvhub;
		short pnode;
		struct socket_desc socket[2];
	};
	struct uvhub_desc *uvhub_descs;

1522 1523
	timeout_us = calculate_destination_timeout();

1524
	uvhub_descs = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
1525
	memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
C
Cliff Wickman 已提交
1526
	uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
1527 1528 1529 1530 1531
	for_each_present_cpu(cpu) {
		bcp = &per_cpu(bau_control, cpu);
		memset(bcp, 0, sizeof(struct bau_control));
		pnode = uv_cpu_hub_info(cpu)->pnode;
		uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
C
Cliff Wickman 已提交
1532
		*(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1533 1534 1535 1536
		bdp = &uvhub_descs[uvhub];
		bdp->num_cpus++;
		bdp->uvhub = uvhub;
		bdp->pnode = pnode;
1537 1538
		/* kludge: 'assuming' one node per socket, and assuming that
		   disabling a socket just leaves a gap in node numbers */
C
Cliff Wickman 已提交
1539
		socket = (cpu_to_node(cpu) & 1);
1540
		bdp->socket_mask |= (1 << socket);
1541 1542 1543
		sdp = &bdp->socket[socket];
		sdp->cpu_number[sdp->num_cpus] = cpu;
		sdp->num_cpus++;
1544 1545 1546 1547
		if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
			printk(KERN_EMERG "%d cpus per socket invalid\n", sdp->num_cpus);
			return 1;
		}
1548
	}
C
Cliff Wickman 已提交
1549 1550 1551 1552
	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
		if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
			continue;
		have_hmaster = 0;
1553
		bdp = &uvhub_descs[uvhub];
1554 1555 1556 1557 1558 1559 1560 1561
		socket_mask = bdp->socket_mask;
		socket = 0;
		while (socket_mask) {
			if (!(socket_mask & 1))
				goto nextsocket;
			sdp = &bdp->socket[socket];
			for (i = 0; i < sdp->num_cpus; i++) {
				cpu = sdp->cpu_number[i];
1562 1563
				bcp = &per_cpu(bau_control, cpu);
				bcp->cpu = cpu;
1564
				if (i == 0) {
1565
					smaster = bcp;
C
Cliff Wickman 已提交
1566 1567
					if (!have_hmaster) {
						have_hmaster++;
1568
						hmaster = bcp;
C
Cliff Wickman 已提交
1569
					}
1570 1571 1572 1573
				}
				bcp->cpus_in_uvhub = bdp->num_cpus;
				bcp->cpus_in_socket = sdp->num_cpus;
				bcp->socket_master = smaster;
1574
				bcp->uvhub = bdp->uvhub;
1575
				bcp->uvhub_master = hmaster;
1576 1577
				bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->
						blade_processor_id;
1578 1579 1580 1581 1582 1583
				if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
					printk(KERN_EMERG
						"%d cpus per uvhub invalid\n",
						bcp->uvhub_cpu);
					return 1;
				}
1584
			}
1585
nextsocket:
1586
			socket++;
1587
			socket_mask = (socket_mask >> 1);
1588 1589 1590
		}
	}
	kfree(uvhub_descs);
C
Cliff Wickman 已提交
1591
	kfree(uvhub_mask);
1592 1593
	for_each_present_cpu(cpu) {
		bcp = &per_cpu(bau_control, cpu);
1594
		bcp->baudisabled = 0;
1595
		bcp->statp = &per_cpu(ptcstats, cpu);
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
		/* time interval to catch a hardware stay-busy bug */
		bcp->timeout_interval = microsec_2_cycles(2*timeout_us);
		bcp->max_bau_concurrent = max_bau_concurrent;
		bcp->max_bau_concurrent_constant = max_bau_concurrent;
		bcp->plugged_delay = plugged_delay;
		bcp->plugsb4reset = plugsb4reset;
		bcp->timeoutsb4reset = timeoutsb4reset;
		bcp->ipi_reset_limit = ipi_reset_limit;
		bcp->complete_threshold = complete_threshold;
		bcp->congested_response_us = congested_response_us;
		bcp->congested_reps = congested_reps;
		bcp->congested_period = congested_period;
	}
1609
	return 0;
1610 1611 1612 1613 1614 1615 1616
}

/*
 * Initialization of BAU-related structures
 */
static int __init uv_bau_init(void)
{
1617 1618 1619
	int uvhub;
	int pnode;
	int nuvhubs;
1620
	int cur_cpu;
1621 1622
	int vector;
	unsigned long mmr;
1623 1624 1625

	if (!is_uv_system())
		return 0;
1626

1627 1628 1629
	if (nobau)
		return 0;

1630
	for_each_possible_cpu(cur_cpu)
1631
		zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
1632 1633
				       GFP_KERNEL, cpu_to_node(cur_cpu));

1634
	uv_nshift = uv_hub_info->m_val;
1635
	uv_mmask = (1UL << uv_hub_info->m_val) - 1;
1636
	nuvhubs = uv_num_possible_blades();
1637 1638
	spin_lock_init(&disable_lock);
	congested_cycles = microsec_2_cycles(congested_response_us);
1639

1640 1641 1642 1643
	if (uv_init_per_cpu(nuvhubs)) {
		nobau = 1;
		return 0;
	}
1644

1645
	uv_partition_base_pnode = 0x7fffffff;
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	for (uvhub = 0; uvhub < nuvhubs; uvhub++)
		if (uv_blade_nr_possible_cpus(uvhub) &&
			(uv_blade_to_pnode(uvhub) < uv_partition_base_pnode))
			uv_partition_base_pnode = uv_blade_to_pnode(uvhub);

	vector = UV_BAU_MESSAGE;
	for_each_possible_blade(uvhub)
		if (uv_blade_nr_possible_cpus(uvhub))
			uv_init_uvhub(uvhub, vector);

1656
	uv_enable_timeouts();
1657 1658 1659
	alloc_intr_gate(vector, uv_bau_message_intr1);

	for_each_possible_blade(uvhub) {
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
		if (uv_blade_nr_possible_cpus(uvhub)) {
			pnode = uv_blade_to_pnode(uvhub);
			/* INIT the bau */
			uv_write_global_mmr64(pnode,
					UVH_LB_BAU_SB_ACTIVATION_CONTROL,
					((unsigned long)1 << 63));
			mmr = 1; /* should be 1 to broadcast to both sockets */
			uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST,
						mmr);
		}
1670
	}
1671

1672 1673
	return 0;
}
1674
core_initcall(uv_bau_init);
1675
fs_initcall(uv_ptc_init);