You need to sign in or sign up before continuing.
volumes.c 57.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */
#include <linux/sched.h>
#include <linux/bio.h>
20
#include <linux/buffer_head.h>
21
#include <linux/blkdev.h>
22
#include <linux/random.h>
23
#include <asm/div64.h>
24 25 26 27 28 29 30
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"

31 32 33 34 35 36 37
struct map_lookup {
	u64 type;
	int io_align;
	int io_width;
	int stripe_len;
	int sector_size;
	int num_stripes;
C
Chris Mason 已提交
38
	int sub_stripes;
39
	struct btrfs_bio_stripe stripes[];
40 41 42
};

#define map_lookup_size(n) (sizeof(struct map_lookup) + \
43
			    (sizeof(struct btrfs_bio_stripe) * (n)))
44

45 46 47
static DEFINE_MUTEX(uuid_mutex);
static LIST_HEAD(fs_uuids);

48 49 50 51 52 53 54 55 56 57
void btrfs_lock_volumes(void)
{
	mutex_lock(&uuid_mutex);
}

void btrfs_unlock_volumes(void)
{
	mutex_unlock(&uuid_mutex);
}

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
int btrfs_cleanup_fs_uuids(void)
{
	struct btrfs_fs_devices *fs_devices;
	struct list_head *uuid_cur;
	struct list_head *devices_cur;
	struct btrfs_device *dev;

	list_for_each(uuid_cur, &fs_uuids) {
		fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
					list);
		while(!list_empty(&fs_devices->devices)) {
			devices_cur = fs_devices->devices.next;
			dev = list_entry(devices_cur, struct btrfs_device,
					 dev_list);
			if (dev->bdev) {
				close_bdev_excl(dev->bdev);
74
				fs_devices->open_devices--;
75 76
			}
			list_del(&dev->dev_list);
77
			kfree(dev->name);
78 79 80 81 82 83
			kfree(dev);
		}
	}
	return 0;
}

84 85
static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
					  u8 *uuid)
86 87 88 89 90 91
{
	struct btrfs_device *dev;
	struct list_head *cur;

	list_for_each(cur, head) {
		dev = list_entry(cur, struct btrfs_device, dev_list);
92
		if (dev->devid == devid &&
93
		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
94
			return dev;
95
		}
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	}
	return NULL;
}

static struct btrfs_fs_devices *find_fsid(u8 *fsid)
{
	struct list_head *cur;
	struct btrfs_fs_devices *fs_devices;

	list_for_each(cur, &fs_uuids) {
		fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
			return fs_devices;
	}
	return NULL;
}

static int device_list_add(const char *path,
			   struct btrfs_super_block *disk_super,
			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices;
	u64 found_transid = btrfs_super_generation(disk_super);

	fs_devices = find_fsid(disk_super->fsid);
	if (!fs_devices) {
		fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
		if (!fs_devices)
			return -ENOMEM;
		INIT_LIST_HEAD(&fs_devices->devices);
127
		INIT_LIST_HEAD(&fs_devices->alloc_list);
128 129 130 131 132 133 134
		list_add(&fs_devices->list, &fs_uuids);
		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
		fs_devices->num_devices = 0;
		device = NULL;
	} else {
135 136
		device = __find_device(&fs_devices->devices, devid,
				       disk_super->dev_item.uuid);
137 138 139 140 141 142 143 144
	}
	if (!device) {
		device = kzalloc(sizeof(*device), GFP_NOFS);
		if (!device) {
			/* we can safely leave the fs_devices entry around */
			return -ENOMEM;
		}
		device->devid = devid;
145 146
		memcpy(device->uuid, disk_super->dev_item.uuid,
		       BTRFS_UUID_SIZE);
147
		device->barriers = 1;
148
		spin_lock_init(&device->io_lock);
149 150 151 152 153 154
		device->name = kstrdup(path, GFP_NOFS);
		if (!device->name) {
			kfree(device);
			return -ENOMEM;
		}
		list_add(&device->dev_list, &fs_devices->devices);
155
		list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
156 157 158 159 160 161 162 163 164 165 166
		fs_devices->num_devices++;
	}

	if (found_transid > fs_devices->latest_trans) {
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
	}
	*fs_devices_ret = fs_devices;
	return 0;
}

167 168 169 170 171 172 173 174 175 176 177
int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
{
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;

	mutex_lock(&uuid_mutex);
again:
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (!device->in_fs_metadata) {
178
			if (device->bdev) {
179
				close_bdev_excl(device->bdev);
180 181
				fs_devices->open_devices--;
			}
182 183 184 185 186 187 188 189 190 191 192
			list_del(&device->dev_list);
			list_del(&device->dev_alloc_list);
			fs_devices->num_devices--;
			kfree(device->name);
			kfree(device);
			goto again;
		}
	}
	mutex_unlock(&uuid_mutex);
	return 0;
}
193

194 195 196 197 198 199 200 201 202 203 204
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;

	mutex_lock(&uuid_mutex);
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (device->bdev) {
			close_bdev_excl(device->bdev);
205
			fs_devices->open_devices--;
206 207
		}
		device->bdev = NULL;
208
		device->in_fs_metadata = 0;
209
	}
210
	fs_devices->mounted = 0;
211 212 213 214 215 216 217 218 219 220 221
	mutex_unlock(&uuid_mutex);
	return 0;
}

int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
		       int flags, void *holder)
{
	struct block_device *bdev;
	struct list_head *head = &fs_devices->devices;
	struct list_head *cur;
	struct btrfs_device *device;
222 223 224 225 226 227 228 229
	struct block_device *latest_bdev = NULL;
	struct buffer_head *bh;
	struct btrfs_super_block *disk_super;
	u64 latest_devid = 0;
	u64 latest_transid = 0;
	u64 transid;
	u64 devid;
	int ret = 0;
230 231

	mutex_lock(&uuid_mutex);
232 233 234
	if (fs_devices->mounted)
		goto out;

235 236
	list_for_each(cur, head) {
		device = list_entry(cur, struct btrfs_device, dev_list);
237 238 239
		if (device->bdev)
			continue;

240 241 242
		if (!device->name)
			continue;

243
		bdev = open_bdev_excl(device->name, flags, holder);
244

245 246
		if (IS_ERR(bdev)) {
			printk("open %s failed\n", device->name);
247
			goto error;
248
		}
249
		set_blocksize(bdev, 4096);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

		bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
		if (!bh)
			goto error_close;

		disk_super = (struct btrfs_super_block *)bh->b_data;
		if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
		    sizeof(disk_super->magic)))
			goto error_brelse;

		devid = le64_to_cpu(disk_super->dev_item.devid);
		if (devid != device->devid)
			goto error_brelse;

		transid = btrfs_super_generation(disk_super);
		if (transid > latest_transid) {
			latest_devid = devid;
			latest_transid = transid;
			latest_bdev = bdev;
		}

