mmu.c 52.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
23
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
24
#include <trace/events/kvm.h>
25
#include <asm/pgalloc.h>
26
#include <asm/cacheflush.h>
27 28
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
29
#include <asm/kvm_mmio.h>
30
#include <asm/kvm_asm.h>
31
#include <asm/kvm_emulate.h>
32
#include <asm/virt.h>
33 34

#include "trace.h"
35

36
static pgd_t *boot_hyp_pgd;
37
static pgd_t *hyp_pgd;
38
static pgd_t *merged_hyp_pgd;
39 40
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

41 42 43 44
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

45
#define S2_PGD_SIZE	(PTRS_PER_S2_PGD * sizeof(pgd_t))
46
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
47

48 49 50 51 52 53
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
54 55 56 57 58 59 60 61 62 63 64
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
65
}
66

67
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
68
{
69
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
70 71
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

92 93 94 95 96
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

97 98 99 100 101 102 103 104 105 106 107
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
108
	if (!pmd_thp_or_huge(*pmd))
109 110 111 112 113 114 115
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

148
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
149
{
150 151
	pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
	stage2_pgd_clear(pgd);
152
	kvm_tlb_flush_vmid_ipa(kvm, addr);
153
	stage2_pud_free(pud_table);
154
	put_page(virt_to_page(pgd));
155 156
}

157
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
158
{
159 160 161
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
	VM_BUG_ON(stage2_pud_huge(*pud));
	stage2_pud_clear(pud);
162
	kvm_tlb_flush_vmid_ipa(kvm, addr);
163
	stage2_pmd_free(pmd_table);
164 165
	put_page(virt_to_page(pud));
}
166

167
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
168
{
169
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
170
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
171 172 173
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
174 175 176
	put_page(virt_to_page(pmd));
}

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
 */
197
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
198
		       phys_addr_t addr, phys_addr_t end)
199
{
200 201 202 203 204 205
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
206 207
			pte_t old_pte = *pte;

208 209
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
210 211

			/* No need to invalidate the cache for device mappings */
212
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
213 214 215
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
216 217 218
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

219 220
	if (stage2_pte_table_empty(start_pte))
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
221 222
}

223
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
224
		       phys_addr_t addr, phys_addr_t end)
225
{
226 227
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
228

229
	start_pmd = pmd = stage2_pmd_offset(pud, addr);
230
	do {
231
		next = stage2_pmd_addr_end(addr, end);
232
		if (!pmd_none(*pmd)) {
233
			if (pmd_thp_or_huge(*pmd)) {
234 235
				pmd_t old_pmd = *pmd;

236 237
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
238 239 240

				kvm_flush_dcache_pmd(old_pmd);

241 242
				put_page(virt_to_page(pmd));
			} else {
243
				unmap_stage2_ptes(kvm, pmd, addr, next);
244
			}
245
		}
246
	} while (pmd++, addr = next, addr != end);
247

248 249
	if (stage2_pmd_table_empty(start_pmd))
		clear_stage2_pud_entry(kvm, pud, start_addr);
250
}
251

252
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
253 254 255 256
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
257

258
	start_pud = pud = stage2_pud_offset(pgd, addr);
259
	do {
260 261 262
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud)) {
263 264
				pud_t old_pud = *pud;

265
				stage2_pud_clear(pud);
266
				kvm_tlb_flush_vmid_ipa(kvm, addr);
267
				kvm_flush_dcache_pud(old_pud);
268 269
				put_page(virt_to_page(pud));
			} else {
270
				unmap_stage2_pmds(kvm, pud, addr, next);
271 272
			}
		}
273
	} while (pud++, addr = next, addr != end);
274

275 276
	if (stage2_pud_table_empty(start_pud))
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
277 278
}

279 280 281 282 283 284 285 286 287 288 289 290
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
291 292 293 294 295
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

296
	assert_spin_locked(&kvm->mmu_lock);
297
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
298
	do {
299 300 301 302 303 304 305
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
306 307 308
		next = stage2_pgd_addr_end(addr, end);
		if (!stage2_pgd_none(*pgd))
			unmap_stage2_puds(kvm, pgd, addr, next);
309 310 311 312 313 314
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
315
	} while (pgd++, addr = next, addr != end);
316 317
}

