otx2_common.c 42.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
// SPDX-License-Identifier: GPL-2.0
/* Marvell OcteonTx2 RVU Ethernet driver
 *
 * Copyright (C) 2020 Marvell International Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/interrupt.h>
#include <linux/pci.h>
13
#include <net/tso.h>
14 15 16

#include "otx2_reg.h"
#include "otx2_common.h"
17
#include "otx2_struct.h"
18
#include "cn10k.h"
19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
static void otx2_nix_rq_op_stats(struct queue_stats *stats,
				 struct otx2_nic *pfvf, int qidx)
{
	u64 incr = (u64)qidx << 32;
	u64 *ptr;

	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
	stats->bytes = otx2_atomic64_add(incr, ptr);

	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
	stats->pkts = otx2_atomic64_add(incr, ptr);
}

static void otx2_nix_sq_op_stats(struct queue_stats *stats,
				 struct otx2_nic *pfvf, int qidx)
{
	u64 incr = (u64)qidx << 32;
	u64 *ptr;

	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
	stats->bytes = otx2_atomic64_add(incr, ptr);

	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
	stats->pkts = otx2_atomic64_add(incr, ptr);
}

void otx2_update_lmac_stats(struct otx2_nic *pfvf)
{
	struct msg_req *req;

	if (!netif_running(pfvf->netdev))
		return;

53
	mutex_lock(&pfvf->mbox.lock);
54 55
	req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
	if (!req) {
56
		mutex_unlock(&pfvf->mbox.lock);
57 58 59 60
		return;
	}

	otx2_sync_mbox_msg(&pfvf->mbox);
61
	mutex_unlock(&pfvf->mbox.lock);
62 63
}

64 65 66 67 68 69 70 71 72 73 74 75 76
void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
{
	struct msg_req *req;

	if (!netif_running(pfvf->netdev))
		return;
	mutex_lock(&pfvf->mbox.lock);
	req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
	if (req)
		otx2_sync_mbox_msg(&pfvf->mbox);
	mutex_unlock(&pfvf->mbox.lock);
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
{
	struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];

	if (!pfvf->qset.rq)
		return 0;

	otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
	return 1;
}

int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
{
	struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];

	if (!pfvf->qset.sq)
		return 0;

	otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
	return 1;
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
void otx2_get_dev_stats(struct otx2_nic *pfvf)
{
	struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;

#define OTX2_GET_RX_STATS(reg) \
	 otx2_read64(pfvf, NIX_LF_RX_STATX(reg))
#define OTX2_GET_TX_STATS(reg) \
	 otx2_read64(pfvf, NIX_LF_TX_STATX(reg))

	dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
	dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
	dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
	dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
	dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
	dev_stats->rx_frames = dev_stats->rx_bcast_frames +
			       dev_stats->rx_mcast_frames +
			       dev_stats->rx_ucast_frames;

	dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
	dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
	dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
	dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
	dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
	dev_stats->tx_frames = dev_stats->tx_bcast_frames +
			       dev_stats->tx_mcast_frames +
			       dev_stats->tx_ucast_frames;
}

void otx2_get_stats64(struct net_device *netdev,
		      struct rtnl_link_stats64 *stats)
{
	struct otx2_nic *pfvf = netdev_priv(netdev);
	struct otx2_dev_stats *dev_stats;

	otx2_get_dev_stats(pfvf);

	dev_stats = &pfvf->hw.dev_stats;
	stats->rx_bytes = dev_stats->rx_bytes;
	stats->rx_packets = dev_stats->rx_frames;
	stats->rx_dropped = dev_stats->rx_drops;
	stats->multicast = dev_stats->rx_mcast_frames;

	stats->tx_bytes = dev_stats->tx_bytes;
	stats->tx_packets = dev_stats->tx_frames;
	stats->tx_dropped = dev_stats->tx_drops;
}
145
EXPORT_SYMBOL(otx2_get_stats64);
146

147 148 149 150 151 152
/* Sync MAC address with RVU AF */
static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
{
	struct nix_set_mac_addr *req;
	int err;

153
	mutex_lock(&pfvf->mbox.lock);
154 155
	req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
	if (!req) {
156
		mutex_unlock(&pfvf->mbox.lock);
157 158 159 160 161 162
		return -ENOMEM;
	}

	ether_addr_copy(req->mac_addr, mac);

	err = otx2_sync_mbox_msg(&pfvf->mbox);
163
	mutex_unlock(&pfvf->mbox.lock);
164 165 166 167 168 169 170 171 172 173 174
	return err;
}

static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
				struct net_device *netdev)
{
	struct nix_get_mac_addr_rsp *rsp;
	struct mbox_msghdr *msghdr;
	struct msg_req *req;
	int err;

175
	mutex_lock(&pfvf->mbox.lock);
176 177
	req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
	if (!req) {
178
		mutex_unlock(&pfvf->mbox.lock);
179 180 181 182 183
		return -ENOMEM;
	}

	err = otx2_sync_mbox_msg(&pfvf->mbox);
	if (err) {
184
		mutex_unlock(&pfvf->mbox.lock);
185 186 187 188
		return err;
	}

	msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
189
	if (IS_ERR(msghdr)) {
190
		mutex_unlock(&pfvf->mbox.lock);
191
		return PTR_ERR(msghdr);
192 193 194
	}
	rsp = (struct nix_get_mac_addr_rsp *)msghdr;
	ether_addr_copy(netdev->dev_addr, rsp->mac_addr);
195
	mutex_unlock(&pfvf->mbox.lock);
196 197 198 199 200 201 202 203 204 205 206 207

	return 0;
}

int otx2_set_mac_address(struct net_device *netdev, void *p)
{
	struct otx2_nic *pfvf = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

208
	if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
209
		memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
210 211 212 213
		/* update dmac field in vlan offload rule */
		if (pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
			otx2_install_rxvlan_offload_flow(pfvf);
	} else {
214
		return -EPERM;
215
	}
216 217 218

	return 0;
}
219
EXPORT_SYMBOL(otx2_set_mac_address);
220 221 222 223 224 225

int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
{
	struct nix_frs_cfg *req;
	int err;