271
		device->bdev = bdev;
272
		device->in_fs_metadata = 0;
273 274
		fs_devices->open_devices++;
		continue;
275

276 277 278 279 280 281
error_brelse:
		brelse(bh);
error_close:
		close_bdev_excl(bdev);
error:
		continue;
282
	}
283 284 285 286 287 288 289 290 291
	if (fs_devices->open_devices == 0) {
		ret = -EIO;
		goto out;
	}
	fs_devices->mounted = 1;
	fs_devices->latest_bdev = latest_bdev;
	fs_devices->latest_devid = latest_devid;
	fs_devices->latest_trans = latest_transid;
out:
292 293 294 295 296 297 298 299 300 301 302 303
	mutex_unlock(&uuid_mutex);
	return ret;
}

int btrfs_scan_one_device(const char *path, int flags, void *holder,
			  struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_super_block *disk_super;
	struct block_device *bdev;
	struct buffer_head *bh;
	int ret;
	u64 devid;
304
	u64 transid;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

	mutex_lock(&uuid_mutex);

	bdev = open_bdev_excl(path, flags, holder);

	if (IS_ERR(bdev)) {
		ret = PTR_ERR(bdev);
		goto error;
	}

	ret = set_blocksize(bdev, 4096);
	if (ret)
		goto error_close;
	bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
	if (!bh) {
		ret = -EIO;
		goto error_close;
	}
	disk_super = (struct btrfs_super_block *)bh->b_data;
	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
	    sizeof(disk_super->magic))) {
326
		ret = -EINVAL;
327 328 329
		goto error_brelse;
	}
	devid = le64_to_cpu(disk_super->dev_item.devid);
330
	transid = btrfs_super_generation(disk_super);
331 332 333 334 335 336 337 338 339
	if (disk_super->label[0])
		printk("device label %s ", disk_super->label);
	else {
		/* FIXME, make a readl uuid parser */
		printk("device fsid %llx-%llx ",
		       *(unsigned long long *)disk_super->fsid,
		       *(unsigned long long *)(disk_super->fsid + 8));
	}
	printk("devid %Lu transid %Lu %s\n", devid, transid, path);
340 341 342 343 344 345 346 347 348 349
	ret = device_list_add(path, disk_super, devid, fs_devices_ret);

error_brelse:
	brelse(bh);
error_close:
	close_bdev_excl(bdev);
error:
	mutex_unlock(&uuid_mutex);
	return ret;
}
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

/*
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
 */
static int find_free_dev_extent(struct btrfs_trans_handle *trans,
				struct btrfs_device *device,
				struct btrfs_path *path,
				u64 num_bytes, u64 *start)
{
	struct btrfs_key key;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	u64 hole_size = 0;
	u64 last_byte = 0;
	u64 search_start = 0;
	u64 search_end = device->total_bytes;
	int ret;
	int slot = 0;
	int start_found;
	struct extent_buffer *l;

	start_found = 0;
	path->reada = 2;

	/* FIXME use last free of some kind */

378 379 380 381
	/* we don't want to overwrite the superblock on the drive,
	 * so we make sure to start at an offset of at least 1MB
	 */
	search_start = max((u64)1024 * 1024, search_start);
382 383 384 385

	if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
		search_start = max(root->fs_info->alloc_start, search_start);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;
	ret = btrfs_previous_item(root, path, 0, key.type);
	if (ret < 0)
		goto error;
	l = path->nodes[0];
	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
no_more_items:
			if (!start_found) {
				if (search_start >= search_end) {
					ret = -ENOSPC;
					goto error;
				}
				*start = search_start;
				start_found = 1;
				goto check_pending;
			}
			*start = last_byte > search_start ?
				last_byte : search_start;
			if (search_end <= *start) {
				ret = -ENOSPC;
				goto error;
			}
			goto check_pending;
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
			goto no_more_items;

		if (key.offset >= search_start && key.offset > last_byte &&
		    start_found) {
			if (last_byte < search_start)
				last_byte = search_start;
			hole_size = key.offset - last_byte;
			if (key.offset > last_byte &&
			    hole_size >= num_bytes) {
				*start = last_byte;
				goto check_pending;
			}
		}
		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
			goto next;
		}

		start_found = 1;
		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
next:
		path->slots[0]++;
		cond_resched();
	}
check_pending:
	/* we have to make sure we didn't find an extent that has already
	 * been allocated by the map tree or the original allocation
	 */
	btrfs_release_path(root, path);
	BUG_ON(*start < search_start);

461
	if (*start + num_bytes > search_end) {
462 463 464 465 466 467 468 469 470 471 472
		ret = -ENOSPC;
		goto error;
	}
	/* check for pending inserts here */
	return 0;

error:
	btrfs_release_path(root, path);
	return ret;
}

473 474 475 476 477 478 479 480
int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
			  struct btrfs_device *device,
			  u64 start)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_key key;
481 482 483
	struct btrfs_key found_key;
	struct extent_buffer *leaf = NULL;
	struct btrfs_dev_extent *extent = NULL;
484 485 486 487 488 489 490 491 492 493

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid,
					  BTRFS_DEV_EXTENT_KEY);
		BUG_ON(ret);
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
		BUG_ON(found_key.offset > start || found_key.offset +
		       btrfs_dev_extent_length(leaf, extent) < start);
		ret = 0;
	} else if (ret == 0) {
		leaf = path->nodes[0];
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
	}
510 511
	BUG_ON(ret);

512 513
	if (device->bytes_used > 0)
		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
514 515 516 517 518 519 520
	ret = btrfs_del_item(trans, root, path);
	BUG_ON(ret);

	btrfs_free_path(path);
	return ret;
}

521 522
int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
			   struct btrfs_device *device,
523 524 525
			   u64 chunk_tree, u64 chunk_objectid,
			   u64 chunk_offset,
			   u64 num_bytes, u64 *start)
526 527 528 529 530 531 532 533
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

534
	WARN_ON(!device->in_fs_metadata);
535 536 537 538 539
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_free_dev_extent(trans, device, path, num_bytes, start);
540
	if (ret) {
541
		goto err;
542
	}
543 544 545 546 547 548 549 550 551 552 553

	key.objectid = device->devid;
	key.offset = *start;
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
	BUG_ON(ret);

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
554 555 556 557 558 559 560 561
	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
		    BTRFS_UUID_SIZE);

562 563 564 565 566 567 568
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
err:
	btrfs_free_path(path);
	return ret;
}

569
static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
570 571 572 573
{
	struct btrfs_path *path;
	int ret;
	struct btrfs_key key;
574
	struct btrfs_chunk *chunk;
575 576 577 578 579
	struct btrfs_key found_key;

	path = btrfs_alloc_path();
	BUG_ON(!path);