318 319 320 321 322 323 324
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
325
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
326
			kvm_flush_dcache_pte(*pte);
327 328 329 330 331 332 333 334 335
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

336
	pmd = stage2_pmd_offset(pud, addr);
337
	do {
338
		next = stage2_pmd_addr_end(addr, end);
339
		if (!pmd_none(*pmd)) {
340
			if (pmd_thp_or_huge(*pmd))
341 342
				kvm_flush_dcache_pmd(*pmd);
			else
343 344 345 346 347 348 349 350 351 352 353
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

354
	pud = stage2_pud_offset(pgd, addr);
355
	do {
356 357 358
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud))
359 360
				kvm_flush_dcache_pud(*pud);
			else
361 362 363 364 365 366 367 368 369 370 371 372 373
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

374
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
375
	do {
376
		next = stage2_pgd_addr_end(addr, end);
377 378 379 380 381 382 383 384 385 386 387
		stage2_flush_puds(kvm, pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
388
static void stage2_flush_vm(struct kvm *kvm)
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
	pgd = pgdp + pgd_index(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

499
/**
500
 * free_hyp_pgds - free Hyp-mode page tables
501
 *
502 503 504 505 506 507
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
 * PAGE_OFFSET), or device mappings in the vmalloc range (from
 * VMALLOC_START to VMALLOC_END).
 *
 * boot_hyp_pgd should only map two pages for the init code.
508
 */
509
void free_hyp_pgds(void)
510 511 512
{
	unsigned long addr;

513
	mutex_lock(&kvm_hyp_pgd_mutex);
514

515 516 517 518 519 520
	if (boot_hyp_pgd) {
		unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

521
	if (hyp_pgd) {
522
		unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
523
		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
M
Marc Zyngier 已提交
524
			unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
525
		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
M
Marc Zyngier 已提交
526
			unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
527

528
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
529
		hyp_pgd = NULL;
530
	}
531 532 533 534 535
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
536

537 538 539 540
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
541 542
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
543 544 545 546
{
	pte_t *pte;
	unsigned long addr;

547 548
	addr = start;
	do {
549 550
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
551
		get_page(virt_to_page(pte));
552
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
553
		pfn++;
554
	} while (addr += PAGE_SIZE, addr != end);
555 556 557
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
558 559
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
560 561 562 563 564
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

565 566
	addr = start;
	do {
567
		pmd = pmd_offset(pud, addr);
568 569 570 571

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
572
			pte = pte_alloc_one_kernel(NULL, addr);
573 574 575 576 577
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
578
			get_page(virt_to_page(pmd));
579
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
580 581 582 583
		}

		next = pmd_addr_end(addr, end);

584 585
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
586
	} while (addr = next, addr != end);
587 588 589 590

	return 0;
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
			pud_populate(NULL, pud, pmd);
			get_page(virt_to_page(pud));
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

625 626 627
static int __create_hyp_mappings(pgd_t *pgdp,
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
628 629 630 631 632 633 634
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
635 636 637
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
638
		pgd = pgdp + pgd_index(addr);
639

640 641 642 643
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
644 645 646
				err = -ENOMEM;
				goto out;
			}
647 648 649
			pgd_populate(NULL, pgd, pud);
			get_page(virt_to_page(pgd));
			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
650 651 652
		}

		next = pgd_addr_end(addr, end);
653
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
654 655
		if (err)
			goto out;
656
		pfn += (next - addr) >> PAGE_SHIFT;
657
	} while (addr = next, addr != end);
658 659 660 661 662
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

663 664 665 666 667 668 669 670 671 672 673
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

674
/**
675
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
676 677
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
678
 * @prot:	The protection to be applied to this range
679
 *
680 681 682
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
683
 */
684
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
685
{
686 687
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
688 689
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
690

691 692 693
	if (is_kernel_in_hyp_mode())
		return 0;