226
	mutex_lock(&pfvf->mbox.lock);
227 228
	req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
	if (!req) {
229
		mutex_unlock(&pfvf->mbox.lock);
230 231 232 233 234 235
		return -ENOMEM;
	}

	req->maxlen = pfvf->max_frs;

	err = otx2_sync_mbox_msg(&pfvf->mbox);
236
	mutex_unlock(&pfvf->mbox.lock);
237 238 239
	return err;
}

240 241 242 243 244
int otx2_config_pause_frm(struct otx2_nic *pfvf)
{
	struct cgx_pause_frm_cfg *req;
	int err;

245 246 247
	if (is_otx2_lbkvf(pfvf->pdev))
		return 0;

248
	mutex_lock(&pfvf->mbox.lock);
249
	req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
250 251 252 253
	if (!req) {
		err = -ENOMEM;
		goto unlock;
	}
254 255 256 257 258 259

	req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
	req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
	req->set = 1;

	err = otx2_sync_mbox_msg(&pfvf->mbox);
260
unlock:
261
	mutex_unlock(&pfvf->mbox.lock);
262 263 264
	return err;
}

265
int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
266 267 268 269 270
{
	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
	struct nix_rss_flowkey_cfg *req;
	int err;

271
	mutex_lock(&pfvf->mbox.lock);
272 273
	req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
	if (!req) {
274
		mutex_unlock(&pfvf->mbox.lock);
275 276 277 278 279 280 281
		return -ENOMEM;
	}
	req->mcam_index = -1; /* Default or reserved index */
	req->flowkey_cfg = rss->flowkey_cfg;
	req->group = DEFAULT_RSS_CONTEXT_GROUP;

	err = otx2_sync_mbox_msg(&pfvf->mbox);
282
	mutex_unlock(&pfvf->mbox.lock);
283 284 285
	return err;
}

286
int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id)
287 288
{
	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
289
	const int index = rss->rss_size * ctx_id;
290
	struct mbox *mbox = &pfvf->mbox;
291
	struct otx2_rss_ctx *rss_ctx;
292 293 294
	struct nix_aq_enq_req *aq;
	int idx, err;

295
	mutex_lock(&mbox->lock);
296
	rss_ctx = rss->rss_ctx[ctx_id];
297 298 299 300 301 302 303 304 305
	/* Get memory to put this msg */
	for (idx = 0; idx < rss->rss_size; idx++) {
		aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
		if (!aq) {
			/* The shared memory buffer can be full.
			 * Flush it and retry
			 */
			err = otx2_sync_mbox_msg(mbox);
			if (err) {
306
				mutex_unlock(&mbox->lock);
307 308 309 310
				return err;
			}
			aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
			if (!aq) {
311
				mutex_unlock(&mbox->lock);
312 313 314 315
				return -ENOMEM;
			}
		}

316
		aq->rss.rq = rss_ctx->ind_tbl[idx];
317 318

		/* Fill AQ info */
319
		aq->qidx = index + idx;
320 321 322 323
		aq->ctype = NIX_AQ_CTYPE_RSS;
		aq->op = NIX_AQ_INSTOP_INIT;
	}
	err = otx2_sync_mbox_msg(mbox);
324
	mutex_unlock(&mbox->lock);
325 326 327
	return err;
}

328
void otx2_set_rss_key(struct otx2_nic *pfvf)
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
{
	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
	u64 *key = (u64 *)&rss->key[4];
	int idx;

	/* 352bit or 44byte key needs to be configured as below
	 * NIX_LF_RX_SECRETX0 = key<351:288>
	 * NIX_LF_RX_SECRETX1 = key<287:224>
	 * NIX_LF_RX_SECRETX2 = key<223:160>
	 * NIX_LF_RX_SECRETX3 = key<159:96>
	 * NIX_LF_RX_SECRETX4 = key<95:32>
	 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
	 */
	otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
		     (u64)(*((u32 *)&rss->key)) << 32);
	idx = sizeof(rss->key) / sizeof(u64);
	while (idx > 0) {
		idx--;
		otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
	}
}

int otx2_rss_init(struct otx2_nic *pfvf)
{
	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
354
	struct otx2_rss_ctx *rss_ctx;
355 356
	int idx, ret = 0;

357
	rss->rss_size = sizeof(*rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]);
358 359 360 361 362 363 364

	/* Init RSS key if it is not setup already */
	if (!rss->enable)
		netdev_rss_key_fill(rss->key, sizeof(rss->key));
	otx2_set_rss_key(pfvf);

	if (!netif_is_rxfh_configured(pfvf->netdev)) {
365 366 367 368 369 370 371
		/* Set RSS group 0 as default indirection table */
		rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP] = kzalloc(rss->rss_size,
								  GFP_KERNEL);
		if (!rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP])
			return -ENOMEM;

		rss_ctx = rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP];
372
		for (idx = 0; idx < rss->rss_size; idx++)
373
			rss_ctx->ind_tbl[idx] =
374 375 376
				ethtool_rxfh_indir_default(idx,
							   pfvf->hw.rx_queues);
	}
377
	ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP);
378 379 380 381 382 383 384
	if (ret)
		return ret;

	/* Flowkey or hash config to be used for generating flow tag */
	rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
			   NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
			   NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
385 386
			   NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
			   NIX_FLOW_KEY_TYPE_IPV4_PROTO;
387 388 389 390 391 392 393 394 395

	ret = otx2_set_flowkey_cfg(pfvf);
	if (ret)
		return ret;

	rss->enable = true;
	return 0;
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
/* Setup UDP segmentation algorithm in HW */
static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
{
	struct nix_lso_format *field;

	field = (struct nix_lso_format *)&lso->fields[0];
	lso->field_mask = GENMASK(18, 0);

	/* IP's Length field */
	field->layer = NIX_TXLAYER_OL3;
	/* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
	field->offset = v4 ? 2 : 4;
	field->sizem1 = 1; /* i.e 2 bytes */
	field->alg = NIX_LSOALG_ADD_PAYLEN;
	field++;

	/* No ID field in IPv6 header */
	if (v4) {
		/* Increment IPID */
		field->layer = NIX_TXLAYER_OL3;
		field->offset = 4;
		field->sizem1 = 1; /* i.e 2 bytes */
		field->alg = NIX_LSOALG_ADD_SEGNUM;
		field++;
	}