580
	key.objectid = objectid;
581 582 583 584 585 586 587 588 589 590 591
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
	if (ret) {
592
		*offset = 0;
593 594 595
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
596 597 598 599 600 601 602 603
		if (found_key.objectid != objectid)
			*offset = 0;
		else {
			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
					       struct btrfs_chunk);
			*offset = found_key.offset +
				btrfs_chunk_length(path->nodes[0], chunk);
		}
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
			   u64 *objectid)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
		*objectid = 1;
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		*objectid = found_key.offset + 1;
	}
	ret = 0;
error:
	btrfs_release_path(root, path);
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
int btrfs_add_device(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;
657
	u64 free_devid = 0;
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = find_next_devid(root, path, &free_devid);
	if (ret)
		goto out;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = free_devid;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
674
				      sizeof(*dev_item));
675 676 677 678 679 680
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

681
	device->devid = free_devid;
682 683 684 685 686 687 688
	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
689 690 691
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
692 693

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
694
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
695 696 697 698 699 700 701
	btrfs_mark_buffer_dirty(leaf);
	ret = 0;

out:
	btrfs_free_path(path);
	return ret;
}
702

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static int btrfs_rm_dev_item(struct btrfs_root *root,
			     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct block_device *bdev = device->bdev;
	struct btrfs_device *next_dev;
	struct btrfs_key key;
	u64 total_bytes;
	struct btrfs_fs_devices *fs_devices;
	struct btrfs_trans_handle *trans;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 1);
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
	if (ret)
		goto out;

	/*
	 * at this point, the device is zero sized.  We want to
	 * remove it from the devices list and zero out the old super
	 */
	list_del_init(&device->dev_list);
	list_del_init(&device->dev_alloc_list);
	fs_devices = root->fs_info->fs_devices;

	next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
			      dev_list);
	if (bdev == root->fs_info->sb->s_bdev)
		root->fs_info->sb->s_bdev = next_dev->bdev;
	if (bdev == fs_devices->latest_bdev)
		fs_devices->latest_bdev = next_dev->bdev;

	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
				    total_bytes - device->total_bytes);

	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
	btrfs_set_super_num_devices(&root->fs_info->super_copy,
				    total_bytes - 1);
out:
	btrfs_free_path(path);
	btrfs_commit_transaction(trans, root);
	return ret;
}

int btrfs_rm_device(struct btrfs_root *root, char *device_path)
{
	struct btrfs_device *device;
	struct block_device *bdev;
771
	struct buffer_head *bh = NULL;
772 773 774 775 776 777 778 779 780 781 782 783 784
	struct btrfs_super_block *disk_super;
	u64 all_avail;
	u64 devid;
	int ret = 0;

	mutex_lock(&root->fs_info->fs_mutex);
	mutex_lock(&uuid_mutex);

	all_avail = root->fs_info->avail_data_alloc_bits |
		root->fs_info->avail_system_alloc_bits |
		root->fs_info->avail_metadata_alloc_bits;

	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
785
	    btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
786 787 788 789 790 791
		printk("btrfs: unable to go below four devices on raid10\n");
		ret = -EINVAL;
		goto out;
	}

	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
792
	    btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
793 794 795 796 797
		printk("btrfs: unable to go below two devices on raid1\n");
		ret = -EINVAL;
		goto out;
	}

798 799 800 801
	if (strcmp(device_path, "missing") == 0) {
		struct list_head *cur;
		struct list_head *devices;
		struct btrfs_device *tmp;
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
		device = NULL;
		devices = &root->fs_info->fs_devices->devices;
		list_for_each(cur, devices) {
			tmp = list_entry(cur, struct btrfs_device, dev_list);
			if (tmp->in_fs_metadata && !tmp->bdev) {
				device = tmp;
				break;
			}
		}
		bdev = NULL;
		bh = NULL;
		disk_super = NULL;
		if (!device) {
			printk("btrfs: no missing devices found to remove\n");
			goto out;
		}

	} else {
		bdev = open_bdev_excl(device_path, 0,
				      root->fs_info->bdev_holder);
		if (IS_ERR(bdev)) {
			ret = PTR_ERR(bdev);
			goto out;
		}
827

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
		if (!bh) {
			ret = -EIO;
			goto error_close;
		}
		disk_super = (struct btrfs_super_block *)bh->b_data;
		if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
		    sizeof(disk_super->magic))) {
			ret = -ENOENT;
			goto error_brelse;
		}
		if (memcmp(disk_super->fsid, root->fs_info->fsid,
			   BTRFS_FSID_SIZE)) {
			ret = -ENOENT;
			goto error_brelse;
		}
		devid = le64_to_cpu(disk_super->dev_item.devid);
		device = btrfs_find_device(root, devid, NULL);
		if (!device) {
			ret = -ENOENT;
			goto error_brelse;
		}

	}
852 853 854 855 856 857 858 859 860 861 862
	root->fs_info->fs_devices->num_devices--;

	ret = btrfs_shrink_device(device, 0);
	if (ret)
		goto error_brelse;


	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
	if (ret)
		goto error_brelse;

863 864 865 866 867 868 869
	if (bh) {
		/* make sure this device isn't detected as part of
		 * the FS anymore
		 */
		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
		set_buffer_dirty(bh);
		sync_dirty_buffer(bh);
870

871 872
		brelse(bh);
	}
873

874 875 876
	if (device->bdev) {
		/* one close for the device struct or super_block */
		close_bdev_excl(device->bdev);
877
		root->fs_info->fs_devices->open_devices--;
878 879 880 881 882
	}
	if (bdev) {
		/* one close for us */
		close_bdev_excl(bdev);
	}
883 884 885 886 887 888 889 890
	kfree(device->name);
	kfree(device);
	ret = 0;
	goto out;

error_brelse:
	brelse(bh);
error_close:
891 892
	if (bdev)
		close_bdev_excl(bdev);
893 894 895 896 897 898
out:
	mutex_unlock(&uuid_mutex);
	mutex_unlock(&root->fs_info->fs_mutex);
	return ret;
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_device *device;
	struct block_device *bdev;
	struct list_head *cur;
	struct list_head *devices;
	u64 total_bytes;
	int ret = 0;


	bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
	if (!bdev) {
		return -EIO;
	}
	mutex_lock(&root->fs_info->fs_mutex);
	trans = btrfs_start_transaction(root, 1);
	devices = &root->fs_info->fs_devices->devices;
	list_for_each(cur, devices) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		if (device->bdev == bdev) {
			ret = -EEXIST;
			goto out;
		}
	}

	device = kzalloc(sizeof(*device), GFP_NOFS);
	if (!device) {
		/* we can safely leave the fs_devices entry around */
		ret = -ENOMEM;
		goto out_close_bdev;
	}

	device->barriers = 1;
	generate_random_uuid(device->uuid);
	spin_lock_init(&device->io_lock);
	device->name = kstrdup(device_path, GFP_NOFS);
	if (!device->name) {
		kfree(device);
		goto out_close_bdev;
	}
	device->io_width = root->sectorsize;
	device->io_align = root->sectorsize;
	device->sector_size = root->sectorsize;
	device->total_bytes = i_size_read(bdev->bd_inode);
	device->dev_root = root->fs_info->dev_root;
	device->bdev = bdev;
946
	device->in_fs_metadata = 1;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

	ret = btrfs_add_device(trans, root, device);
	if (ret)
		goto out_close_bdev;

