vgic.c 50.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

19
#include <linux/cpu.h>
20 21 22 23
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
24 25 26
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
27
#include <linux/uaccess.h>
28 29 30

#include <linux/irqchip/arm-gic.h>

31
#include <asm/kvm_emulate.h>
32 33
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/*
 * How the whole thing works (courtesy of Christoffer Dall):
 *
 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
 *   something is pending
 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
 *   bitmap (this bitmap is updated by both user land ioctls and guest
 *   mmio ops, and other in-kernel peripherals such as the
 *   arch. timers) and indicate the 'wire' state.
 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
 *   recalculated
 * - To calculate the oracle, we need info for each cpu from
 *   compute_pending_for_cpu, which considers:
 *   - PPI: dist->irq_state & dist->irq_enable
 *   - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
 *   - irq_spi_target is a 'formatted' version of the GICD_ICFGR
 *     registers, stored on each vcpu. We only keep one bit of
 *     information per interrupt, making sure that only one vcpu can
 *     accept the interrupt.
 * - The same is true when injecting an interrupt, except that we only
 *   consider a single interrupt at a time. The irq_spi_cpu array
 *   contains the target CPU for each SPI.
 *
 * The handling of level interrupts adds some extra complexity. We
 * need to track when the interrupt has been EOIed, so we can sample
 * the 'line' again. This is achieved as such:
 *
 * - When a level interrupt is moved onto a vcpu, the corresponding
 *   bit in irq_active is set. As long as this bit is set, the line
 *   will be ignored for further interrupts. The interrupt is injected
 *   into the vcpu with the GICH_LR_EOI bit set (generate a
 *   maintenance interrupt on EOI).
 * - When the interrupt is EOIed, the maintenance interrupt fires,
 *   and clears the corresponding bit in irq_active. This allow the
 *   interrupt line to be sampled again.
 */

72 73 74
#define VGIC_ADDR_UNDEF		(-1)
#define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)

75 76 77 78
#define PRODUCT_ID_KVM		0x4b	/* ASCII code K */
#define IMPLEMENTER_ARM		0x43b
#define GICC_ARCH_VERSION_V2	0x2

79 80 81 82 83 84 85 86 87
#define ACCESS_READ_VALUE	(1 << 0)
#define ACCESS_READ_RAZ		(0 << 0)
#define ACCESS_READ_MASK(x)	((x) & (1 << 0))
#define ACCESS_WRITE_IGNORED	(0 << 1)
#define ACCESS_WRITE_SETBIT	(1 << 1)
#define ACCESS_WRITE_CLEARBIT	(2 << 1)
#define ACCESS_WRITE_VALUE	(3 << 1)
#define ACCESS_WRITE_MASK(x)	((x) & (3 << 1))

88
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
89
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
90
static void vgic_update_state(struct kvm *kvm);
91
static void vgic_kick_vcpus(struct kvm *kvm);
92
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
93 94
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
95 96
static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
97

98 99
static const struct vgic_ops *vgic_ops;
static const struct vgic_params *vgic;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
				int cpuid, u32 offset)
{
	offset >>= 2;
	if (!offset)
		return x->percpu[cpuid].reg;
	else
		return x->shared.reg + offset - 1;
}

static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
				   int cpuid, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		return test_bit(irq, x->percpu[cpuid].reg_ul);

	return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
}

static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
				    int irq, int val)
{
	unsigned long *reg;

	if (irq < VGIC_NR_PRIVATE_IRQS) {
		reg = x->percpu[cpuid].reg_ul;
	} else {
		reg =  x->shared.reg_ul;
		irq -= VGIC_NR_PRIVATE_IRQS;
	}

	if (val)
		set_bit(irq, reg);
	else
		clear_bit(irq, reg);
}

static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
{
	if (unlikely(cpuid >= VGIC_MAX_CPUS))
		return NULL;
	return x->percpu[cpuid].reg_ul;
}

static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
{
	return x->shared.reg_ul;
}

static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
{
	offset >>= 2;
	BUG_ON(offset > (VGIC_NR_IRQS / 4));
154
	if (offset < 8)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
		return x->percpu[cpuid] + offset;
	else
		return x->shared + offset - 8;
}

#define VGIC_CFG_LEVEL	0
#define VGIC_CFG_EDGE	1

static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int irq_val;

	irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
	return irq_val == VGIC_CFG_EDGE;
}

static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
}

static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
}

static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
}

static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
}

static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
}

static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		set_bit(irq - VGIC_NR_PRIVATE_IRQS,
			vcpu->arch.vgic_cpu.pending_shared);
}

static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
			  vcpu->arch.vgic_cpu.pending_shared);
}

239 240
static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
{
241
	return le32_to_cpu(*((u32 *)mmio->data)) & mask;
242 243 244 245
}

static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
{
246
	*((u32 *)mmio->data) = cpu_to_le32(value) & mask;
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
}

/**
 * vgic_reg_access - access vgic register
 * @mmio:   pointer to the data describing the mmio access
 * @reg:    pointer to the virtual backing of vgic distributor data
 * @offset: least significant 2 bits used for word offset
 * @mode:   ACCESS_ mode (see defines above)
 *
 * Helper to make vgic register access easier using one of the access
 * modes defined for vgic register access
 * (read,raz,write-ignored,setbit,clearbit,write)
 */
static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
			    phys_addr_t offset, int mode)
{
	int word_offset = (offset & 3) * 8;
	u32 mask = (1UL << (mmio->len * 8)) - 1;
	u32 regval;

	/*
	 * Any alignment fault should have been delivered to the guest
	 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
	 */

	if (reg) {
		regval = *reg;
	} else {
		BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
		regval = 0;
	}

	if (mmio->is_write) {
		u32 data = mmio_data_read(mmio, mask) << word_offset;
		switch (ACCESS_WRITE_MASK(mode)) {
		case ACCESS_WRITE_IGNORED:
			return;

		case ACCESS_WRITE_SETBIT:
			regval |= data;
			break;

		case ACCESS_WRITE_CLEARBIT:
			regval &= ~data;
			break;

		case ACCESS_WRITE_VALUE:
			regval = (regval & ~(mask << word_offset)) | data;
			break;
		}
		*reg = regval;
	} else {
		switch (ACCESS_READ_MASK(mode)) {
		case ACCESS_READ_RAZ:
			regval = 0;
			/* fall through */

		case ACCESS_READ_VALUE:
			mmio_data_write(mmio, mask, regval >> word_offset);
		}
	}
}