	/* Update length in UDP header */
	field->layer = NIX_TXLAYER_OL4;
	field->offset = 4;
	field->sizem1 = 1;
	field->alg = NIX_LSOALG_ADD_PAYLEN;
}

/* Setup segmentation algorithms in HW and retrieve algorithm index */
void otx2_setup_segmentation(struct otx2_nic *pfvf)
{
	struct nix_lso_format_cfg_rsp *rsp;
	struct nix_lso_format_cfg *lso;
	struct otx2_hw *hw = &pfvf->hw;
	int err;

	mutex_lock(&pfvf->mbox.lock);

	/* UDPv4 segmentation */
	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
	if (!lso)
		goto fail;

	/* Setup UDP/IP header fields that HW should update per segment */
	otx2_setup_udp_segmentation(lso, true);

	err = otx2_sync_mbox_msg(&pfvf->mbox);
	if (err)
		goto fail;

	rsp = (struct nix_lso_format_cfg_rsp *)
			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
	if (IS_ERR(rsp))
		goto fail;

	hw->lso_udpv4_idx = rsp->lso_format_idx;

	/* UDPv6 segmentation */
	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
	if (!lso)
		goto fail;

	/* Setup UDP/IP header fields that HW should update per segment */
	otx2_setup_udp_segmentation(lso, false);

	err = otx2_sync_mbox_msg(&pfvf->mbox);
	if (err)
		goto fail;

	rsp = (struct nix_lso_format_cfg_rsp *)
			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
	if (IS_ERR(rsp))
		goto fail;

	hw->lso_udpv6_idx = rsp->lso_format_idx;
	mutex_unlock(&pfvf->mbox.lock);
	return;
fail:
	mutex_unlock(&pfvf->mbox.lock);
	netdev_info(pfvf->netdev,
		    "Failed to get LSO index for UDP GSO offload, disabling\n");
	pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498
void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
{
	/* Configure CQE interrupt coalescing parameters
	 *
	 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
	 * set 1 less than cq_ecount_wait. And cq_time_wait is in
	 * usecs, convert that to 100ns count.
	 */
	otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
		     ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
		     ((u64)pfvf->hw.cq_qcount_wait << 32) |
		     (pfvf->hw.cq_ecount_wait - 1));
}

499 500
int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
		      dma_addr_t *dma)
501
{
502
	u8 *buf;
503

504
	buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
505
	if (unlikely(!buf))
506 507
		return -ENOMEM;

508
	*dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
509
				    DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
510
	if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
511
		page_frag_free(buf);
512 513
		return -ENOMEM;
	}
514

515
	return 0;
516 517
}

518 519
static int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
			   dma_addr_t *dma)
520
{
521
	int ret;
522 523

	local_bh_disable();
524
	ret = __otx2_alloc_rbuf(pfvf, pool, dma);
525
	local_bh_enable();
526
	return ret;
527 528
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
		      dma_addr_t *dma)
{
	if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma))) {
		struct refill_work *work;
		struct delayed_work *dwork;

		work = &pfvf->refill_wrk[cq->cq_idx];
		dwork = &work->pool_refill_work;
		/* Schedule a task if no other task is running */
		if (!cq->refill_task_sched) {
			cq->refill_task_sched = true;
			schedule_delayed_work(dwork,
					      msecs_to_jiffies(100));
		}
		return -ENOMEM;
	}
	return 0;
}

549 550 551 552 553 554
void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
{
	struct otx2_nic *pfvf = netdev_priv(netdev);

	schedule_work(&pfvf->reset_task);
}
555
EXPORT_SYMBOL(otx2_tx_timeout);
556

557 558 559 560 561 562 563 564 565 566 567 568 569
void otx2_get_mac_from_af(struct net_device *netdev)
{
	struct otx2_nic *pfvf = netdev_priv(netdev);
	int err;

	err = otx2_hw_get_mac_addr(pfvf, netdev);
	if (err)
		dev_warn(pfvf->dev, "Failed to read mac from hardware\n");

	/* If AF doesn't provide a valid MAC, generate a random one */
	if (!is_valid_ether_addr(netdev->dev_addr))
		eth_hw_addr_random(netdev);
}
570
EXPORT_SYMBOL(otx2_get_mac_from_af);
571

572 573 574 575 576 577 578 579 580 581 582
static int otx2_get_link(struct otx2_nic *pfvf)
{
	int link = 0;
	u16 map;

	/* cgx lmac link */
	if (pfvf->hw.tx_chan_base >= CGX_CHAN_BASE) {
		map = pfvf->hw.tx_chan_base & 0x7FF;
		link = 4 * ((map >> 8) & 0xF) + ((map >> 4) & 0xF);
	}
	/* LBK channel */
583 584 585 586
	if (pfvf->hw.tx_chan_base < SDP_CHAN_BASE) {
		map = pfvf->hw.tx_chan_base & 0x7FF;
		link = pfvf->hw.cgx_links | ((map >> 8) & 0xF);
	}
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607

	return link;
}

int otx2_txschq_config(struct otx2_nic *pfvf, int lvl)
{
	struct otx2_hw *hw = &pfvf->hw;
	struct nix_txschq_config *req;
	u64 schq, parent;

	req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
	if (!req)
		return -ENOMEM;

	req->lvl = lvl;
	req->num_regs = 1;

	schq = hw->txschq_list[lvl][0];
	/* Set topology e.t.c configuration */
	if (lvl == NIX_TXSCH_LVL_SMQ) {
		req->reg[0] = NIX_AF_SMQX_CFG(schq);
608 609
		req->regval[0] = ((pfvf->netdev->max_mtu + OTX2_ETH_HLEN) << 8)
				  | OTX2_MIN_MTU;
610