	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
				    total_bytes + device->total_bytes);

	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
	btrfs_set_super_num_devices(&root->fs_info->super_copy,
				    total_bytes + 1);

	list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
	list_add(&device->dev_alloc_list,
		 &root->fs_info->fs_devices->alloc_list);
	root->fs_info->fs_devices->num_devices++;
964
	root->fs_info->fs_devices->open_devices++;
965 966 967 968 969 970 971 972 973 974
out:
	btrfs_end_transaction(trans, root);
	mutex_unlock(&root->fs_info->fs_mutex);
	return ret;

out_close_bdev:
	close_bdev_excl(bdev);
	goto out;
}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
int btrfs_update_device(struct btrfs_trans_handle *trans,
			struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	root = device->dev_root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
int btrfs_grow_device(struct btrfs_trans_handle *trans,
		      struct btrfs_device *device, u64 new_size)
{
	struct btrfs_super_block *super_copy =
		&device->dev_root->fs_info->super_copy;
	u64 old_total = btrfs_super_total_bytes(super_copy);
	u64 diff = new_size - device->total_bytes;

	btrfs_set_super_total_bytes(super_copy, old_total + diff);
	return btrfs_update_device(trans, device);
}

static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    u64 chunk_tree, u64 chunk_objectid,
			    u64 chunk_offset)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	root = root->fs_info->chunk_root;
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = chunk_objectid;
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	BUG_ON(ret);

	ret = btrfs_del_item(trans, root, path);
	BUG_ON(ret);

	btrfs_free_path(path);
	return 0;
}

int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
			chunk_offset)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
		if (key.objectid == chunk_objectid &&
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
	return ret;
}


int btrfs_relocate_chunk(struct btrfs_root *root,
			 u64 chunk_tree, u64 chunk_objectid,
			 u64 chunk_offset)
{
	struct extent_map_tree *em_tree;
	struct btrfs_root *extent_root;
	struct btrfs_trans_handle *trans;
	struct extent_map *em;
	struct map_lookup *map;
	int ret;
	int i;

1120 1121
	printk("btrfs relocating chunk %llu\n",
	       (unsigned long long)chunk_offset);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	root = root->fs_info->chunk_root;
	extent_root = root->fs_info->extent_root;
	em_tree = &root->fs_info->mapping_tree.map_tree;

	/* step one, relocate all the extents inside this chunk */
	ret = btrfs_shrink_extent_tree(extent_root, chunk_offset);
	BUG_ON(ret);

	trans = btrfs_start_transaction(root, 1);
	BUG_ON(!trans);

	/*
	 * step two, delete the device extents and the
	 * chunk tree entries
	 */
	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
	spin_unlock(&em_tree->lock);

1141 1142
	BUG_ON(em->start > chunk_offset ||
	       em->start + em->len < chunk_offset);
1143 1144 1145 1146 1147 1148
	map = (struct map_lookup *)em->bdev;

	for (i = 0; i < map->num_stripes; i++) {
		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
					    map->stripes[i].physical);
		BUG_ON(ret);
1149

1150 1151 1152 1153
		if (map->stripes[i].dev) {
			ret = btrfs_update_device(trans, map->stripes[i].dev);
			BUG_ON(ret);
		}
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	}
	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
			       chunk_offset);

	BUG_ON(ret);

	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
		BUG_ON(ret);
	}

	spin_lock(&em_tree->lock);
	remove_extent_mapping(em_tree, em);
	kfree(map);
	em->bdev = NULL;

	/* once for the tree */
	free_extent_map(em);
	spin_unlock(&em_tree->lock);

	/* once for us */
	free_extent_map(em);

	btrfs_end_transaction(trans, root);
	return 0;
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
static u64 div_factor(u64 num, int factor)
{
	if (factor == 10)
		return num;
	num *= factor;
	do_div(num, 10);
	return num;
}


int btrfs_balance(struct btrfs_root *dev_root)
{
	int ret;
	struct list_head *cur;
	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
	struct btrfs_device *device;
	u64 old_size;
	u64 size_to_free;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_chunk *chunk;
	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
	struct btrfs_trans_handle *trans;
	struct btrfs_key found_key;


	dev_root = dev_root->fs_info->dev_root;

	mutex_lock(&dev_root->fs_info->fs_mutex);
	/* step one make some room on all the devices */
	list_for_each(cur, devices) {
		device = list_entry(cur, struct btrfs_device, dev_list);
		old_size = device->total_bytes;
		size_to_free = div_factor(old_size, 1);
		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
		if (device->total_bytes - device->bytes_used > size_to_free)
			continue;

		ret = btrfs_shrink_device(device, old_size - size_to_free);
		BUG_ON(ret);

		trans = btrfs_start_transaction(dev_root, 1);
		BUG_ON(!trans);

		ret = btrfs_grow_device(trans, device, old_size);
		BUG_ON(ret);

		btrfs_end_transaction(trans, dev_root);
	}

	/* step two, relocate all the chunks */
	path = btrfs_alloc_path();
	BUG_ON(!path);

	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	while(1) {
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
		if (ret < 0)
			goto error;

		/*
		 * this shouldn't happen, it means the last relocate
		 * failed
		 */
		if (ret == 0)
			break;

		ret = btrfs_previous_item(chunk_root, path, 0,
					  BTRFS_CHUNK_ITEM_KEY);
		if (ret) {
			break;
		}
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		if (found_key.objectid != key.objectid)
			break;
		chunk = btrfs_item_ptr(path->nodes[0],
				       path->slots[0],
				       struct btrfs_chunk);
		key.offset = found_key.offset;
		/* chunk zero is special */
		if (key.offset == 0)
			break;

		ret = btrfs_relocate_chunk(chunk_root,
					   chunk_root->root_key.objectid,
					   found_key.objectid,
					   found_key.offset);
		BUG_ON(ret);
		btrfs_release_path(chunk_root, path);
	}
	ret = 0;
error:
	btrfs_free_path(path);
	mutex_unlock(&dev_root->fs_info->fs_mutex);
	return ret;
}

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	u64 old_total = btrfs_super_total_bytes(super_copy);
	u64 diff = device->total_bytes - new_size;