694 695
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
696

697 698
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
699

700 701 702 703
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
		err = __create_hyp_mappings(hyp_pgd, virt_addr,
					    virt_addr + PAGE_SIZE,
					    __phys_to_pfn(phys_addr),
704
					    prot);
705 706 707 708 709
		if (err)
			return err;
	}

	return 0;
710 711 712
}

/**
713 714 715
 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
 * @from:	The kernel start VA of the range
 * @to:		The kernel end VA of the range (exclusive)
716
 * @phys_addr:	The physical start address which gets mapped
717 718 719
 *
 * The resulting HYP VA is the same as the kernel VA, modulo
 * HYP_PAGE_OFFSET.
720
 */
721
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
722
{
M
Marc Zyngier 已提交
723 724
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
725

726 727 728
	if (is_kernel_in_hyp_mode())
		return 0;

729 730 731 732 733 734
	/* Check for a valid kernel IO mapping */
	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
		return -EINVAL;

	return __create_hyp_mappings(hyp_pgd, start, end,
				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
735 736
}

737 738 739 740
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
741 742 743
 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 * allocated pages.
744 745 746 747 748 749 750 751 752 753 754 755 756
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

757 758 759
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
	pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
	if (!pgd)
760 761
		return -ENOMEM;

762 763 764 765
	kvm->arch.pgd = pgd;
	return 0;
}

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
821
	down_read(&current->mm->mmap_sem);
822 823 824 825 826 827 828
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
829
	up_read(&current->mm->mmap_sem);
830 831 832
	srcu_read_unlock(&kvm->srcu, idx);
}

833 834 835 836 837 838 839 840 841 842
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
843
	void *pgd = NULL;
844

845
	spin_lock(&kvm->mmu_lock);
846 847
	if (kvm->arch.pgd) {
		unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
848
		pgd = READ_ONCE(kvm->arch.pgd);
849 850
		kvm->arch.pgd = NULL;
	}
851 852
	spin_unlock(&kvm->mmu_lock);

853
	/* Free the HW pgd, one page at a time */
854 855
	if (pgd)
		free_pages_exact(pgd, S2_PGD_SIZE);
856 857
}

858
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
859
			     phys_addr_t addr)
860 861 862 863
{
	pgd_t *pgd;
	pud_t *pud;

864 865
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
	if (WARN_ON(stage2_pgd_none(*pgd))) {
866 867 868
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
869
		stage2_pgd_populate(pgd, pud);
870 871 872
		get_page(virt_to_page(pgd));
	}

873
	return stage2_pud_offset(pgd, addr);
874 875 876 877 878 879 880 881 882
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
883 884 885
	if (!pud)
		return NULL;

886
	if (stage2_pud_none(*pud)) {
887
		if (!cache)
888
			return NULL;
889
		pmd = mmu_memory_cache_alloc(cache);
890
		stage2_pud_populate(pud, pmd);
891
		get_page(virt_to_page(pud));
892 893
	}

894
	return stage2_pmd_offset(pud, addr);
895 896 897 898 899 900 901 902 903
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
904

905 906 907 908 909 910 911 912 913 914 915 916
	/*
	 * Mapping in huge pages should only happen through a fault.  If a
	 * page is merged into a transparent huge page, the individual
	 * subpages of that huge page should be unmapped through MMU
	 * notifiers before we get here.
	 *
	 * Merging of CompoundPages is not supported; they should become
	 * splitting first, unmapped, merged, and mapped back in on-demand.
	 */
	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));

	old_pmd = *pmd;
917 918
	if (pmd_present(old_pmd)) {
		pmd_clear(pmd);
919
		kvm_tlb_flush_vmid_ipa(kvm, addr);
920
	} else {
921
		get_page(virt_to_page(pmd));
922 923 924
	}

	kvm_set_pmd(pmd, *new_pmd);
925 926 927 928
	return 0;
}

static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
929 930
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
931 932 933
{
	pmd_t *pmd;
	pte_t *pte, old_pte;
934 935 936 937
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
938

939
	/* Create stage-2 page table mapping - Levels 0 and 1 */
940 941 942 943 944 945 946 947 948
	pmd = stage2_get_pmd(kvm, cache, addr);
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