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
		req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
				  (0x2ULL << 36);
		req->num_regs++;
		/* MDQ config */
		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL4][0];
		req->reg[1] = NIX_AF_MDQX_PARENT(schq);
		req->regval[1] = parent << 16;
		req->num_regs++;
		/* Set DWRR quantum */
		req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
		req->regval[2] =  DFLT_RR_QTM;
	} else if (lvl == NIX_TXSCH_LVL_TL4) {
		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL3][0];
		req->reg[0] = NIX_AF_TL4X_PARENT(schq);
		req->regval[0] = parent << 16;
		req->num_regs++;
		req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
		req->regval[1] = DFLT_RR_QTM;
	} else if (lvl == NIX_TXSCH_LVL_TL3) {
		parent = hw->txschq_list[NIX_TXSCH_LVL_TL2][0];
		req->reg[0] = NIX_AF_TL3X_PARENT(schq);
		req->regval[0] = parent << 16;
		req->num_regs++;
		req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
		req->regval[1] = DFLT_RR_QTM;
	} else if (lvl == NIX_TXSCH_LVL_TL2) {
		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL1][0];
		req->reg[0] = NIX_AF_TL2X_PARENT(schq);
		req->regval[0] = parent << 16;

		req->num_regs++;
		req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
		req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | DFLT_RR_QTM;

		req->num_regs++;
		req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq,
							otx2_get_link(pfvf));
		/* Enable this queue and backpressure */
		req->regval[2] = BIT_ULL(13) | BIT_ULL(12);

	} else if (lvl == NIX_TXSCH_LVL_TL1) {
		/* Default config for TL1.
		 * For VF this is always ignored.
		 */

		/* Set DWRR quantum */
		req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
		req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;

		req->num_regs++;
		req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
		req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1);

		req->num_regs++;
		req->reg[2] = NIX_AF_TL1X_CIR(schq);
		req->regval[2] = 0;
	}

	return otx2_sync_mbox_msg(&pfvf->mbox);
}

int otx2_txsch_alloc(struct otx2_nic *pfvf)
{
	struct nix_txsch_alloc_req *req;
	int lvl;

	/* Get memory to put this msg */
	req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
	if (!req)
		return -ENOMEM;

	/* Request one schq per level */
	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
		req->schq[lvl] = 1;

	return otx2_sync_mbox_msg(&pfvf->mbox);
}

int otx2_txschq_stop(struct otx2_nic *pfvf)
{
	struct nix_txsch_free_req *free_req;
	int lvl, schq, err;

694
	mutex_lock(&pfvf->mbox.lock);
695 696 697
	/* Free the transmit schedulers */
	free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
	if (!free_req) {
698
		mutex_unlock(&pfvf->mbox.lock);
699 700 701 702 703
		return -ENOMEM;
	}

	free_req->flags = TXSCHQ_FREE_ALL;
	err = otx2_sync_mbox_msg(&pfvf->mbox);
704
	mutex_unlock(&pfvf->mbox.lock);
705 706 707 708 709 710 711 712 713 714 715 716 717

	/* Clear the txschq list */
	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
		for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
			pfvf->hw.txschq_list[lvl][schq] = 0;
	}
	return err;
}

void otx2_sqb_flush(struct otx2_nic *pfvf)
{
	int qidx, sqe_tail, sqe_head;
	u64 incr, *ptr, val;
718
	int timeout = 1000;
719 720 721 722

	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
	for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
		incr = (u64)qidx << 32;
723
		while (timeout) {
724 725 726 727 728 729
			val = otx2_atomic64_add(incr, ptr);
			sqe_head = (val >> 20) & 0x3F;
			sqe_tail = (val >> 28) & 0x3F;
			if (sqe_head == sqe_tail)
				break;
			usleep_range(1, 3);
730
			timeout--;
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
		}
	}
}

/* RED and drop levels of CQ on packet reception.
 * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
 */
#define RQ_PASS_LVL_CQ(skid, qsize)	((((skid) + 16) * 256) / (qsize))
#define RQ_DROP_LVL_CQ(skid, qsize)	(((skid) * 256) / (qsize))

/* RED and drop levels of AURA for packet reception.
 * For AURA level is measure of fullness (0x0 = empty, 255 = full).
 * Eg: For RQ length 1K, for pass/drop level 204/230.
 * RED accepts pkts if free pointers > 102 & <= 205.
 * Drops pkts if free pointers < 102.
 */
747
#define RQ_BP_LVL_AURA   (255 - ((85 * 256) / 100)) /* BP when 85% is full */
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
#define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
#define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */

static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
{
	struct otx2_qset *qset = &pfvf->qset;
	struct nix_aq_enq_req *aq;

	/* Get memory to put this msg */
	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
	if (!aq)
		return -ENOMEM;

	aq->rq.cq = qidx;
	aq->rq.ena = 1;
	aq->rq.pb_caching = 1;
	aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
	aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
	aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
	aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
768
	aq->rq.qint_idx = 0;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
	aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
	aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
	aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
	aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
	aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;

	/* Fill AQ info */
	aq->qidx = qidx;
	aq->ctype = NIX_AQ_CTYPE_RQ;
	aq->op = NIX_AQ_INSTOP_INIT;

	return otx2_sync_mbox_msg(&pfvf->mbox);
}

784
int otx2_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura)
785
{
786 787
	struct otx2_nic *pfvf = dev;
	struct otx2_snd_queue *sq;
788 789
	struct nix_aq_enq_req *aq;

790 791
	sq = &pfvf->qset.sq[qidx];
	sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	/* Get memory to put this msg */
	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
	if (!aq)
		return -ENOMEM;

	aq->sq.cq = pfvf->hw.rx_queues + qidx;
	aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
	aq->sq.cq_ena = 1;
	aq->sq.ena = 1;
	/* Only one SMQ is allocated, map all SQ's to that SMQ  */
	aq->sq.smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
	aq->sq.smq_rr_quantum = DFLT_RR_QTM;
	aq->sq.default_chan = pfvf->hw.tx_chan_base;
	aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
	aq->sq.sqb_aura = sqb_aura;
	aq->sq.sq_int_ena = NIX_SQINT_BITS;
	aq->sq.qint_idx = 0;
	/* Due pipelining impact minimum 2000 unused SQ CQE's
	 * need to maintain to avoid CQ overflow.
	 */
	aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));

	/* Fill AQ info */
	aq->qidx = qidx;
	aq->ctype = NIX_AQ_CTYPE_SQ;
	aq->op = NIX_AQ_INSTOP_INIT;

	return otx2_sync_mbox_msg(&pfvf->mbox);
}

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
static int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
{
	struct otx2_qset *qset = &pfvf->qset;
	struct otx2_snd_queue *sq;
	struct otx2_pool *pool;
	int err;

	pool = &pfvf->qset.pool[sqb_aura];
	sq = &qset->sq[qidx];
	sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
	sq->sqe_cnt = qset->sqe_cnt;

	err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
	if (err)
		return err;