	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 1);
	if (!trans) {
		ret = -ENOMEM;
		goto done;
	}

	path->reada = 2;

	device->total_bytes = new_size;
	ret = btrfs_update_device(trans, device);
	if (ret) {
		btrfs_end_transaction(trans, root);
		goto done;
	}
	WARN_ON(diff > old_total);
	btrfs_set_super_total_bytes(super_copy, old_total - diff);
	btrfs_end_transaction(trans, root);

	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto done;

		ret = btrfs_previous_item(root, path, 0, key.type);
		if (ret < 0)
			goto done;
		if (ret) {
			ret = 0;
			goto done;
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

		if (key.objectid != device->devid)
			goto done;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

		if (key.offset + length <= new_size)
			goto done;

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
		btrfs_release_path(root, path);

		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
					   chunk_offset);
		if (ret)
			goto done;
	}

done:
	btrfs_free_path(path);
	return ret;
}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
			   struct btrfs_root *root,
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

	array_size = btrfs_super_sys_array_size(super_copy);
	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
		return -EFBIG;

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
	return 0;
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
			       int sub_stripes)
{
	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
		return calc_size;
	else if (type & BTRFS_BLOCK_GROUP_RAID10)
		return calc_size * (num_stripes / sub_stripes);
	else
		return calc_size * num_stripes;
}


1410 1411
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
		      struct btrfs_root *extent_root, u64 *start,
1412
		      u64 *num_bytes, u64 type)
1413 1414
{
	u64 dev_offset;
1415
	struct btrfs_fs_info *info = extent_root->fs_info;
1416
	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
1417
	struct btrfs_path *path;
1418 1419 1420
	struct btrfs_stripe *stripes;
	struct btrfs_device *device = NULL;
	struct btrfs_chunk *chunk;
1421
	struct list_head private_devs;
1422
	struct list_head *dev_list;
1423
	struct list_head *cur;
1424 1425 1426
	struct extent_map_tree *em_tree;
	struct map_lookup *map;
	struct extent_map *em;
1427
	int min_stripe_size = 1 * 1024 * 1024;
1428 1429
	u64 physical;
	u64 calc_size = 1024 * 1024 * 1024;
1430 1431
	u64 max_chunk_size = calc_size;
	u64 min_free;
1432 1433
	u64 avail;
	u64 max_avail = 0;
1434
	u64 percent_max;
1435
	int num_stripes = 1;
1436
	int min_stripes = 1;
C
Chris Mason 已提交
1437
	int sub_stripes = 0;
1438
	int looped = 0;
1439
	int ret;
1440
	int index;
1441
	int stripe_len = 64 * 1024;
1442 1443
	struct btrfs_key key;

1444 1445 1446 1447 1448
	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
	    (type & BTRFS_BLOCK_GROUP_DUP)) {
		WARN_ON(1);
		type &= ~BTRFS_BLOCK_GROUP_DUP;
	}
1449
	dev_list = &extent_root->fs_info->fs_devices->alloc_list;
1450 1451
	if (list_empty(dev_list))
		return -ENOSPC;
1452

1453
	if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
1454
		num_stripes = btrfs_super_num_devices(&info->super_copy);
1455 1456 1457
		min_stripes = 2;
	}
	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
1458
		num_stripes = 2;
1459 1460
		min_stripes = 2;
	}
1461 1462 1463
	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
		num_stripes = min_t(u64, 2,
				  btrfs_super_num_devices(&info->super_copy));
1464 1465
		if (num_stripes < 2)
			return -ENOSPC;
1466
		min_stripes = 2;
1467
	}
C
Chris Mason 已提交
1468 1469 1470 1471 1472 1473
	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
		num_stripes = btrfs_super_num_devices(&info->super_copy);
		if (num_stripes < 4)
			return -ENOSPC;
		num_stripes &= ~(u32)1;
		sub_stripes = 2;
1474
		min_stripes = 4;
C
Chris Mason 已提交
1475
	}
1476 1477 1478

	if (type & BTRFS_BLOCK_GROUP_DATA) {
		max_chunk_size = 10 * calc_size;
1479
		min_stripe_size = 64 * 1024 * 1024;
1480 1481
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
		max_chunk_size = 4 * calc_size;
1482 1483 1484 1485 1486
		min_stripe_size = 32 * 1024 * 1024;
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		calc_size = 8 * 1024 * 1024;
		max_chunk_size = calc_size * 2;
		min_stripe_size = 1 * 1024 * 1024;
1487 1488
	}

1489 1490 1491 1492
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1493 1494 1495 1496
	/* we don't want a chunk larger than 10% of the FS */
	percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
	max_chunk_size = min(percent_max, max_chunk_size);

1497
again:
1498 1499 1500 1501 1502 1503 1504
	if (calc_size * num_stripes > max_chunk_size) {
		calc_size = max_chunk_size;
		do_div(calc_size, num_stripes);
		do_div(calc_size, stripe_len);
		calc_size *= stripe_len;
	}
	/* we don't want tiny stripes */
1505
	calc_size = max_t(u64, min_stripe_size, calc_size);
1506 1507 1508 1509

	do_div(calc_size, stripe_len);
	calc_size *= stripe_len;

1510 1511 1512
	INIT_LIST_HEAD(&private_devs);
	cur = dev_list->next;
	index = 0;
1513 1514 1515

	if (type & BTRFS_BLOCK_GROUP_DUP)
		min_free = calc_size * 2;
1516 1517
	else
		min_free = calc_size;
1518

1519 1520 1521
	/* we add 1MB because we never use the first 1MB of the device */
	min_free += 1024 * 1024;

1522 1523
	/* build a private list of devices we will allocate from */
	while(index < num_stripes) {
1524
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1525

1526 1527 1528 1529
		if (device->total_bytes > device->bytes_used)
			avail = device->total_bytes - device->bytes_used;
		else
			avail = 0;
1530
		cur = cur->next;
1531

1532
		if (device->in_fs_metadata && avail >= min_free) {
1533 1534 1535 1536 1537 1538 1539
			u64 ignored_start = 0;
			ret = find_free_dev_extent(trans, device, path,
						   min_free,
						   &ignored_start);
			if (ret == 0) {
				list_move_tail(&device->dev_alloc_list,
					       &private_devs);
1540
				index++;
1541 1542 1543
				if (type & BTRFS_BLOCK_GROUP_DUP)
					index++;
			}
1544
		} else if (device->in_fs_metadata && avail > max_avail)
1545
			max_avail = avail;
1546 1547 1548 1549 1550
		if (cur == dev_list)
			break;
	}
	if (index < num_stripes) {
		list_splice(&private_devs, dev_list);
1551 1552 1553 1554 1555 1556 1557 1558 1559
		if (index >= min_stripes) {
			num_stripes = index;
			if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
				num_stripes /= sub_stripes;
				num_stripes *= sub_stripes;
			}
			looped = 1;
			goto again;
		}
1560 1561 1562 1563 1564
		if (!looped && max_avail > 0) {
			looped = 1;
			calc_size = max_avail;
			goto again;
		}
1565
		btrfs_free_path(path);
1566 1567
		return -ENOSPC;
	}
1568 1569 1570 1571
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
			      &key.offset);
1572 1573
	if (ret) {
		btrfs_free_path(path);
1574
		return ret;
1575
	}
1576 1577

	chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1578 1579
	if (!chunk) {
		btrfs_free_path(path);
1580
		return -ENOMEM;
1581
	}
1582