949 950 951 952 953 954 955
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

956
	/* Create stage-2 page mappings - Level 2 */
957 958 959 960 961 962
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
963 964 965
	}

	pte = pte_offset_kernel(pmd, addr);
966 967 968 969 970 971

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
972 973
	if (pte_present(old_pte)) {
		kvm_set_pte(pte, __pte(0));
974
		kvm_tlb_flush_vmid_ipa(kvm, addr);
975
	} else {
976
		get_page(virt_to_page(pte));
977
	}
978

979
	kvm_set_pte(pte, *new_pte);
980 981 982
	return 0;
}

983 984 985 986 987 988 989
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
990 991
	return 0;
}
992 993 994 995 996 997 998 999 1000 1001 1002
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1013
			  phys_addr_t pa, unsigned long size, bool writable)
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1024
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1025

1026
		if (writable)
1027
			pte = kvm_s2pte_mkwrite(pte);
1028

1029 1030
		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
						KVM_NR_MEM_OBJS);
1031 1032 1033
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1034 1035
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1048
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1049
{
D
Dan Williams 已提交
1050
	kvm_pfn_t pfn = *pfnp;
1051 1052
	gfn_t gfn = *ipap >> PAGE_SHIFT;

1053
	if (PageTransCompoundMap(pfn_to_page(pfn))) {
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1089 1090 1091 1092 1093 1094 1095 1096
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

1127
	pmd = stage2_pmd_offset(pud, addr);
1128 1129

	do {
1130
		next = stage2_pmd_addr_end(addr, end);
1131
		if (!pmd_none(*pmd)) {
1132
			if (pmd_thp_or_huge(*pmd)) {
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
  * stage2_wp_puds - write protect PGD range
  * @pgd:	pointer to pgd entry
  * @addr:	range start address
  * @end:	range end address
  *
  * Process PUD entries, for a huge PUD we cause a panic.
  */
static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

1155
	pud = stage2_pud_offset(pgd, addr);
1156
	do {
1157 1158
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
1159
			/* TODO:PUD not supported, revisit later if supported */
1160
			BUG_ON(stage2_pud_huge(*pud));
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			stage2_wp_pmds(pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1177
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1178 1179 1180 1181
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1182 1183
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1184 1185 1186
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1187
		 */
1188 1189 1190
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1191 1192
		next = stage2_pgd_addr_end(addr, end);
		if (stage2_pgd_present(*pgd))
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
			stage2_wp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 * all present PMD and PTEs are write protected in the memory region.
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1212 1213
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1214 1215 1216 1217 1218 1219 1220 1221
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1222 1223

/**
1224
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1225 1226 1227 1228 1229 1230 1231 1232 1233
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1234
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1235 1236 1237 1238 1239 1240 1241 1242 1243
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1244

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

D
Dan Williams 已提交
1259
static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1260
				      unsigned long size)
1261
{
1262
	__coherent_cache_guest_page(vcpu, pfn, size);
1263 1264
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
static void kvm_send_hwpoison_signal(unsigned long address,
				     struct vm_area_struct *vma)
{
	siginfo_t info;

	info.si_signo   = SIGBUS;
	info.si_errno   = 0;
	info.si_code    = BUS_MCEERR_AR;
	info.si_addr    = (void __user *)address;

	if (is_vm_hugetlb_page(vma))
		info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
	else
		info.si_addr_lsb = PAGE_SHIFT;

	send_sig_info(SIGBUS, &info, current);
}

1283
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1284
			  struct kvm_memory_slot *memslot, unsigned long hva,
1285 1286 1287
			  unsigned long fault_status)
{
	int ret;
1288
	bool write_fault, writable, hugetlb = false, force_pte = false;
1289
	unsigned long mmu_seq;
1290 1291
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1292
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1293
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1294
	kvm_pfn_t pfn;
1295
	pgprot_t mem_type = PAGE_S2;
1296 1297
	bool logging_active = memslot_is_logging(memslot);
	unsigned long flags = 0;
1298