310 311 312 313 314 315 316
static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
			     struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;
	u32 word_offset = offset & 3;

	switch (offset & ~3) {
317
	case 0:			/* GICD_CTLR */
318 319 320 321 322 323 324 325 326 327
		reg = vcpu->kvm->arch.vgic.enabled;
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
		if (mmio->is_write) {
			vcpu->kvm->arch.vgic.enabled = reg & 1;
			vgic_update_state(vcpu->kvm);
			return true;
		}
		break;

328
	case 4:			/* GICD_TYPER */
329 330 331 332 333 334
		reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
		reg |= (VGIC_NR_IRQS >> 5) - 1;
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		break;

335 336
	case 8:			/* GICD_IIDR */
		reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		break;
	}

	return false;
}

static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
			       struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
				       struct kvm_exit_mmio *mmio,
				       phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
	if (mmio->is_write) {
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
					 struct kvm_exit_mmio *mmio,
					 phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
	if (mmio->is_write) {
		if (offset < 4) /* Force SGI enabled */
			*reg |= 0xffff;
380
		vgic_retire_disabled_irqs(vcpu);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
					struct kvm_exit_mmio *mmio,
					phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
	if (mmio->is_write) {
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
					  struct kvm_exit_mmio *mmio,
					  phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
	if (mmio->is_write) {
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
				     struct kvm_exit_mmio *mmio,
				     phys_addr_t offset)
{
	u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
					vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	return false;
}

#define GICD_ITARGETSR_SIZE	32
#define GICD_CPUTARGETS_BITS	8
#define GICD_IRQS_PER_ITARGETSR	(GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
437
	int i;
438 439 440 441
	u32 val = 0;

	irq -= VGIC_NR_PRIVATE_IRQS;

442 443
	for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
		val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

	return val;
}

static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int i, c;
	unsigned long *bmap;
	u32 target;

	irq -= VGIC_NR_PRIVATE_IRQS;

	/*
	 * Pick the LSB in each byte. This ensures we target exactly
	 * one vcpu per IRQ. If the byte is null, assume we target
	 * CPU0.
	 */
	for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
		int shift = i * GICD_CPUTARGETS_BITS;
		target = ffs((val >> shift) & 0xffU);
		target = target ? (target - 1) : 0;
		dist->irq_spi_cpu[irq + i] = target;
		kvm_for_each_vcpu(c, vcpu, kvm) {
			bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
			if (c == target)
				set_bit(irq + i, bmap);
			else
				clear_bit(irq + i, bmap);
		}
	}
}

static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
				   struct kvm_exit_mmio *mmio,
				   phys_addr_t offset)
{
	u32 reg;

	/* We treat the banked interrupts targets as read-only */
	if (offset < 32) {
		u32 roreg = 1 << vcpu->vcpu_id;
		roreg |= roreg << 8;
		roreg |= roreg << 16;

		vgic_reg_access(mmio, &roreg, offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		return false;
	}

	reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static u32 vgic_cfg_expand(u16 val)
{
	u32 res = 0;
	int i;

	/*
	 * Turn a 16bit value like abcd...mnop into a 32bit word
	 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);

	return res;
}

static u16 vgic_cfg_compress(u32 val)
{
	u16 res = 0;
	int i;

	/*
	 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
	 * abcd...mnop which is what we really care about.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;

	return res;
}

/*
 * The distributor uses 2 bits per IRQ for the CFG register, but the
 * LSB is always 0. As such, we only keep the upper bit, and use the
 * two above functions to compress/expand the bits
 */
static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 val;
546 547 548
	u32 *reg;

	reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
549
				  vcpu->vcpu_id, offset >> 1);
550

551
	if (offset & 4)
552 553 554 555 556 557 558 559
		val = *reg >> 16;
	else
		val = *reg & 0xffff;

	val = vgic_cfg_expand(val);
	vgic_reg_access(mmio, &val, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
560
		if (offset < 8) {
561 562 563 564 565
			*reg = ~0U; /* Force PPIs/SGIs to 1 */
			return false;
		}

		val = vgic_cfg_compress(val);
566
		if (offset & 4) {
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
			*reg &= 0xffff;
			*reg |= val << 16;
		} else {
			*reg &= 0xffff << 16;
			*reg |= val;
		}
	}

	return false;
}

static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		vgic_dispatch_sgi(vcpu, reg);
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
/**
 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
 *
 * Move any pending IRQs that have already been assigned to LRs back to the
 * emulated distributor state so that the complete emulated state can be read
 * from the main emulation structures without investigating the LRs.
 *
 * Note that IRQs in the active state in the LRs get their pending state moved
 * to the distributor but the active state stays in the LRs, because we don't
 * track the active state on the distributor side.
 */
static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	int vcpu_id = vcpu->vcpu_id;
610
	int i;
611 612

	for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
613
		struct vgic_lr lr = vgic_get_lr(vcpu, i);
614 615 616 617 618 619 620 621 622 623 624

		/*
		 * There are three options for the state bits:
		 *
		 * 01: pending
		 * 10: active
		 * 11: pending and active
		 *
		 * If the LR holds only an active interrupt (not pending) then
		 * just leave it alone.
		 */
625
		if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
626 627 628 629 630 631 632 633
			continue;

		/*
		 * Reestablish the pending state on the distributor and the
		 * CPU interface.  It may have already been pending, but that
		 * is fine, then we are only setting a few bits that were
		 * already set.
		 */
634 635 636 637 638
		vgic_dist_irq_set(vcpu, lr.irq);
		if (lr.irq < VGIC_NR_SGIS)
			dist->irq_sgi_sources[vcpu_id][lr.irq] |= 1 << lr.source;
		lr.state &= ~LR_STATE_PENDING;
		vgic_set_lr(vcpu, i, lr);
639 640 641 642 643 644

