dce_aux.c 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright 2012-15 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

26
#include <linux/delay.h>
27
#include <linux/slab.h>
28

29
#include "dm_services.h"
30
#include "core_types.h"
31 32
#include "dce_aux.h"
#include "dce/dce_11_0_sh_mask.h"
33
#include "dm_event_log.h"
34 35

#define CTX \
36
	aux110->base.ctx
37 38 39 40
#define REG(reg_name)\
	(aux110->regs->reg_name)

#define DC_LOGGER \
41
	engine->ctx->logger
42 43 44

#include "reg_helper.h"

45 46 47 48
#undef FN
#define FN(reg_name, field_name) \
	aux110->shift->field_name, aux110->mask->field_name

49 50 51 52
#define FROM_AUX_ENGINE(ptr) \
	container_of((ptr), struct aux_engine_dce110, base)

#define FROM_ENGINE(ptr) \
53
	FROM_AUX_ENGINE(container_of((ptr), struct dce_aux, base))
54 55

#define FROM_AUX_ENGINE_ENGINE(ptr) \
56
	container_of((ptr), struct dce_aux, base)
57 58 59 60 61
enum {
	AUX_INVALID_REPLY_RETRY_COUNTER = 1,
	AUX_TIMED_OUT_RETRY_COUNTER = 2,
	AUX_DEFER_RETRY_COUNTER = 6
};
62

63 64 65 66 67 68 69 70
#define TIME_OUT_INCREMENT        1016
#define TIME_OUT_MULTIPLIER_8     8
#define TIME_OUT_MULTIPLIER_16    16
#define TIME_OUT_MULTIPLIER_32    32
#define TIME_OUT_MULTIPLIER_64    64
#define MAX_TIMEOUT_LENGTH        127
#define DEFAULT_AUX_ENGINE_MULT   0
#define DEFAULT_AUX_ENGINE_LENGTH 69
71

72
static void release_engine(
73
	struct dce_aux *engine)
74
{
75
	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
76 77 78 79 80 81 82 83 84 85 86 87

	dal_ddc_close(engine->ddc);

	engine->ddc = NULL;

	REG_UPDATE(AUX_ARB_CONTROL, AUX_SW_DONE_USING_AUX_REG, 1);
}

#define SW_CAN_ACCESS_AUX 1
#define DMCU_CAN_ACCESS_AUX 2

static bool is_engine_available(
88
	struct dce_aux *engine)
89 90 91 92 93 94 95 96 97 98 99 100
{
	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);

	uint32_t value = REG_READ(AUX_ARB_CONTROL);
	uint32_t field = get_reg_field_value(
			value,
			AUX_ARB_CONTROL,
			AUX_REG_RW_CNTL_STATUS);

	return (field != DMCU_CAN_ACCESS_AUX);
}
static bool acquire_engine(
101
	struct dce_aux *engine)
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
{
	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);

	uint32_t value = REG_READ(AUX_ARB_CONTROL);
	uint32_t field = get_reg_field_value(
			value,
			AUX_ARB_CONTROL,
			AUX_REG_RW_CNTL_STATUS);
	if (field == DMCU_CAN_ACCESS_AUX)
		return false;
	/* enable AUX before request SW to access AUX */
	value = REG_READ(AUX_CONTROL);
	field = get_reg_field_value(value,
				AUX_CONTROL,
				AUX_EN);

	if (field == 0) {
		set_reg_field_value(
				value,
				1,
				AUX_CONTROL,
				AUX_EN);

		if (REG(AUX_RESET_MASK)) {
			/*DP_AUX block as part of the enable sequence*/
			set_reg_field_value(
				value,
				1,
				AUX_CONTROL,
				AUX_RESET);
		}

		REG_WRITE(AUX_CONTROL, value);

		if (REG(AUX_RESET_MASK)) {
			/*poll HW to make sure reset it done*/

			REG_WAIT(AUX_CONTROL, AUX_RESET_DONE, 1,
					1, 11);

			set_reg_field_value(
				value,
				0,
				AUX_CONTROL,
				AUX_RESET);

			REG_WRITE(AUX_CONTROL, value);

			REG_WAIT(AUX_CONTROL, AUX_RESET_DONE, 0,
					1, 11);
		}
	} /*if (field)*/

	/* request SW to access AUX */
	REG_UPDATE(AUX_ARB_CONTROL, AUX_SW_USE_AUX_REG_REQ, 1);

	value = REG_READ(AUX_ARB_CONTROL);
	field = get_reg_field_value(
			value,
			AUX_ARB_CONTROL,
			AUX_REG_RW_CNTL_STATUS);

	return (field == SW_CAN_ACCESS_AUX);
}

#define COMPOSE_AUX_SW_DATA_16_20(command, address) \
	((command) | ((0xF0000 & (address)) >> 16))

#define COMPOSE_AUX_SW_DATA_8_15(address) \
	((0xFF00 & (address)) >> 8)

#define COMPOSE_AUX_SW_DATA_0_7(address) \
	(0xFF & (address))

static void submit_channel_request(
177
	struct dce_aux *engine,
178 179 180 181 182 183 184 185 186 187 188 189 190 191
	struct aux_request_transaction_data *request)
{
	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
	uint32_t value;
	uint32_t length;

	bool is_write =
		((request->type == AUX_TRANSACTION_TYPE_DP) &&
		 (request->action == I2CAUX_TRANSACTION_ACTION_DP_WRITE)) ||
		((request->type == AUX_TRANSACTION_TYPE_I2C) &&
		((request->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE) ||
		 (request->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT)));
	if (REG(AUXN_IMPCAL)) {
		/* clear_aux_error */
192 193 194
		REG_UPDATE_SEQ_2(AUXN_IMPCAL,
				AUXN_CALOUT_ERROR_AK, 1,
				AUXN_CALOUT_ERROR_AK, 0);
195