838 839 840 841 842
	err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
			 TSO_HEADER_SIZE);
	if (err)
		return err;

843
	sq->sqe_base = sq->sqe->base;
844 845 846
	sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
	if (!sq->sg)
		return -ENOMEM;
847

848 849 850 851 852 853 854
	if (pfvf->ptp) {
		err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
				 sizeof(*sq->timestamps));
		if (err)
			return err;
	}

855
	sq->head = 0;
856 857
	sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
	sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
858 859
	/* Set SQE threshold to 10% of total SQEs */
	sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
860 861 862 863
	sq->aura_id = sqb_aura;
	sq->aura_fc_addr = pool->fc_addr->base;
	sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));

864 865 866
	sq->stats.bytes = 0;
	sq->stats.pkts = 0;

867
	return pfvf->hw_ops->sq_aq_init(pfvf, qidx, sqb_aura);
868 869 870 871 872 873 874 875 876 877 878 879 880 881

}

static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
{
	struct otx2_qset *qset = &pfvf->qset;
	struct nix_aq_enq_req *aq;
	struct otx2_cq_queue *cq;
	int err, pool_id;

	cq = &qset->cq[qidx];
	cq->cq_idx = qidx;
	if (qidx < pfvf->hw.rx_queues) {
		cq->cq_type = CQ_RX;
882
		cq->cint_idx = qidx;
883 884 885
		cq->cqe_cnt = qset->rqe_cnt;
	} else {
		cq->cq_type = CQ_TX;
886
		cq->cint_idx = qidx - pfvf->hw.rx_queues;
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
		cq->cqe_cnt = qset->sqe_cnt;
	}
	cq->cqe_size = pfvf->qset.xqe_size;

	/* Allocate memory for CQEs */
	err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
	if (err)
		return err;

	/* Save CQE CPU base for faster reference */
	cq->cqe_base = cq->cqe->base;
	/* In case where all RQs auras point to single pool,
	 * all CQs receive buffer pool also point to same pool.
	 */
	pool_id = ((cq->cq_type == CQ_RX) &&
		   (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
	cq->rbpool = &qset->pool[pool_id];
904
	cq->refill_task_sched = false;
905 906 907 908 909 910 911 912 913 914

	/* Get memory to put this msg */
	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
	if (!aq)
		return -ENOMEM;

	aq->cq.ena = 1;
	aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
	aq->cq.caching = 1;
	aq->cq.base = cq->cqe->iova;
915
	aq->cq.cint_idx = cq->cint_idx;
916 917
	aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
	aq->cq.qint_idx = 0;
918 919 920 921 922
	aq->cq.avg_level = 255;

	if (qidx < pfvf->hw.rx_queues) {
		aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
		aq->cq.drop_ena = 1;
923 924 925 926 927 928 929

		/* Enable receive CQ backpressure */
		aq->cq.bp_ena = 1;
		aq->cq.bpid = pfvf->bpid[0];

		/* Set backpressure level is same as cq pass level */
		aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
930 931 932 933 934 935 936 937 938 939
	}

	/* Fill AQ info */
	aq->qidx = qidx;
	aq->ctype = NIX_AQ_CTYPE_CQ;
	aq->op = NIX_AQ_INSTOP_INIT;

	return otx2_sync_mbox_msg(&pfvf->mbox);
}

940 941 942 943 944 945 946
static void otx2_pool_refill_task(struct work_struct *work)
{
	struct otx2_cq_queue *cq;
	struct otx2_pool *rbpool;
	struct refill_work *wrk;
	int qidx, free_ptrs = 0;
	struct otx2_nic *pfvf;
947
	dma_addr_t bufptr;
948 949 950 951 952 953 954 955 956

	wrk = container_of(work, struct refill_work, pool_refill_work.work);
	pfvf = wrk->pf;
	qidx = wrk - pfvf->refill_wrk;
	cq = &pfvf->qset.cq[qidx];
	rbpool = cq->rbpool;
	free_ptrs = cq->pool_ptrs;

	while (cq->pool_ptrs) {
957
		if (otx2_alloc_rbuf(pfvf, rbpool, &bufptr)) {
958 959 960 961 962 963 964 965 966 967 968 969 970 971
			/* Schedule a WQ if we fails to free atleast half of the
			 * pointers else enable napi for this RQ.
			 */
			if (!((free_ptrs - cq->pool_ptrs) > free_ptrs / 2)) {
				struct delayed_work *dwork;

				dwork = &wrk->pool_refill_work;
				schedule_delayed_work(dwork,
						      msecs_to_jiffies(100));
			} else {
				cq->refill_task_sched = false;
			}
			return;
		}
972
		pfvf->hw_ops->aura_freeptr(pfvf, qidx, bufptr + OTX2_HEAD_ROOM);
973 974 975 976 977
		cq->pool_ptrs--;
	}
	cq->refill_task_sched = false;
}

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
int otx2_config_nix_queues(struct otx2_nic *pfvf)
{
	int qidx, err;

	/* Initialize RX queues */
	for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
		u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);

		err = otx2_rq_init(pfvf, qidx, lpb_aura);
		if (err)
			return err;
	}

	/* Initialize TX queues */
	for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
		u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);

		err = otx2_sq_init(pfvf, qidx, sqb_aura);
		if (err)
			return err;
	}

	/* Initialize completion queues */
	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
		err = otx2_cq_init(pfvf, qidx);
		if (err)
			return err;
	}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	/* Initialize work queue for receive buffer refill */
	pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
					sizeof(struct refill_work), GFP_KERNEL);
	if (!pfvf->refill_wrk)
		return -ENOMEM;

	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
		pfvf->refill_wrk[qidx].pf = pfvf;
		INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
				  otx2_pool_refill_task);
	}
1018 1019 1020
	return 0;
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
int otx2_config_nix(struct otx2_nic *pfvf)
{
	struct nix_lf_alloc_req  *nixlf;
	struct nix_lf_alloc_rsp *rsp;
	int err;

	pfvf->qset.xqe_size = NIX_XQESZ_W16 ? 128 : 512;

	/* Get memory to put this msg */
	nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
	if (!nixlf)
		return -ENOMEM;