1299
	write_fault = kvm_is_write_fault(vcpu);
1300 1301 1302 1303 1304
	if (fault_status == FSC_PERM && !write_fault) {
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1305 1306 1307
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1308 1309 1310 1311 1312 1313
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1314
	if (is_vm_hugetlb_page(vma) && !logging_active) {
1315 1316
		hugetlb = true;
		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1317 1318
	} else {
		/*
1319 1320 1321 1322 1323 1324 1325
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
1326
		 */
1327 1328
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1329
			force_pte = true;
1330 1331 1332
	}
	up_read(&current->mm->mmap_sem);

1333
	/* We need minimum second+third level pages */
1334 1335
	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1351
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1352 1353 1354 1355
	if (pfn == KVM_PFN_ERR_HWPOISON) {
		kvm_send_hwpoison_signal(hva, vma);
		return 0;
	}
1356
	if (is_error_noslot_pfn(pfn))
1357 1358
		return -EFAULT;

1359
	if (kvm_is_device_pfn(pfn)) {
1360
		mem_type = PAGE_S2_DEVICE;
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		force_pte = true;
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1378

1379 1380
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1381
		goto out_unlock;
1382

1383 1384
	if (!hugetlb && !force_pte)
		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1385 1386

	if (hugetlb) {
1387
		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1388 1389
		new_pmd = pmd_mkhuge(new_pmd);
		if (writable) {
1390
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1391 1392
			kvm_set_pfn_dirty(pfn);
		}
1393
		coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1394 1395
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1396
		pte_t new_pte = pfn_pte(pfn, mem_type);
1397

1398
		if (writable) {
1399
			new_pte = kvm_s2pte_mkwrite(new_pte);
1400
			kvm_set_pfn_dirty(pfn);
1401
			mark_page_dirty(kvm, gfn);
1402
		}
1403
		coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1404
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1405
	}
1406

1407
out_unlock:
1408
	spin_unlock(&kvm->mmu_lock);
1409
	kvm_set_pfn_accessed(pfn);
1410
	kvm_release_pfn_clean(pfn);
1411
	return ret;
1412 1413
}

1414 1415 1416 1417
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1418 1419
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1420 1421 1422 1423 1424
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1425
	kvm_pfn_t pfn;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		goto out;

1436
	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
		goto out;
	}

	pte = pte_offset_kernel(pmd, fault_ipa);
	if (pte_none(*pte))		/* Nothing there either */
		goto out;

	*pte = pte_mkyoung(*pte);	/* Just a page... */
	pfn = pte_pfn(*pte);
	pfn_valid = true;
out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1468 1469
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1470 1471 1472
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1473 1474
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1475 1476 1477
	gfn_t gfn;
	int ret, idx;

1478
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1479 1480 1481 1482 1483
	if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) {
		kvm_inject_vabt(vcpu);
		return 1;
	}

1484
	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1485

1486 1487
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1488 1489

	/* Check the stage-2 fault is trans. fault or write fault */
1490
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1491 1492
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1493 1494 1495 1496
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1497 1498 1499 1500 1501 1502
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1503 1504
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1505
	write_fault = kvm_is_write_fault(vcpu);
1506
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1507 1508
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1509
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1510 1511 1512 1513
			ret = 1;
			goto out_unlock;
		}

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1530 1531 1532 1533 1534 1535 1536
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1537
		ret = io_mem_abort(vcpu, run, fault_ipa);
1538 1539 1540
		goto out_unlock;
	}

1541 1542 1543
	/* Userspace should not be able to register out-of-bounds IPAs */
	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);

1544 1545 1546 1547 1548 1549
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1550
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1551 1552 1553 1554 1555
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1556 1557
}

1558 1559 1560 1561
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
1562 1563
					    gpa_t gpa, u64 size,
					    void *data),
1564
			     void *data)
1565 1566 1567
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1568
	int ret = 0;
1569 1570 1571 1572 1573 1574

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
1575
		gfn_t gpa;
1576 1577 1578 1579 1580 1581 1582

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

1583 1584
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1585
	}
1586 1587

	return ret;
1588 1589
}

1590
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1591
{
1592
	unmap_stage2_range(kvm, gpa, size);
1593
	return 0;
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