		/*
		 * If there's no state left on the LR (it could still be
		 * active), then the LR does not hold any useful info and can
		 * be marked as free for other use.
		 */
645 646
		if (!(lr.state & LR_STATE_MASK))
			vgic_retire_lr(i, lr.irq, vcpu);
647 648 649 650 651 652

		/* Finally update the VGIC state. */
		vgic_update_state(vcpu->kvm);
	}
}

653 654 655 656
/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
					struct kvm_exit_mmio *mmio,
					phys_addr_t offset)
657
{
658 659 660 661 662 663 664 665 666 667 668 669 670 671
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int sgi;
	int min_sgi = (offset & ~0x3) * 4;
	int max_sgi = min_sgi + 3;
	int vcpu_id = vcpu->vcpu_id;
	u32 reg = 0;

	/* Copy source SGIs from distributor side */
	for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
		int shift = 8 * (sgi - min_sgi);
		reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
	}

	mmio_data_write(mmio, ~0, reg);
672 673 674
	return false;
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
					 struct kvm_exit_mmio *mmio,
					 phys_addr_t offset, bool set)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int sgi;
	int min_sgi = (offset & ~0x3) * 4;
	int max_sgi = min_sgi + 3;
	int vcpu_id = vcpu->vcpu_id;
	u32 reg;
	bool updated = false;

	reg = mmio_data_read(mmio, ~0);

	/* Clear pending SGIs on the distributor */
	for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
		u8 mask = reg >> (8 * (sgi - min_sgi));
		if (set) {
			if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
				updated = true;
			dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
		} else {
			if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
				updated = true;
			dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
		}
	}

	if (updated)
		vgic_update_state(vcpu->kvm);

	return updated;
}

709 710 711 712
static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio,
				phys_addr_t offset)
{
713 714 715 716 717 718 719 720 721 722 723 724 725 726
	if (!mmio->is_write)
		return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
	else
		return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
}

static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
				  struct kvm_exit_mmio *mmio,
				  phys_addr_t offset)
{
	if (!mmio->is_write)
		return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
	else
		return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
727 728
}

729 730 731 732 733 734 735 736 737 738 739 740 741
/*
 * I would have liked to use the kvm_bus_io_*() API instead, but it
 * cannot cope with banked registers (only the VM pointer is passed
 * around, and we need the vcpu). One of these days, someone please
 * fix it!
 */
struct mmio_range {
	phys_addr_t base;
	unsigned long len;
	bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
			    phys_addr_t offset);
};

742
static const struct mmio_range vgic_dist_ranges[] = {
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	{
		.base		= GIC_DIST_CTRL,
		.len		= 12,
		.handle_mmio	= handle_mmio_misc,
	},
	{
		.base		= GIC_DIST_IGROUP,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_ENABLE_SET,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_set_enable_reg,
	},
	{
		.base		= GIC_DIST_ENABLE_CLEAR,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_clear_enable_reg,
	},
	{
		.base		= GIC_DIST_PENDING_SET,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_set_pending_reg,
	},
	{
		.base		= GIC_DIST_PENDING_CLEAR,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_clear_pending_reg,
	},
	{
		.base		= GIC_DIST_ACTIVE_SET,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_ACTIVE_CLEAR,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_PRI,
		.len		= VGIC_NR_IRQS,
		.handle_mmio	= handle_mmio_priority_reg,
	},
	{
		.base		= GIC_DIST_TARGET,
		.len		= VGIC_NR_IRQS,
		.handle_mmio	= handle_mmio_target_reg,
	},
	{
		.base		= GIC_DIST_CONFIG,
		.len		= VGIC_NR_IRQS / 4,
		.handle_mmio	= handle_mmio_cfg_reg,
	},
	{
		.base		= GIC_DIST_SOFTINT,
		.len		= 4,
		.handle_mmio	= handle_mmio_sgi_reg,
	},
803 804 805 806 807 808 809 810 811 812
	{
		.base		= GIC_DIST_SGI_PENDING_CLEAR,
		.len		= VGIC_NR_SGIS,
		.handle_mmio	= handle_mmio_sgi_clear,
	},
	{
		.base		= GIC_DIST_SGI_PENDING_SET,
		.len		= VGIC_NR_SGIS,
		.handle_mmio	= handle_mmio_sgi_set,
	},
813 814 815 816 817 818
	{}
};

static const
struct mmio_range *find_matching_range(const struct mmio_range *ranges,
				       struct kvm_exit_mmio *mmio,
819
				       phys_addr_t offset)
820 821 822 823
{
	const struct mmio_range *r = ranges;

	while (r->len) {
824 825
		if (offset >= r->base &&
		    (offset + mmio->len) <= (r->base + r->len))
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
			return r;
		r++;
	}

	return NULL;
}

/**
 * vgic_handle_mmio - handle an in-kernel MMIO access
 * @vcpu:	pointer to the vcpu performing the access
 * @run:	pointer to the kvm_run structure
 * @mmio:	pointer to the data describing the access
 *
 * returns true if the MMIO access has been performed in kernel space,
 * and false if it needs to be emulated in user space.
 */
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
		      struct kvm_exit_mmio *mmio)
{
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	const struct mmio_range *range;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long base = dist->vgic_dist_base;
	bool updated_state;
	unsigned long offset;

	if (!irqchip_in_kernel(vcpu->kvm) ||
	    mmio->phys_addr < base ||
	    (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
		return false;

	/* We don't support ldrd / strd or ldm / stm to the emulated vgic */
	if (mmio->len > 4) {
		kvm_inject_dabt(vcpu, mmio->phys_addr);
		return true;
	}