	/* Set RQ/SQ/CQ counts */
	nixlf->rq_cnt = pfvf->hw.rx_queues;
	nixlf->sq_cnt = pfvf->hw.tx_queues;
	nixlf->cq_cnt = pfvf->qset.cq_cnt;
1038
	nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1039
	nixlf->rss_grps = MAX_RSS_GROUPS;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	nixlf->xqe_sz = NIX_XQESZ_W16;
	/* We don't know absolute NPA LF idx attached.
	 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
	 * NPA LF attached to this RVU PF/VF.
	 */
	nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
	/* Disable alignment pad, enable L2 length check,
	 * enable L4 TCP/UDP checksum verification.
	 */
	nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);

	err = otx2_sync_mbox_msg(&pfvf->mbox);
	if (err)
		return err;

	rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
							   &nixlf->hdr);
	if (IS_ERR(rsp))
		return PTR_ERR(rsp);

	if (rsp->qints < 1)
		return -ENXIO;

	return rsp->hdr.rc;
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
{
	struct otx2_qset *qset = &pfvf->qset;
	struct otx2_hw *hw = &pfvf->hw;
	struct otx2_snd_queue *sq;
	int sqb, qidx;
	u64 iova, pa;

	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
		sq = &qset->sq[qidx];
		if (!sq->sqb_ptrs)
			continue;
		for (sqb = 0; sqb < sq->sqb_count; sqb++) {
			if (!sq->sqb_ptrs[sqb])
				continue;
			iova = sq->sqb_ptrs[sqb];
			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
			dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
					     DMA_FROM_DEVICE,
					     DMA_ATTR_SKIP_CPU_SYNC);
			put_page(virt_to_page(phys_to_virt(pa)));
		}
		sq->sqb_count = 0;
	}
}

void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
{
	int pool_id, pool_start = 0, pool_end = 0, size = 0;
	u64 iova, pa;

	if (type == AURA_NIX_SQ) {
		pool_start = otx2_get_pool_idx(pfvf, type, 0);
		pool_end =  pool_start + pfvf->hw.sqpool_cnt;
		size = pfvf->hw.sqb_size;
	}
	if (type == AURA_NIX_RQ) {
		pool_start = otx2_get_pool_idx(pfvf, type, 0);
		pool_end = pfvf->hw.rqpool_cnt;
		size = pfvf->rbsize;
	}

	/* Free SQB and RQB pointers from the aura pool */
	for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
		iova = otx2_aura_allocptr(pfvf, pool_id);
		while (iova) {
			if (type == AURA_NIX_RQ)
				iova -= OTX2_HEAD_ROOM;

			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
			dma_unmap_page_attrs(pfvf->dev, iova, size,
					     DMA_FROM_DEVICE,
					     DMA_ATTR_SKIP_CPU_SYNC);
			put_page(virt_to_page(phys_to_virt(pa)));
			iova = otx2_aura_allocptr(pfvf, pool_id);
		}
	}
}

void otx2_aura_pool_free(struct otx2_nic *pfvf)
{
	struct otx2_pool *pool;
	int pool_id;

	if (!pfvf->qset.pool)
		return;

	for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
		pool = &pfvf->qset.pool[pool_id];
		qmem_free(pfvf->dev, pool->stack);
		qmem_free(pfvf->dev, pool->fc_addr);
	}
	devm_kfree(pfvf->dev, pfvf->qset.pool);
1139
	pfvf->qset.pool = NULL;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
}

static int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
			  int pool_id, int numptrs)
{
	struct npa_aq_enq_req *aq;
	struct otx2_pool *pool;
	int err;

	pool = &pfvf->qset.pool[pool_id];

	/* Allocate memory for HW to update Aura count.
	 * Alloc one cache line, so that it fits all FC_STYPE modes.
	 */
	if (!pool->fc_addr) {
		err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
		if (err)
			return err;
	}

	/* Initialize this aura's context via AF */
	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
	if (!aq) {
		/* Shared mbox memory buffer is full, flush it and retry */
		err = otx2_sync_mbox_msg(&pfvf->mbox);
		if (err)
			return err;
		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
		if (!aq)
			return -ENOMEM;
	}

	aq->aura_id = aura_id;
	/* Will be filled by AF with correct pool context address */
	aq->aura.pool_addr = pool_id;
	aq->aura.pool_caching = 1;
	aq->aura.shift = ilog2(numptrs) - 8;
	aq->aura.count = numptrs;
	aq->aura.limit = numptrs;
	aq->aura.avg_level = 255;
	aq->aura.ena = 1;
	aq->aura.fc_ena = 1;
	aq->aura.fc_addr = pool->fc_addr->iova;
	aq->aura.fc_hyst_bits = 0; /* Store count on all updates */

1185 1186 1187 1188 1189 1190 1191 1192
	/* Enable backpressure for RQ aura */
	if (aura_id < pfvf->hw.rqpool_cnt) {
		aq->aura.bp_ena = 0;
		aq->aura.nix0_bpid = pfvf->bpid[0];
		/* Set backpressure level for RQ's Aura */
		aq->aura.bp = RQ_BP_LVL_AURA;
	}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	/* Fill AQ info */
	aq->ctype = NPA_AQ_CTYPE_AURA;
	aq->op = NPA_AQ_INSTOP_INIT;

	return 0;
}

static int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
			  int stack_pages, int numptrs, int buf_size)
{
	struct npa_aq_enq_req *aq;
	struct otx2_pool *pool;
	int err;

	pool = &pfvf->qset.pool[pool_id];
	/* Alloc memory for stack which is used to store buffer pointers */
	err = qmem_alloc(pfvf->dev, &pool->stack,
			 stack_pages, pfvf->hw.stack_pg_bytes);
	if (err)
		return err;

	pool->rbsize = buf_size;

1216 1217 1218 1219 1220
	/* Set LMTST addr for NPA batch free */
	if (test_bit(CN10K_LMTST, &pfvf->hw.cap_flag))
		pool->lmt_addr = (__force u64 *)((u64)pfvf->hw.npa_lmt_base +
						 (pool_id * LMT_LINE_SIZE));