1583 1584 1585
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
	if (!map) {
		kfree(chunk);
1586
		btrfs_free_path(path);
1587 1588
		return -ENOMEM;
	}
1589 1590
	btrfs_free_path(path);
	path = NULL;
1591

1592
	stripes = &chunk->stripe;
1593 1594
	*num_bytes = chunk_bytes_by_type(type, calc_size,
					 num_stripes, sub_stripes);
1595

1596
	index = 0;
1597
	while(index < num_stripes) {
1598
		struct btrfs_stripe *stripe;
1599 1600
		BUG_ON(list_empty(&private_devs));
		cur = private_devs.next;
1601
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1602 1603 1604 1605

		/* loop over this device again if we're doing a dup group */
		if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
		    (index == num_stripes - 1))
1606
			list_move_tail(&device->dev_alloc_list, dev_list);
1607 1608

		ret = btrfs_alloc_dev_extent(trans, device,
1609 1610 1611
			     info->chunk_root->root_key.objectid,
			     BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
			     calc_size, &dev_offset);
1612 1613 1614 1615 1616
		BUG_ON(ret);
		device->bytes_used += calc_size;
		ret = btrfs_update_device(trans, device);
		BUG_ON(ret);

1617 1618
		map->stripes[index].dev = device;
		map->stripes[index].physical = dev_offset;
1619 1620 1621 1622
		stripe = stripes + index;
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1623 1624 1625
		physical = dev_offset;
		index++;
	}
1626
	BUG_ON(!list_empty(&private_devs));
1627

1628 1629
	/* key was set above */
	btrfs_set_stack_chunk_length(chunk, *num_bytes);
1630
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1631
	btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1632 1633
	btrfs_set_stack_chunk_type(chunk, type);
	btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1634 1635
	btrfs_set_stack_chunk_io_align(chunk, stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1636
	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
C
Chris Mason 已提交
1637
	btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1638 1639 1640 1641 1642 1643
	map->sector_size = extent_root->sectorsize;
	map->stripe_len = stripe_len;
	map->io_align = stripe_len;
	map->io_width = stripe_len;
	map->type = type;
	map->num_stripes = num_stripes;
C
Chris Mason 已提交
1644
	map->sub_stripes = sub_stripes;
1645 1646 1647 1648

	ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
				btrfs_chunk_item_size(num_stripes));
	BUG_ON(ret);
1649
	*start = key.offset;;
1650 1651 1652 1653 1654

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
	em->bdev = (struct block_device *)map;
1655 1656
	em->start = key.offset;
	em->len = *num_bytes;
1657 1658
	em->block_start = 0;

1659 1660 1661 1662 1663
	if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ret = btrfs_add_system_chunk(trans, chunk_root, &key,
				    chunk, btrfs_chunk_item_size(num_stripes));
		BUG_ON(ret);
	}
1664 1665 1666 1667 1668 1669
	kfree(chunk);

	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
	spin_lock(&em_tree->lock);
	ret = add_extent_mapping(em_tree, em);
	spin_unlock(&em_tree->lock);
1670
	BUG_ON(ret);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	free_extent_map(em);
	return ret;
}

void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
{
	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
}

void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
{
	struct extent_map *em;

	while(1) {
		spin_lock(&tree->map_tree.lock);
		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
		if (em)
			remove_extent_mapping(&tree->map_tree, em);
		spin_unlock(&tree->map_tree.lock);
		if (!em)
			break;
		kfree(em->bdev);
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

1700 1701 1702 1703 1704 1705 1706 1707 1708
int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	int ret;

	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, len);
1709
	spin_unlock(&em_tree->lock);
1710 1711 1712 1713 1714 1715
	BUG_ON(!em);

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
		ret = map->num_stripes;
C
Chris Mason 已提交
1716 1717
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
1718 1719 1720 1721 1722 1723
	else
		ret = 1;
	free_extent_map(em);
	return ret;
}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
static int find_live_mirror(struct map_lookup *map, int first, int num,
			    int optimal)
{
	int i;
	if (map->stripes[optimal].dev->bdev)
		return optimal;
	for (i = first; i < first + num; i++) {
		if (map->stripes[i].dev->bdev)
			return i;
	}
	/* we couldn't find one that doesn't fail.  Just return something
	 * and the io error handling code will clean up eventually
	 */
	return optimal;
}

1740 1741 1742 1743
static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
			     u64 logical, u64 *length,
			     struct btrfs_multi_bio **multi_ret,
			     int mirror_num, struct page *unplug_page)
1744 1745 1746 1747 1748
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	u64 offset;
1749 1750
	u64 stripe_offset;
	u64 stripe_nr;
1751
	int stripes_allocated = 8;
C
Chris Mason 已提交
1752
	int stripes_required = 1;
1753
	int stripe_index;
1754
	int i;
1755
	int num_stripes;
1756
	int max_errors = 0;
1757
	struct btrfs_multi_bio *multi = NULL;
1758

1759 1760 1761 1762 1763 1764 1765 1766 1767
	if (multi_ret && !(rw & (1 << BIO_RW))) {
		stripes_allocated = 1;
	}
again:
	if (multi_ret) {
		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
				GFP_NOFS);
		if (!multi)
			return -ENOMEM;
1768 1769

		atomic_set(&multi->error, 0);
1770
	}
1771 1772 1773

	spin_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, *length);
1774
	spin_unlock(&em_tree->lock);
1775 1776 1777 1778

	if (!em && unplug_page)
		return 0;

1779
	if (!em) {
1780
		printk("unable to find logical %Lu len %Lu\n", logical, *length);
1781
		BUG();
1782
	}
1783 1784 1785 1786

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	offset = logical - em->start;
1787

1788 1789 1790
	if (mirror_num > map->num_stripes)
		mirror_num = 0;

1791
	/* if our multi bio struct is too small, back off and try again */
C
Chris Mason 已提交
1792 1793 1794 1795
	if (rw & (1 << BIO_RW)) {
		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
				 BTRFS_BLOCK_GROUP_DUP)) {
			stripes_required = map->num_stripes;
1796
			max_errors = 1;
C
Chris Mason 已提交
1797 1798
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
			stripes_required = map->sub_stripes;
1799
			max_errors = 1;
C
Chris Mason 已提交
1800 1801 1802 1803
		}
	}
	if (multi_ret && rw == WRITE &&
	    stripes_allocated < stripes_required) {
1804 1805 1806 1807 1808
		stripes_allocated = map->num_stripes;
		free_extent_map(em);
		kfree(multi);
		goto again;
	}
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	stripe_nr = offset;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	do_div(stripe_nr, map->stripe_len);

	stripe_offset = stripe_nr * map->stripe_len;
	BUG_ON(offset < stripe_offset);