862 863
	offset = mmio->phys_addr - base;
	range = find_matching_range(vgic_dist_ranges, mmio, offset);
864 865 866 867 868 869 870 871 872 873 874 875 876
	if (unlikely(!range || !range->handle_mmio)) {
		pr_warn("Unhandled access %d %08llx %d\n",
			mmio->is_write, mmio->phys_addr, mmio->len);
		return false;
	}

	spin_lock(&vcpu->kvm->arch.vgic.lock);
	offset = mmio->phys_addr - range->base - base;
	updated_state = range->handle_mmio(vcpu, mmio, offset);
	spin_unlock(&vcpu->kvm->arch.vgic.lock);
	kvm_prepare_mmio(run, mmio);
	kvm_handle_mmio_return(vcpu, run);

877 878 879
	if (updated_state)
		vgic_kick_vcpus(vcpu->kvm);

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	return true;
}

static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
{
	struct kvm *kvm = vcpu->kvm;
	struct vgic_dist *dist = &kvm->arch.vgic;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	u8 target_cpus;
	int sgi, mode, c, vcpu_id;

	vcpu_id = vcpu->vcpu_id;

	sgi = reg & 0xf;
	target_cpus = (reg >> 16) & 0xff;
	mode = (reg >> 24) & 3;

	switch (mode) {
	case 0:
		if (!target_cpus)
			return;
901
		break;
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

	case 1:
		target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
		break;

	case 2:
		target_cpus = 1 << vcpu_id;
		break;
	}

	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (target_cpus & 1) {
			/* Flag the SGI as pending */
			vgic_dist_irq_set(vcpu, sgi);
			dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
			kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
		}

		target_cpus >>= 1;
	}
}

static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
{
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
	unsigned long pending_private, pending_shared;
	int vcpu_id;

	vcpu_id = vcpu->vcpu_id;
	pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
	pend_shared = vcpu->arch.vgic_cpu.pending_shared;

	pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
	enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
	bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);

	pending = vgic_bitmap_get_shared_map(&dist->irq_state);
	enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
	bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
	bitmap_and(pend_shared, pend_shared,
		   vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
		   VGIC_NR_SHARED_IRQS);

	pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
	pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
	return (pending_private < VGIC_NR_PRIVATE_IRQS ||
		pending_shared < VGIC_NR_SHARED_IRQS);
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
}

/*
 * Update the interrupt state and determine which CPUs have pending
 * interrupts. Must be called with distributor lock held.
 */
static void vgic_update_state(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int c;

	if (!dist->enabled) {
		set_bit(0, &dist->irq_pending_on_cpu);
		return;
	}

	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (compute_pending_for_cpu(vcpu)) {
			pr_debug("CPU%d has pending interrupts\n", c);
			set_bit(c, &dist->irq_pending_on_cpu);
		}
	}
973
}
974

975 976
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
{
977
	return vgic_ops->get_lr(vcpu, lr);
978 979 980 981 982
}

static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
			       struct vgic_lr vlr)
{
983
	vgic_ops->set_lr(vcpu, lr, vlr);
984 985
}

986 987 988
static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
			       struct vgic_lr vlr)
{
989
	vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
990 991 992 993
}

static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
{
994
	return vgic_ops->get_elrsr(vcpu);
995 996
}

997 998
static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
{
999
	return vgic_ops->get_eisr(vcpu);
1000 1001
}

1002 1003
static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
{
1004
	return vgic_ops->get_interrupt_status(vcpu);
1005 1006
}

1007 1008
static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
{
1009
	vgic_ops->enable_underflow(vcpu);
1010 1011 1012 1013
}

static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
{
1014
	vgic_ops->disable_underflow(vcpu);
1015 1016
}

1017 1018
static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
1019
	vgic_ops->get_vmcr(vcpu, vmcr);
1020 1021 1022 1023
}

static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
1024
	vgic_ops->set_vmcr(vcpu, vmcr);
1025 1026
}

1027 1028
static inline void vgic_enable(struct kvm_vcpu *vcpu)
{
1029
	vgic_ops->enable(vcpu);
1030 1031
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);

	vlr.state = 0;
	vgic_set_lr(vcpu, lr_nr, vlr);
	clear_bit(lr_nr, vgic_cpu->lr_used);
	vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
}
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

/*
 * An interrupt may have been disabled after being made pending on the
 * CPU interface (the classic case is a timer running while we're
 * rebooting the guest - the interrupt would kick as soon as the CPU
 * interface gets enabled, with deadly consequences).
 *
 * The solution is to examine already active LRs, and check the
 * interrupt is still enabled. If not, just retire it.
 */
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	int lr;

1057
	for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1058
		struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1059

1060 1061 1062 1063
		if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
			vgic_retire_lr(lr, vlr.irq, vcpu);
			if (vgic_irq_is_active(vcpu, vlr.irq))
				vgic_irq_clear_active(vcpu, vlr.irq);
1064 1065 1066 1067
		}
	}
}

1068 1069 1070 1071 1072 1073 1074
/*
 * Queue an interrupt to a CPU virtual interface. Return true on success,
 * or false if it wasn't possible to queue it.
 */
static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1075
	struct vgic_lr vlr;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	int lr;

	/* Sanitize the input... */
	BUG_ON(sgi_source_id & ~7);
	BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
	BUG_ON(irq >= VGIC_NR_IRQS);

	kvm_debug("Queue IRQ%d\n", irq);

	lr = vgic_cpu->vgic_irq_lr_map[irq];

	/* Do we have an active interrupt for the same CPUID? */
1088 1089 1090 1091 1092 1093 1094 1095 1096
	if (lr != LR_EMPTY) {
		vlr = vgic_get_lr(vcpu, lr);
		if (vlr.source == sgi_source_id) {
			kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
			BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
			vlr.state |= LR_STATE_PENDING;
			vgic_set_lr(vcpu, lr, vlr);
			return true;
		}
1097 1098 1099 1100
	}

	/* Try to use another LR for this interrupt */
	lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1101 1102
			       vgic->nr_lr);
	if (lr >= vgic->nr_lr)
1103 1104 1105 1106 1107 1108
		return false;

	kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
	vgic_cpu->vgic_irq_lr_map[irq] = lr;
	set_bit(lr, vgic_cpu->lr_used);