1619
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1620 1621 1622
{
	pte_t *pte = (pte_t *)data;

1623
	WARN_ON(size != PAGE_SIZE);
1624 1625 1626 1627 1628 1629 1630 1631
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1632
	return 0;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

1649
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1650 1651 1652 1653
{
	pmd_t *pmd;
	pte_t *pte;

1654
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1655 1656 1657 1658
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1659 1660
	if (pmd_thp_or_huge(*pmd))	/* THP, HugeTLB */
		return stage2_pmdp_test_and_clear_young(pmd);
1661 1662 1663 1664 1665

	pte = pte_offset_kernel(pmd, gpa);
	if (pte_none(*pte))
		return 0;

1666
	return stage2_ptep_test_and_clear_young(pte);
1667 1668
}

1669
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1670 1671 1672 1673
{
	pmd_t *pmd;
	pte_t *pte;

1674
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1675 1676 1677 1678
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1679
	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		return pmd_young(*pmd);

	pte = pte_offset_kernel(pmd, gpa);
	if (!pte_none(*pte))		/* Just a page... */
		return pte_young(*pte);

	return 0;
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

1701 1702 1703 1704 1705
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

1706 1707
phys_addr_t kvm_mmu_get_httbr(void)
{
1708 1709 1710 1711
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
1712 1713
}

1714 1715 1716 1717 1718
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
	err = 	__create_hyp_mappings(pgd,
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

1735 1736
int kvm_mmu_init(void)
{
1737 1738
	int err;

1739 1740 1741
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1742

1743 1744 1745 1746 1747
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1748

1749 1750
	kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_info("HYP VA range: %lx:%lx\n",
M
Marc Zyngier 已提交
1751
		 kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1752

M
Marc Zyngier 已提交
1753
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1754 1755
	    hyp_idmap_start <  kern_hyp_va(~0UL) &&
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1756 1757 1758 1759 1760 1761 1762 1763 1764
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

1765
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1766
	if (!hyp_pgd) {
1767
		kvm_err("Hyp mode PGD not allocated\n");
1768 1769 1770 1771
		err = -ENOMEM;
		goto out;
	}

1772 1773 1774 1775 1776 1777 1778 1779
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
1780

1781 1782 1783
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
1784

1785 1786 1787 1788 1789 1790 1791
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
1792 1793 1794 1795
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
1796 1797
	}

1798
	return 0;
1799
out:
1800
	free_hyp_pgds();
1801
	return err;
1802
}
1803 1804

void kvm_arch_commit_memory_region(struct kvm *kvm,
1805
				   const struct kvm_userspace_memory_region *mem,
1806
				   const struct kvm_memory_slot *old,
1807
				   const struct kvm_memory_slot *new,
1808 1809
				   enum kvm_mr_change change)
{
1810 1811 1812 1813 1814 1815 1816
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
1817 1818 1819 1820
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
1821
				   const struct kvm_userspace_memory_region *mem,
1822 1823
				   enum kvm_mr_change change)
{
1824 1825 1826 1827 1828
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

1829 1830
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
1831 1832
		return 0;

1833 1834 1835 1836 1837 1838 1839 1840
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
		return -EFAULT;

1841
	down_read(&current->mm->mmap_sem);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
1879 1880 1881 1882
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
1883

1884
			/* IO region dirty page logging not allowed */
1885 1886 1887 1888
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
1889

1890 1891 1892 1893 1894 1895 1896 1897 1898
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

1899
	if (change == KVM_MR_FLAGS_ONLY)
1900
		goto out;
1901

1902 1903
	spin_lock(&kvm->mmu_lock);
	if (ret)
1904
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1905 1906 1907
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
1908 1909
out:
	up_read(&current->mm->mmap_sem);
1910
	return ret;
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

1924
void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1925 1926 1927 1928 1929
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
1930
	kvm_free_stage2_pgd(kvm);
1931 1932 1933 1934 1935
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
1936 1937 1938 1939 1940 1941
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
1942
}
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
	unsigned long hcr = vcpu_get_hcr(vcpu);

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
		vcpu_set_hcr(vcpu, hcr | HCR_TVM);
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
		vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}