	/* stripe_offset is the offset of this block in its stripe*/
	stripe_offset = offset - stripe_offset;

1822
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
C
Chris Mason 已提交
1823
			 BTRFS_BLOCK_GROUP_RAID10 |
1824 1825 1826 1827 1828 1829 1830
			 BTRFS_BLOCK_GROUP_DUP)) {
		/* we limit the length of each bio to what fits in a stripe */
		*length = min_t(u64, em->len - offset,
			      map->stripe_len - stripe_offset);
	} else {
		*length = em->len - offset;
	}
1831 1832

	if (!multi_ret && !unplug_page)
1833 1834
		goto out;

1835
	num_stripes = 1;
1836
	stripe_index = 0;
1837
	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1838 1839
		if (unplug_page || (rw & (1 << BIO_RW)))
			num_stripes = map->num_stripes;
1840
		else if (mirror_num)
1841
			stripe_index = mirror_num - 1;
1842 1843 1844 1845 1846
		else {
			stripe_index = find_live_mirror(map, 0,
					    map->num_stripes,
					    current->pid % map->num_stripes);
		}
1847

1848
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1849
		if (rw & (1 << BIO_RW))
1850
			num_stripes = map->num_stripes;
1851 1852
		else if (mirror_num)
			stripe_index = mirror_num - 1;
1853

C
Chris Mason 已提交
1854 1855 1856 1857 1858 1859
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;

		stripe_index = do_div(stripe_nr, factor);
		stripe_index *= map->sub_stripes;

1860 1861
		if (unplug_page || (rw & (1 << BIO_RW)))
			num_stripes = map->sub_stripes;
C
Chris Mason 已提交
1862 1863
		else if (mirror_num)
			stripe_index += mirror_num - 1;
1864 1865 1866 1867 1868
		else {
			stripe_index = find_live_mirror(map, stripe_index,
					      map->sub_stripes, stripe_index +
					      current->pid % map->sub_stripes);
		}
1869 1870 1871 1872 1873 1874 1875 1876
	} else {
		/*
		 * after this do_div call, stripe_nr is the number of stripes
		 * on this device we have to walk to find the data, and
		 * stripe_index is the number of our device in the stripe array
		 */
		stripe_index = do_div(stripe_nr, map->num_stripes);
	}
1877
	BUG_ON(stripe_index >= map->num_stripes);
1878

1879 1880 1881 1882 1883 1884
	for (i = 0; i < num_stripes; i++) {
		if (unplug_page) {
			struct btrfs_device *device;
			struct backing_dev_info *bdi;

			device = map->stripes[stripe_index].dev;
1885 1886 1887 1888 1889
			if (device->bdev) {
				bdi = blk_get_backing_dev_info(device->bdev);
				if (bdi->unplug_io_fn) {
					bdi->unplug_io_fn(bdi, unplug_page);
				}
1890 1891 1892 1893 1894 1895 1896
			}
		} else {
			multi->stripes[i].physical =
				map->stripes[stripe_index].physical +
				stripe_offset + stripe_nr * map->stripe_len;
			multi->stripes[i].dev = map->stripes[stripe_index].dev;
		}
1897
		stripe_index++;
1898
	}
1899 1900 1901
	if (multi_ret) {
		*multi_ret = multi;
		multi->num_stripes = num_stripes;
1902
		multi->max_errors = max_errors;
1903
	}
1904
out:
1905 1906 1907 1908
	free_extent_map(em);
	return 0;
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
		      u64 logical, u64 *length,
		      struct btrfs_multi_bio **multi_ret, int mirror_num)
{
	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
				 mirror_num, NULL);
}

int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
		      u64 logical, struct page *page)
{
	u64 length = PAGE_CACHE_SIZE;
	return __btrfs_map_block(map_tree, READ, logical, &length,
				 NULL, 0, page);
}


1926 1927 1928 1929 1930 1931 1932
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
static void end_bio_multi_stripe(struct bio *bio, int err)
#else
static int end_bio_multi_stripe(struct bio *bio,
				   unsigned int bytes_done, int err)
#endif
{
1933
	struct btrfs_multi_bio *multi = bio->bi_private;
1934 1935 1936 1937 1938 1939

#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
	if (bio->bi_size)
		return 1;
#endif
	if (err)
1940
		atomic_inc(&multi->error);
1941

1942
	if (atomic_dec_and_test(&multi->stripes_pending)) {
1943 1944
		bio->bi_private = multi->private;
		bio->bi_end_io = multi->end_io;
1945 1946 1947
		/* only send an error to the higher layers if it is
		 * beyond the tolerance of the multi-bio
		 */
1948
		if (atomic_read(&multi->error) > multi->max_errors) {
1949
			err = -EIO;
1950 1951 1952 1953 1954 1955
		} else if (err) {
			/*
			 * this bio is actually up to date, we didn't
			 * go over the max number of errors
			 */
			set_bit(BIO_UPTODATE, &bio->bi_flags);
1956
			err = 0;
1957
		}
1958 1959
		kfree(multi);

1960 1961 1962
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
		bio_endio(bio, bio->bi_size, err);
#else
1963
		bio_endio(bio, err);
1964
#endif
1965 1966 1967 1968 1969 1970 1971 1972
	} else {
		bio_put(bio);
	}
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
	return 0;
#endif
}

1973 1974
int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
		  int mirror_num)
1975 1976 1977
{
	struct btrfs_mapping_tree *map_tree;
	struct btrfs_device *dev;
1978
	struct bio *first_bio = bio;
1979 1980 1981
	u64 logical = bio->bi_sector << 9;
	u64 length = 0;
	u64 map_length;
1982
	struct btrfs_multi_bio *multi = NULL;
1983
	int ret;
1984 1985
	int dev_nr = 0;
	int total_devs = 1;
1986

1987
	length = bio->bi_size;
1988 1989
	map_tree = &root->fs_info->mapping_tree;
	map_length = length;
1990

1991 1992
	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
			      mirror_num);
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	BUG_ON(ret);

	total_devs = multi->num_stripes;
	if (map_length < length) {
		printk("mapping failed logical %Lu bio len %Lu "
		       "len %Lu\n", logical, length, map_length);
		BUG();
	}
	multi->end_io = first_bio->bi_end_io;
	multi->private = first_bio->bi_private;
	atomic_set(&multi->stripes_pending, multi->num_stripes);