1109 1110 1111
	vlr.irq = irq;
	vlr.source = sgi_source_id;
	vlr.state = LR_STATE_PENDING;
1112
	if (!vgic_irq_is_edge(vcpu, irq))
1113 1114 1115
		vlr.state |= LR_EOI_INT;

	vgic_set_lr(vcpu, lr, vlr);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	return true;
}

static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long sources;
	int vcpu_id = vcpu->vcpu_id;
	int c;

	sources = dist->irq_sgi_sources[vcpu_id][irq];

	for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
		if (vgic_queue_irq(vcpu, c, irq))
			clear_bit(c, &sources);
	}

	dist->irq_sgi_sources[vcpu_id][irq] = sources;

	/*
	 * If the sources bitmap has been cleared it means that we
	 * could queue all the SGIs onto link registers (see the
	 * clear_bit above), and therefore we are done with them in
	 * our emulated gic and can get rid of them.
	 */
	if (!sources) {
		vgic_dist_irq_clear(vcpu, irq);
		vgic_cpu_irq_clear(vcpu, irq);
		return true;
	}

	return false;
}

static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
{
	if (vgic_irq_is_active(vcpu, irq))
		return true; /* level interrupt, already queued */

	if (vgic_queue_irq(vcpu, 0, irq)) {
		if (vgic_irq_is_edge(vcpu, irq)) {
			vgic_dist_irq_clear(vcpu, irq);
			vgic_cpu_irq_clear(vcpu, irq);
		} else {
			vgic_irq_set_active(vcpu, irq);
		}

		return true;
	}

	return false;
}

/*
 * Fill the list registers with pending interrupts before running the
 * guest.
 */
static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int i, vcpu_id;
	int overflow = 0;

	vcpu_id = vcpu->vcpu_id;

	/*
	 * We may not have any pending interrupt, or the interrupts
	 * may have been serviced from another vcpu. In all cases,
	 * move along.
	 */
	if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
		pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
		goto epilog;
	}

	/* SGIs */
	for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
		if (!vgic_queue_sgi(vcpu, i))
			overflow = 1;
	}

	/* PPIs */
	for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
		if (!vgic_queue_hwirq(vcpu, i))
			overflow = 1;
	}

	/* SPIs */
	for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
		if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
			overflow = 1;
	}

epilog:
	if (overflow) {
1213
		vgic_enable_underflow(vcpu);
1214
	} else {
1215
		vgic_disable_underflow(vcpu);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		/*
		 * We're about to run this VCPU, and we've consumed
		 * everything the distributor had in store for
		 * us. Claim we don't have anything pending. We'll
		 * adjust that if needed while exiting.
		 */
		clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
	}
}

static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
{
1228
	u32 status = vgic_get_interrupt_status(vcpu);
1229 1230
	bool level_pending = false;

1231
	kvm_debug("STATUS = %08x\n", status);
1232

1233
	if (status & INT_STATUS_EOI) {
1234 1235 1236 1237
		/*
		 * Some level interrupts have been EOIed. Clear their
		 * active bit.
		 */
1238 1239
		u64 eisr = vgic_get_eisr(vcpu);
		unsigned long *eisr_ptr = (unsigned long *)&eisr;
1240
		int lr;
1241

1242
		for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1243
			struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1244

1245 1246 1247 1248
			vgic_irq_clear_active(vcpu, vlr.irq);
			WARN_ON(vlr.state & LR_STATE_MASK);
			vlr.state = 0;
			vgic_set_lr(vcpu, lr, vlr);
1249 1250

			/* Any additional pending interrupt? */
1251 1252
			if (vgic_dist_irq_is_pending(vcpu, vlr.irq)) {
				vgic_cpu_irq_set(vcpu, vlr.irq);
1253 1254
				level_pending = true;
			} else {
1255
				vgic_cpu_irq_clear(vcpu, vlr.irq);
1256
			}
1257 1258 1259 1260 1261

			/*
			 * Despite being EOIed, the LR may not have
			 * been marked as empty.
			 */
1262
			vgic_sync_lr_elrsr(vcpu, lr, vlr);
1263 1264 1265
		}
	}

1266
	if (status & INT_STATUS_UNDERFLOW)
1267
		vgic_disable_underflow(vcpu);
1268 1269 1270 1271 1272

	return level_pending;
}

/*
1273 1274
 * Sync back the VGIC state after a guest run. The distributor lock is
 * needed so we don't get preempted in the middle of the state processing.
1275 1276 1277 1278 1279
 */
static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1280 1281
	u64 elrsr;
	unsigned long *elrsr_ptr;
1282 1283 1284 1285
	int lr, pending;
	bool level_pending;

	level_pending = vgic_process_maintenance(vcpu);
1286 1287
	elrsr = vgic_get_elrsr(vcpu);
	elrsr_ptr = (unsigned long *)&elrsr;
1288 1289

	/* Clear mappings for empty LRs */
1290
	for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1291
		struct vgic_lr vlr;
1292 1293 1294 1295

		if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
			continue;

1296
		vlr = vgic_get_lr(vcpu, lr);
1297

1298 1299
		BUG_ON(vlr.irq >= VGIC_NR_IRQS);
		vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1300 1301 1302
	}

	/* Check if we still have something up our sleeve... */
1303 1304
	pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
	if (level_pending || pending < vgic->nr_lr)
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
}

void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	if (!irqchip_in_kernel(vcpu->kvm))
		return;

	spin_lock(&dist->lock);
	__kvm_vgic_flush_hwstate(vcpu);
	spin_unlock(&dist->lock);
}

void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
1322 1323
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

1324 1325 1326
	if (!irqchip_in_kernel(vcpu->kvm))
		return;

1327
	spin_lock(&dist->lock);
1328
	__kvm_vgic_sync_hwstate(vcpu);
1329
	spin_unlock(&dist->lock);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
}

int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	if (!irqchip_in_kernel(vcpu->kvm))
		return 0;

	return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
static void vgic_kick_vcpus(struct kvm *kvm)
{
	struct kvm_vcpu *vcpu;
	int c;