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	/* Initialize this pool's context via AF */
	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
	if (!aq) {
		/* Shared mbox memory buffer is full, flush it and retry */
		err = otx2_sync_mbox_msg(&pfvf->mbox);
		if (err) {
			qmem_free(pfvf->dev, pool->stack);
			return err;
		}
		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
		if (!aq) {
			qmem_free(pfvf->dev, pool->stack);
			return -ENOMEM;
		}
	}

	aq->aura_id = pool_id;
	aq->pool.stack_base = pool->stack->iova;
	aq->pool.stack_caching = 1;
	aq->pool.ena = 1;
	aq->pool.buf_size = buf_size / 128;
	aq->pool.stack_max_pages = stack_pages;
	aq->pool.shift = ilog2(numptrs) - 8;
	aq->pool.ptr_start = 0;
	aq->pool.ptr_end = ~0ULL;

	/* Fill AQ info */
	aq->ctype = NPA_AQ_CTYPE_POOL;
	aq->op = NPA_AQ_INSTOP_INIT;

	return 0;
}

int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
{
	int qidx, pool_id, stack_pages, num_sqbs;
	struct otx2_qset *qset = &pfvf->qset;
	struct otx2_hw *hw = &pfvf->hw;
	struct otx2_snd_queue *sq;
	struct otx2_pool *pool;
1261
	dma_addr_t bufptr;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	int err, ptr;

	/* Calculate number of SQBs needed.
	 *
	 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
	 * Last SQE is used for pointing to next SQB.
	 */
	num_sqbs = (hw->sqb_size / 128) - 1;
	num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;

	/* Get no of stack pages needed */
	stack_pages =
		(num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;

	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
		/* Initialize aura context */
		err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
		if (err)
			goto fail;

		/* Initialize pool context */
		err = otx2_pool_init(pfvf, pool_id, stack_pages,
				     num_sqbs, hw->sqb_size);
		if (err)
			goto fail;
	}

	/* Flush accumulated messages */
	err = otx2_sync_mbox_msg(&pfvf->mbox);
	if (err)
		goto fail;

	/* Allocate pointers and free them to aura/pool */
	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
		pool = &pfvf->qset.pool[pool_id];

		sq = &qset->sq[qidx];
		sq->sqb_count = 0;
1302
		sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1303 1304 1305 1306
		if (!sq->sqb_ptrs)
			return -ENOMEM;

		for (ptr = 0; ptr < num_sqbs; ptr++) {
1307 1308
			if (otx2_alloc_rbuf(pfvf, pool, &bufptr))
				return -ENOMEM;
1309
			pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
			sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
		}
	}

	return 0;
fail:
	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
	otx2_aura_pool_free(pfvf);
	return err;
}

int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
{
	struct otx2_hw *hw = &pfvf->hw;
	int stack_pages, pool_id, rq;
	struct otx2_pool *pool;
	int err, ptr, num_ptrs;
1327
	dma_addr_t bufptr;
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

	num_ptrs = pfvf->qset.rqe_cnt;

	stack_pages =
		(num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;

	for (rq = 0; rq < hw->rx_queues; rq++) {
		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
		/* Initialize aura context */
		err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
		if (err)
			goto fail;
	}
	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
		err = otx2_pool_init(pfvf, pool_id, stack_pages,
				     num_ptrs, pfvf->rbsize);
		if (err)
			goto fail;
	}

	/* Flush accumulated messages */
	err = otx2_sync_mbox_msg(&pfvf->mbox);
	if (err)
		goto fail;

	/* Allocate pointers and free them to aura/pool */
	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
		pool = &pfvf->qset.pool[pool_id];
		for (ptr = 0; ptr < num_ptrs; ptr++) {
1357 1358
			if (otx2_alloc_rbuf(pfvf, pool, &bufptr))
				return -ENOMEM;
1359 1360
			pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
						   bufptr + OTX2_HEAD_ROOM);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		}
	}

	return 0;
fail:
	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
	otx2_aura_pool_free(pfvf);
	return err;
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
int otx2_config_npa(struct otx2_nic *pfvf)
{
	struct otx2_qset *qset = &pfvf->qset;
	struct npa_lf_alloc_req  *npalf;
	struct otx2_hw *hw = &pfvf->hw;
	int aura_cnt;

	/* Pool - Stack of free buffer pointers
	 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
	 */

	if (!hw->pool_cnt)
		return -EINVAL;

1385 1386
	qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
				  sizeof(struct otx2_pool), GFP_KERNEL);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (!qset->pool)
		return -ENOMEM;

	/* Get memory to put this msg */
	npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
	if (!npalf)
		return -ENOMEM;

	/* Set aura and pool counts */
	npalf->nr_pools = hw->pool_cnt;
	aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
	npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;

	return otx2_sync_mbox_msg(&pfvf->mbox);
}

int otx2_detach_resources(struct mbox *mbox)
{
	struct rsrc_detach *detach;

1407
	mutex_lock(&mbox->lock);
1408 1409
	detach = otx2_mbox_alloc_msg_detach_resources(mbox);
	if (!detach) {
1410
		mutex_unlock(&mbox->lock);
1411 1412 1413 1414 1415 1416 1417 1418
		return -ENOMEM;
	}

	/* detach all */
	detach->partial = false;

	/* Send detach request to AF */
	otx2_mbox_msg_send(&mbox->mbox, 0);
1419
	mutex_unlock(&mbox->lock);
1420 1421
	return 0;
}
1422
EXPORT_SYMBOL(otx2_detach_resources);
1423 1424 1425 1426 1427 1428 1429

int otx2_attach_npa_nix(struct otx2_nic *pfvf)
{
	struct rsrc_attach *attach;
	struct msg_req *msix;
	int err;

1430
	mutex_lock(&pfvf->mbox.lock);
1431 1432 1433
	/* Get memory to put this msg */
	attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
	if (!attach) {
1434
		mutex_unlock(&pfvf->mbox.lock);
1435 1436 1437 1438 1439 1440 1441 1442 1443
		return -ENOMEM;
	}

	attach->npalf = true;
	attach->nixlf = true;

	/* Send attach request to AF */
	err = otx2_sync_mbox_msg(&pfvf->mbox);
	if (err) {
1444
		mutex_unlock(&pfvf->mbox.lock);
1445 1446 1447
		return err;
	}

1448 1449 1450 1451 1452 1453 1454 1455
	pfvf->nix_blkaddr = BLKADDR_NIX0;

	/* If the platform has two NIX blocks then LF may be
	 * allocated from NIX1.
	 */
	if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
		pfvf->nix_blkaddr = BLKADDR_NIX1;