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	while(dev_nr < total_devs) {
		if (total_devs > 1) {
			if (dev_nr < total_devs - 1) {
				bio = bio_clone(first_bio, GFP_NOFS);
				BUG_ON(!bio);
			} else {
				bio = first_bio;
			}
			bio->bi_private = multi;
			bio->bi_end_io = end_bio_multi_stripe;
		}
2016 2017
		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
		dev = multi->stripes[dev_nr].dev;
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		if (dev && dev->bdev) {
			bio->bi_bdev = dev->bdev;
			spin_lock(&dev->io_lock);
			dev->total_ios++;
			spin_unlock(&dev->io_lock);
			submit_bio(rw, bio);
		} else {
			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
			bio->bi_sector = logical >> 9;
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
			bio_endio(bio, bio->bi_size, -EIO);
#else
			bio_endio(bio, -EIO);
#endif
		}
2033 2034
		dev_nr++;
	}
2035 2036
	if (total_devs == 1)
		kfree(multi);
2037 2038 2039
	return 0;
}

2040 2041
struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
				       u8 *uuid)
2042
{
2043
	struct list_head *head = &root->fs_info->fs_devices->devices;
2044

2045
	return __find_device(head, devid, uuid);
2046 2047
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
					    u64 devid, u8 *dev_uuid)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;

	device = kzalloc(sizeof(*device), GFP_NOFS);
	list_add(&device->dev_list,
		 &fs_devices->devices);
	list_add(&device->dev_alloc_list,
		 &fs_devices->alloc_list);
	device->barriers = 1;
	device->dev_root = root->fs_info->dev_root;
	device->devid = devid;
	fs_devices->num_devices++;
	spin_lock_init(&device->io_lock);
	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
	return device;
}


2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
			  struct extent_buffer *leaf,
			  struct btrfs_chunk *chunk)
{
	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
2079
	u8 uuid[BTRFS_UUID_SIZE];
2080
	int num_stripes;
2081
	int ret;
2082
	int i;
2083

2084 2085
	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
2086

2087 2088
	spin_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
2089
	spin_unlock(&map_tree->map_tree.lock);
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

	map = kzalloc(sizeof(*map), GFP_NOFS);
	if (!map)
		return -ENOMEM;

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
2106 2107
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

	em->bdev = (struct block_device *)map;
	em->start = logical;
	em->len = length;
	em->block_start = 0;

2118 2119 2120 2121 2122 2123
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
C
Chris Mason 已提交
2124
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
2125 2126 2127 2128
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
2129 2130 2131 2132
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
		map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
2133 2134

		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
2135 2136 2137 2138
			kfree(map);
			free_extent_map(em);
			return -EIO;
		}
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
		if (!map->stripes[i].dev) {
			map->stripes[i].dev =
				add_missing_dev(root, devid, uuid);
			if (!map->stripes[i].dev) {
				kfree(map);
				free_extent_map(em);
				return -EIO;
			}
		}
		map->stripes[i].dev->in_fs_metadata = 1;
2149 2150 2151 2152 2153
	}

	spin_lock(&map_tree->map_tree.lock);
	ret = add_extent_mapping(&map_tree->map_tree, em);
	spin_unlock(&map_tree->map_tree.lock);
2154
	BUG_ON(ret);
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	free_extent_map(em);

	return 0;
}

static int fill_device_from_item(struct extent_buffer *leaf,
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
	device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
2175
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2176 2177 2178 2179

	return 0;
}

2180
static int read_one_dev(struct btrfs_root *root,
2181 2182 2183 2184 2185 2186
			struct extent_buffer *leaf,
			struct btrfs_dev_item *dev_item)
{
	struct btrfs_device *device;
	u64 devid;
	int ret;
2187 2188
	u8 dev_uuid[BTRFS_UUID_SIZE];

2189
	devid = btrfs_device_id(leaf, dev_item);
2190 2191 2192 2193
	read_extent_buffer(leaf, dev_uuid,
			   (unsigned long)btrfs_device_uuid(dev_item),
			   BTRFS_UUID_SIZE);
	device = btrfs_find_device(root, devid, dev_uuid);
2194
	if (!device) {
2195 2196
		printk("warning devid %Lu missing\n", devid);
		device = add_missing_dev(root, devid, dev_uuid);
2197 2198 2199
		if (!device)
			return -ENOMEM;
	}
2200 2201 2202

	fill_device_from_item(leaf, dev_item, device);
	device->dev_root = root->fs_info->dev_root;
2203
	device->in_fs_metadata = 1;
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	ret = 0;
#if 0
	ret = btrfs_open_device(device);
	if (ret) {
		kfree(device);
	}
#endif
	return ret;
}

2214 2215 2216 2217 2218 2219 2220 2221 2222
int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
{
	struct btrfs_dev_item *dev_item;

	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
						     dev_item);
	return read_one_dev(root, buf, dev_item);
}

2223 2224 2225
int btrfs_read_sys_array(struct btrfs_root *root)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2226
	struct extent_buffer *sb;
2227 2228
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
2229 2230 2231
	u8 *ptr;
	unsigned long sb_ptr;
	int ret = 0;
2232 2233 2234 2235
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
2236
	struct btrfs_key key;
2237

2238 2239 2240 2241 2242 2243
	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
					  BTRFS_SUPER_INFO_SIZE);
	if (!sb)
		return -ENOMEM;
	btrfs_set_buffer_uptodate(sb);
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

2254
		len = sizeof(*disk_key); ptr += len;
2255 2256 2257
		sb_ptr += len;
		cur += len;

2258
		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2259
			chunk = (struct btrfs_chunk *)sb_ptr;
2260
			ret = read_one_chunk(root, &key, sb, chunk);
2261 2262
			if (ret)
				break;
2263 2264 2265
			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
			len = btrfs_chunk_item_size(num_stripes);
		} else {
2266 2267
			ret = -EIO;
			break;
2268 2269 2270 2271 2272
		}
		ptr += len;
		sb_ptr += len;
		cur += len;
	}
2273
	free_extent_buffer(sb);
2274
	return ret;
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
}

int btrfs_read_chunk_tree(struct btrfs_root *root)
{
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	/* first we search for all of the device items, and then we
	 * read in all of the chunk items.  This way we can create chunk
	 * mappings that reference all of the devices that are afound
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
again:
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	while(1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
				break;
			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
				struct btrfs_dev_item *dev_item;
				dev_item = btrfs_item_ptr(leaf, slot,
						  struct btrfs_dev_item);
2320
				ret = read_one_dev(root, leaf, dev_item);
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
				BUG_ON(ret);
			}
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
			ret = read_one_chunk(root, &found_key, leaf, chunk);
		}
		path->slots[0]++;
	}
	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
		key.objectid = 0;
		btrfs_release_path(root, path);
		goto again;
	}

	btrfs_free_path(path);
	ret = 0;
error:
	return ret;
}