	/*
	 * We've injected an interrupt, time to find out who deserves
	 * a good kick...
	 */
	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (kvm_vgic_vcpu_pending_irq(vcpu))
			kvm_vcpu_kick(vcpu);
	}
}

static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
{
	int is_edge = vgic_irq_is_edge(vcpu, irq);
	int state = vgic_dist_irq_is_pending(vcpu, irq);

	/*
	 * Only inject an interrupt if:
	 * - edge triggered and we have a rising edge
	 * - level triggered and we change level
	 */
	if (is_edge)
		return level > state;
	else
		return level != state;
}

static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
				  unsigned int irq_num, bool level)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int is_edge, is_level;
	int enabled;
	bool ret = true;

	spin_lock(&dist->lock);

	vcpu = kvm_get_vcpu(kvm, cpuid);
	is_edge = vgic_irq_is_edge(vcpu, irq_num);
	is_level = !is_edge;

	if (!vgic_validate_injection(vcpu, irq_num, level)) {
		ret = false;
		goto out;
	}

	if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
		cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
		vcpu = kvm_get_vcpu(kvm, cpuid);
	}

	kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);

	if (level)
		vgic_dist_irq_set(vcpu, irq_num);
	else
		vgic_dist_irq_clear(vcpu, irq_num);

	enabled = vgic_irq_is_enabled(vcpu, irq_num);

	if (!enabled) {
		ret = false;
		goto out;
	}

	if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
		/*
		 * Level interrupt in progress, will be picked up
		 * when EOId.
		 */
		ret = false;
		goto out;
	}

	if (level) {
		vgic_cpu_irq_set(vcpu, irq_num);
		set_bit(cpuid, &dist->irq_pending_on_cpu);
	}

out:
	spin_unlock(&dist->lock);

	return ret;
}

/**
 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
 * @kvm:     The VM structure pointer
 * @cpuid:   The CPU for PPIs
 * @irq_num: The IRQ number that is assigned to the device
 * @level:   Edge-triggered:  true:  to trigger the interrupt
 *			      false: to ignore the call
 *	     Level-sensitive  true:  activates an interrupt
 *			      false: deactivates an interrupt
 *
 * The GIC is not concerned with devices being active-LOW or active-HIGH for
 * level-sensitive interrupts.  You can think of the level parameter as 1
 * being HIGH and 0 being LOW and all devices being active-HIGH.
 */
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
			bool level)
{
	if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
		vgic_kick_vcpus(kvm);

	return 0;
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static irqreturn_t vgic_maintenance_handler(int irq, void *data)
{
	/*
	 * We cannot rely on the vgic maintenance interrupt to be
	 * delivered synchronously. This means we can only use it to
	 * exit the VM, and we perform the handling of EOIed
	 * interrupts on the exit path (see vgic_process_maintenance).
	 */
	return IRQ_HANDLED;
}

1466 1467 1468 1469 1470 1471 1472
/**
 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
 * @vcpu: pointer to the vcpu struct
 *
 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
 * this vcpu and enable the VGIC for this VCPU
 */
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int i;

	if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
		return -EBUSY;

	for (i = 0; i < VGIC_NR_IRQS; i++) {
		if (i < VGIC_NR_PPIS)
			vgic_bitmap_set_irq_val(&dist->irq_enabled,
						vcpu->vcpu_id, i, 1);
		if (i < VGIC_NR_PRIVATE_IRQS)
			vgic_bitmap_set_irq_val(&dist->irq_cfg,
						vcpu->vcpu_id, i, VGIC_CFG_EDGE);

		vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
	}

1493 1494 1495 1496 1497
	/*
	 * Store the number of LRs per vcpu, so we don't have to go
	 * all the way to the distributor structure to find out. Only
	 * assembly code should use this one.
	 */
1498
	vgic_cpu->nr_lr = vgic->nr_lr;
1499 1500

	vgic_enable(vcpu);
1501 1502 1503 1504 1505 1506

	return 0;
}

static void vgic_init_maintenance_interrupt(void *info)
{
1507
	enable_percpu_irq(vgic->maint_irq, 0);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
}

static int vgic_cpu_notify(struct notifier_block *self,
			   unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
		vgic_init_maintenance_interrupt(NULL);
		break;
	case CPU_DYING:
	case CPU_DYING_FROZEN:
1520
		disable_percpu_irq(vgic->maint_irq);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block vgic_cpu_nb = {
	.notifier_call = vgic_cpu_notify,
};

1531 1532
static const struct of_device_id vgic_ids[] = {
	{ .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
1533
	{ .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
1534 1535 1536
	{},
};

1537 1538
int kvm_vgic_hyp_init(void)
{
1539 1540 1541
	const struct of_device_id *matched_id;
	int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
			  const struct vgic_params **);
1542
	struct device_node *vgic_node;
1543
	int ret;
1544

1545 1546
	vgic_node = of_find_matching_node_and_match(NULL,
						    vgic_ids, &matched_id);
1547
	if (!vgic_node) {
1548
		kvm_err("error: no compatible GIC node found\n");
1549 1550 1551
		return -ENODEV;
	}

1552 1553 1554 1555
	vgic_probe = matched_id->data;
	ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
	if (ret)
		return ret;
1556

1557
	ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
1558 1559
				 "vgic", kvm_get_running_vcpus());
	if (ret) {
1560 1561
		kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
		return ret;
1562 1563
	}

1564
	ret = __register_cpu_notifier(&vgic_cpu_nb);
1565 1566 1567 1568 1569 1570 1571
	if (ret) {
		kvm_err("Cannot register vgic CPU notifier\n");
		goto out_free_irq;
	}

	on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);

1572 1573 1574
	/* Callback into for arch code for setup */
	vgic_arch_setup(vgic);

1575
	return 0;
1576 1577

out_free_irq:
1578
	free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
1579 1580 1581
	return ret;
}

1582 1583 1584 1585 1586 1587 1588 1589 1590
/**
 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
 * @kvm: pointer to the kvm struct
 *
 * Map the virtual CPU interface into the VM before running any VCPUs.  We
 * can't do this at creation time, because user space must first set the
 * virtual CPU interface address in the guest physical address space.  Also
 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
 */
1591 1592 1593 1594
int kvm_vgic_init(struct kvm *kvm)
{
	int ret = 0, i;