1456 1457 1458
	/* Get NPA and NIX MSIX vector offsets */
	msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
	if (!msix) {
1459
		mutex_unlock(&pfvf->mbox.lock);
1460 1461 1462 1463 1464
		return -ENOMEM;
	}

	err = otx2_sync_mbox_msg(&pfvf->mbox);
	if (err) {
1465
		mutex_unlock(&pfvf->mbox.lock);
1466 1467
		return err;
	}
1468
	mutex_unlock(&pfvf->mbox.lock);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
	    pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
		dev_err(pfvf->dev,
			"RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
		return -EINVAL;
	}

	return 0;
}
1479
EXPORT_SYMBOL(otx2_attach_npa_nix);
1480

1481 1482 1483 1484
void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
{
	struct hwctx_disable_req *req;

1485
	mutex_lock(&mbox->lock);
1486 1487 1488 1489 1490 1491 1492
	/* Request AQ to disable this context */
	if (npa)
		req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
	else
		req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);

	if (!req) {
1493
		mutex_unlock(&mbox->lock);
1494 1495 1496 1497 1498 1499 1500 1501 1502
		return;
	}

	req->ctype = type;

	if (otx2_sync_mbox_msg(mbox))
		dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
			__func__);

1503
	mutex_unlock(&mbox->lock);
1504 1505
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
{
	struct nix_bp_cfg_req *req;

	if (enable)
		req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
	else
		req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);

	if (!req)
		return -ENOMEM;

	req->chan_base = 0;
	req->chan_cnt = 1;
	req->bpid_per_chan = 0;

	return otx2_sync_mbox_msg(&pfvf->mbox);
}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/* Mbox message handlers */
void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
			    struct cgx_stats_rsp *rsp)
{
	int id;

	for (id = 0; id < CGX_RX_STATS_COUNT; id++)
		pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
	for (id = 0; id < CGX_TX_STATS_COUNT; id++)
		pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
}

1537 1538 1539 1540 1541 1542 1543
void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
				struct cgx_fec_stats_rsp *rsp)
{
	pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
	pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf,
				  struct nix_txsch_alloc_rsp *rsp)
{
	int lvl, schq;

	/* Setup transmit scheduler list */
	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
		for (schq = 0; schq < rsp->schq[lvl]; schq++)
			pf->hw.txschq_list[lvl][schq] =
				rsp->schq_list[lvl][schq];
}
1555
EXPORT_SYMBOL(mbox_handler_nix_txsch_alloc);
1556

1557 1558 1559 1560 1561 1562
void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
			       struct npa_lf_alloc_rsp *rsp)
{
	pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
	pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
}
1563
EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1564 1565 1566 1567 1568 1569 1570

void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
			       struct nix_lf_alloc_rsp *rsp)
{
	pfvf->hw.sqb_size = rsp->sqb_size;
	pfvf->hw.rx_chan_base = rsp->rx_chan_base;
	pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1571 1572
	pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
	pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1573 1574
	pfvf->hw.cgx_links = rsp->cgx_links;
	pfvf->hw.lbk_links = rsp->lbk_links;
1575
}
1576
EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1577 1578 1579 1580 1581 1582 1583

void mbox_handler_msix_offset(struct otx2_nic *pfvf,
			      struct msix_offset_rsp *rsp)
{
	pfvf->hw.npa_msixoff = rsp->npa_msixoff;
	pfvf->hw.nix_msixoff = rsp->nix_msixoff;
}
1584
EXPORT_SYMBOL(mbox_handler_msix_offset);
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
				struct nix_bp_cfg_rsp *rsp)
{
	int chan, chan_id;

	for (chan = 0; chan < rsp->chan_cnt; chan++) {
		chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
		pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
	}
}
1596
EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1597

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
void otx2_free_cints(struct otx2_nic *pfvf, int n)
{
	struct otx2_qset *qset = &pfvf->qset;
	struct otx2_hw *hw = &pfvf->hw;
	int irq, qidx;

	for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
	     qidx < n;
	     qidx++, irq++) {
		int vector = pci_irq_vector(pfvf->pdev, irq);

		irq_set_affinity_hint(vector, NULL);
		free_cpumask_var(hw->affinity_mask[irq]);
		free_irq(vector, &qset->napi[qidx]);
	}
}

void otx2_set_cints_affinity(struct otx2_nic *pfvf)
{
	struct otx2_hw *hw = &pfvf->hw;
	int vec, cpu, irq, cint;

	vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
	cpu = cpumask_first(cpu_online_mask);

	/* CQ interrupts */
	for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
		if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
			return;

		cpumask_set_cpu(cpu, hw->affinity_mask[vec]);

		irq = pci_irq_vector(pfvf->pdev, vec);
		irq_set_affinity_hint(irq, hw->affinity_mask[vec]);

		cpu = cpumask_next(cpu, cpu_online_mask);
		if (unlikely(cpu >= nr_cpu_ids))
			cpu = 0;
	}
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
{
	struct nix_hw_info *rsp;
	struct msg_req *req;
	u16 max_mtu;
	int rc;

	mutex_lock(&pfvf->mbox.lock);

	req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
	if (!req) {
		rc =  -ENOMEM;
		goto out;
	}

	rc = otx2_sync_mbox_msg(&pfvf->mbox);
	if (!rc) {
		rsp = (struct nix_hw_info *)
		       otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);

		/* HW counts VLAN insertion bytes (8 for double tag)
		 * irrespective of whether SQE is requesting to insert VLAN
		 * in the packet or not. Hence these 8 bytes have to be
		 * discounted from max packet size otherwise HW will throw
		 * SMQ errors
		 */
		max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
	}

out:
	mutex_unlock(&pfvf->mbox.lock);
	if (rc) {
		dev_warn(pfvf->dev,
			 "Failed to get MTU from hardware setting default value(1500)\n");
		max_mtu = 1500;
	}
	return max_mtu;
}
EXPORT_SYMBOL(otx2_get_max_mtu);

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
#define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
int __weak								\
otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf,		\
				struct _req_type *req,			\
				struct _rsp_type *rsp)			\
{									\
	/* Nothing to do here */					\
	return 0;							\
}									\
EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
MBOX_UP_CGX_MESSAGES
#undef M