1595 1596 1597
	if (!irqchip_in_kernel(kvm))
		return 0;

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	mutex_lock(&kvm->lock);

	if (vgic_initialized(kvm))
		goto out;

	if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
	    IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
		kvm_err("Need to set vgic cpu and dist addresses first\n");
		ret = -ENXIO;
		goto out;
	}

	ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1611
				    vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	if (ret) {
		kvm_err("Unable to remap VGIC CPU to VCPU\n");
		goto out;
	}

	for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
		vgic_set_target_reg(kvm, 0, i);

	kvm->arch.vgic.ready = true;
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

int kvm_vgic_create(struct kvm *kvm)
{
1628 1629
	int i, vcpu_lock_idx = -1, ret = 0;
	struct kvm_vcpu *vcpu;
1630 1631 1632

	mutex_lock(&kvm->lock);

1633
	if (kvm->arch.vgic.vctrl_base) {
1634 1635 1636 1637
		ret = -EEXIST;
		goto out;
	}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	/*
	 * Any time a vcpu is run, vcpu_load is called which tries to grab the
	 * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
	 * that no other VCPUs are run while we create the vgic.
	 */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (!mutex_trylock(&vcpu->mutex))
			goto out_unlock;
		vcpu_lock_idx = i;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (vcpu->arch.has_run_once) {
			ret = -EBUSY;
			goto out_unlock;
		}
	}

1656
	spin_lock_init(&kvm->arch.vgic.lock);
1657
	kvm->arch.vgic.in_kernel = true;
1658
	kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1659 1660 1661
	kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
	kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;

1662 1663 1664 1665 1666 1667
out_unlock:
	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
		vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
		mutex_unlock(&vcpu->mutex);
	}

1668 1669 1670 1671 1672
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
static bool vgic_ioaddr_overlap(struct kvm *kvm)
{
	phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
	phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;

	if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
		return 0;
	if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
	    (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
		return -EBUSY;
	return 0;
}

static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
			      phys_addr_t addr, phys_addr_t size)
{
	int ret;

1691 1692 1693 1694 1695 1696
	if (addr & ~KVM_PHYS_MASK)
		return -E2BIG;

	if (addr & (SZ_4K - 1))
		return -EINVAL;

1697 1698 1699 1700 1701
	if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
		return -EEXIST;
	if (addr + size < addr)
		return -EINVAL;

1702
	*ioaddr = addr;
1703 1704
	ret = vgic_ioaddr_overlap(kvm);
	if (ret)
1705 1706
		*ioaddr = VGIC_ADDR_UNDEF;

1707 1708 1709
	return ret;
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
/**
 * kvm_vgic_addr - set or get vgic VM base addresses
 * @kvm:   pointer to the vm struct
 * @type:  the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
 * @addr:  pointer to address value
 * @write: if true set the address in the VM address space, if false read the
 *          address
 *
 * Set or get the vgic base addresses for the distributor and the virtual CPU
 * interface in the VM physical address space.  These addresses are properties
 * of the emulated core/SoC and therefore user space initially knows this
 * information.
 */
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1724 1725 1726 1727 1728 1729 1730
{
	int r = 0;
	struct vgic_dist *vgic = &kvm->arch.vgic;

	mutex_lock(&kvm->lock);
	switch (type) {
	case KVM_VGIC_V2_ADDR_TYPE_DIST:
1731 1732 1733 1734 1735 1736
		if (write) {
			r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
					       *addr, KVM_VGIC_V2_DIST_SIZE);
		} else {
			*addr = vgic->vgic_dist_base;
		}
1737 1738
		break;
	case KVM_VGIC_V2_ADDR_TYPE_CPU:
1739 1740 1741 1742 1743 1744
		if (write) {
			r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
					       *addr, KVM_VGIC_V2_CPU_SIZE);
		} else {
			*addr = vgic->vgic_cpu_base;
		}
1745 1746 1747 1748 1749 1750 1751 1752
		break;
	default:
		r = -ENODEV;
	}

	mutex_unlock(&kvm->lock);
	return r;
}
1753

1754 1755 1756
static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
				 struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
1757
	bool updated = false;
1758 1759 1760 1761 1762
	struct vgic_vmcr vmcr;
	u32 *vmcr_field;
	u32 reg;

	vgic_get_vmcr(vcpu, &vmcr);
1763 1764 1765

	switch (offset & ~0x3) {
	case GIC_CPU_CTRL:
1766
		vmcr_field = &vmcr.ctlr;
1767 1768
		break;
	case GIC_CPU_PRIMASK:
1769
		vmcr_field = &vmcr.pmr;
1770 1771
		break;
	case GIC_CPU_BINPOINT:
1772
		vmcr_field = &vmcr.bpr;
1773 1774
		break;
	case GIC_CPU_ALIAS_BINPOINT:
1775
		vmcr_field = &vmcr.abpr;
1776
		break;
1777 1778
	default:
		BUG();
1779 1780 1781
	}

	if (!mmio->is_write) {
1782
		reg = *vmcr_field;
1783 1784 1785
		mmio_data_write(mmio, ~0, reg);
	} else {
		reg = mmio_data_read(mmio, ~0);
1786 1787 1788
		if (reg != *vmcr_field) {
			*vmcr_field = reg;
			vgic_set_vmcr(vcpu, &vmcr);
1789
			updated = true;
1790
		}
1791 1792 1793 1794 1795 1796 1797 1798
	}
	return updated;
}

static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
			     struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
1799 1800
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
				  struct kvm_exit_mmio *mmio,
				  phys_addr_t offset)
{
	u32 reg;

	if (mmio->is_write)
		return false;

	/* GICC_IIDR */
	reg = (PRODUCT_ID_KVM << 20) |
	      (GICC_ARCH_VERSION_V2 << 16) |
	      (IMPLEMENTER_ARM << 0);
	mmio_data_write(mmio, ~0, reg);
	return false;
}

/*
 * CPU Interface Register accesses - these are not accessed by the VM, but by
 * user space for saving and restoring VGIC state.
 */
1822 1823 1824 1825 1826 1827 1828 1829 1830
static const struct mmio_range vgic_cpu_ranges[] = {
	{
		.base		= GIC_CPU_CTRL,
		.len		= 12,
		.handle_mmio	= handle_cpu_mmio_misc,
	},
	{
		.base		= GIC_CPU_ALIAS_BINPOINT,
		.len		= 4,
1831
		.handle_mmio	= handle_mmio_abpr,
1832 1833 1834 1835
	},
	{
		.base		= GIC_CPU_ACTIVEPRIO,
		.len		= 16,
1836
		.handle_mmio	= handle_mmio_raz_wi,
1837 1838 1839 1840
	},
	{
		.base		= GIC_CPU_IDENT,
		.len		= 4,
1841
		.handle_mmio	= handle_cpu_mmio_ident,
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	},
};

static int vgic_attr_regs_access(struct kvm_device *dev,
				 struct kvm_device_attr *attr,
				 u32 *reg, bool is_write)
{
	const struct mmio_range *r = NULL, *ranges;
	phys_addr_t offset;
	int ret, cpuid, c;
	struct kvm_vcpu *vcpu, *tmp_vcpu;
	struct vgic_dist *vgic;
	struct kvm_exit_mmio mmio;

	offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
	cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
		KVM_DEV_ARM_VGIC_CPUID_SHIFT;

	mutex_lock(&dev->kvm->lock);

	if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
		ret = -EINVAL;
		goto out;
	}

	vcpu = kvm_get_vcpu(dev->kvm, cpuid);
	vgic = &dev->kvm->arch.vgic;

	mmio.len = 4;
	mmio.is_write = is_write;
	if (is_write)
		mmio_data_write(&mmio, ~0, *reg);
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
		mmio.phys_addr = vgic->vgic_dist_base + offset;
		ranges = vgic_dist_ranges;
		break;
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		mmio.phys_addr = vgic->vgic_cpu_base + offset;
		ranges = vgic_cpu_ranges;
		break;
	default:
		BUG();
	}
	r = find_matching_range(ranges, &mmio, offset);

	if (unlikely(!r || !r->handle_mmio)) {
		ret = -ENXIO;
		goto out;
	}


	spin_lock(&vgic->lock);

	/*
	 * Ensure that no other VCPU is running by checking the vcpu->cpu
	 * field.  If no other VPCUs are running we can safely access the VGIC
	 * state, because even if another VPU is run after this point, that
	 * VCPU will not touch the vgic state, because it will block on
	 * getting the vgic->lock in kvm_vgic_sync_hwstate().
	 */
	kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
		if (unlikely(tmp_vcpu->cpu != -1)) {
			ret = -EBUSY;
			goto out_vgic_unlock;
		}
	}

1910 1911 1912 1913 1914 1915 1916 1917
	/*
	 * Move all pending IRQs from the LRs on all VCPUs so the pending
	 * state can be properly represented in the register state accessible
	 * through this API.
	 */
	kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
		vgic_unqueue_irqs(tmp_vcpu);

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	offset -= r->base;
	r->handle_mmio(vcpu, &mmio, offset);

	if (!is_write)
		*reg = mmio_data_read(&mmio, ~0);

	ret = 0;
out_vgic_unlock:
	spin_unlock(&vgic->lock);
out:
	mutex_unlock(&dev->kvm->lock);
	return ret;
}

1932 1933
static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	int r;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 addr;
		unsigned long type = (unsigned long)attr->attr;

		if (copy_from_user(&addr, uaddr, sizeof(addr)))
			return -EFAULT;

		r = kvm_vgic_addr(dev->kvm, type, &addr, true);
		return (r == -ENODEV) ? -ENXIO : r;
	}
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		u32 reg;

		if (get_user(reg, uaddr))
			return -EFAULT;

		return vgic_attr_regs_access(dev, attr, &reg, true);
	}

1960 1961
	}

1962 1963 1964 1965 1966
	return -ENXIO;
}

static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	int r = -ENXIO;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 addr;
		unsigned long type = (unsigned long)attr->attr;

		r = kvm_vgic_addr(dev->kvm, type, &addr, false);
		if (r)
			return (r == -ENODEV) ? -ENXIO : r;

		if (copy_to_user(uaddr, &addr, sizeof(addr)))
			return -EFAULT;
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
		break;
	}

	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		u32 reg = 0;

		r = vgic_attr_regs_access(dev, attr, &reg, false);
		if (r)
			return r;
		r = put_user(reg, uaddr);
		break;
1994
	}
1995

1996 1997 1998
	}

	return r;
1999 2000
}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
static int vgic_has_attr_regs(const struct mmio_range *ranges,
			      phys_addr_t offset)
{
	struct kvm_exit_mmio dev_attr_mmio;

	dev_attr_mmio.len = 4;
	if (find_matching_range(ranges, &dev_attr_mmio, offset))
		return 0;
	else
		return -ENXIO;
}

2013 2014
static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
2015 2016
	phys_addr_t offset;

2017 2018 2019 2020 2021 2022 2023 2024
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR:
		switch (attr->attr) {
		case KVM_VGIC_V2_ADDR_TYPE_DIST:
		case KVM_VGIC_V2_ADDR_TYPE_CPU:
			return 0;
		}
		break;
2025 2026 2027 2028 2029 2030
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
		offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
		return vgic_has_attr_regs(vgic_dist_ranges, offset);
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
		return vgic_has_attr_regs(vgic_cpu_ranges, offset);
2031
	}
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	return -ENXIO;
}

static void vgic_destroy(struct kvm_device *dev)
{
	kfree(dev);
}

static int vgic_create(struct kvm_device *dev, u32 type)
{
	return kvm_vgic_create(dev->kvm);
}

struct kvm_device_ops kvm_arm_vgic_v2_ops = {
	.name = "kvm-arm-vgic",
	.create = vgic_create,
	.destroy = vgic_destroy,
	.set_attr = vgic_set_attr,
	.get_attr = vgic_get_attr,
	.has_attr = vgic_has_attr,
};