196 197 198
		REG_UPDATE_SEQ_2(AUXP_IMPCAL,
				AUXP_CALOUT_ERROR_AK, 1,
				AUXP_CALOUT_ERROR_AK, 0);
199 200

		/* force_default_calibrate */
201
		REG_UPDATE_SEQ_2(AUXN_IMPCAL,
202 203 204 205 206
				AUXN_IMPCAL_ENABLE, 1,
				AUXN_IMPCAL_OVERRIDE_ENABLE, 0);

		/* bug? why AUXN update EN and OVERRIDE_EN 1 by 1 while AUX P toggles OVERRIDE? */

207 208 209
		REG_UPDATE_SEQ_2(AUXP_IMPCAL,
				AUXP_IMPCAL_OVERRIDE_ENABLE, 1,
				AUXP_IMPCAL_OVERRIDE_ENABLE, 0);
210
	}
211 212 213 214

	REG_UPDATE(AUX_INTERRUPT_CONTROL, AUX_SW_DONE_ACK, 1);

	REG_WAIT(AUX_SW_STATUS, AUX_SW_DONE, 0,
215
				10, aux110->polling_timeout_period/10);
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	/* set the delay and the number of bytes to write */

	/* The length include
	 * the 4 bit header and the 20 bit address
	 * (that is 3 byte).
	 * If the requested length is non zero this means
	 * an addition byte specifying the length is required.
	 */

	length = request->length ? 4 : 3;
	if (is_write)
		length += request->length;

	REG_UPDATE_2(AUX_SW_CONTROL,
			AUX_SW_START_DELAY, request->delay,
			AUX_SW_WR_BYTES, length);

	/* program action and address and payload data (if 'is_write') */
	value = REG_UPDATE_4(AUX_SW_DATA,
			AUX_SW_INDEX, 0,
			AUX_SW_DATA_RW, 0,
			AUX_SW_AUTOINCREMENT_DISABLE, 1,
			AUX_SW_DATA, COMPOSE_AUX_SW_DATA_16_20(request->action, request->address));

	value = REG_SET_2(AUX_SW_DATA, value,
			AUX_SW_AUTOINCREMENT_DISABLE, 0,
			AUX_SW_DATA, COMPOSE_AUX_SW_DATA_8_15(request->address));

	value = REG_SET(AUX_SW_DATA, value,
			AUX_SW_DATA, COMPOSE_AUX_SW_DATA_0_7(request->address));

	if (request->length) {
		value = REG_SET(AUX_SW_DATA, value,
				AUX_SW_DATA, request->length - 1);
	}

	if (is_write) {
		/* Load the HW buffer with the Data to be sent.
		 * This is relevant for write operation.
		 * For read, the data recived data will be
		 * processed in process_channel_reply().
		 */
		uint32_t i = 0;

		while (i < request->length) {
			value = REG_SET(AUX_SW_DATA, value,
					AUX_SW_DATA, request->data[i]);

			++i;
		}
	}

	REG_UPDATE(AUX_SW_CONTROL, AUX_SW_GO, 1);
270 271
	EVENT_LOG_AUX_REQ(engine->ddc->pin_data->en, EVENT_LOG_AUX_ORIGIN_NATIVE,
					request->action, request->address, request->length, request->data);
272 273
}

274
static int read_channel_reply(struct dce_aux *engine, uint32_t size,
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
			      uint8_t *buffer, uint8_t *reply_result,
			      uint32_t *sw_status)
{
	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
	uint32_t bytes_replied;
	uint32_t reply_result_32;

	*sw_status = REG_GET(AUX_SW_STATUS, AUX_SW_REPLY_BYTE_COUNT,
			     &bytes_replied);

	/* In case HPD is LOW, exit AUX transaction */
	if ((*sw_status & AUX_SW_STATUS__AUX_SW_HPD_DISCON_MASK))
		return -1;

	/* Need at least the status byte */
	if (!bytes_replied)
		return -1;

293
	REG_UPDATE_SEQ_3(AUX_SW_DATA,
294 295 296 297 298 299
			  AUX_SW_INDEX, 0,
			  AUX_SW_AUTOINCREMENT_DISABLE, 1,
			  AUX_SW_DATA_RW, 1);

	REG_GET(AUX_SW_DATA, AUX_SW_DATA, &reply_result_32);
	reply_result_32 = reply_result_32 >> 4;
300 301
	if (reply_result != NULL)
		*reply_result = (uint8_t)reply_result_32;
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

	if (reply_result_32 == 0) { /* ACK */
		uint32_t i = 0;

		/* First byte was already used to get the command status */
		--bytes_replied;

		/* Do not overflow buffer */
		if (bytes_replied > size)
			return -1;

		while (i < bytes_replied) {
			uint32_t aux_sw_data_val;

			REG_GET(AUX_SW_DATA, AUX_SW_DATA, &aux_sw_data_val);
			buffer[i] = aux_sw_data_val;
			++i;
		}

		return i;
	}

	return 0;
}

static enum aux_channel_operation_result get_channel_status(
328
	struct dce_aux *engine,
329 330 331 332 333 334 335 336 337 338 339 340 341 342
	uint8_t *returned_bytes)
{
	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);

	uint32_t value;

	if (returned_bytes == NULL) {
		/*caller pass NULL pointer*/
		ASSERT_CRITICAL(false);
		return AUX_CHANNEL_OPERATION_FAILED_REASON_UNKNOWN;
	}
	*returned_bytes = 0;

	/* poll to make sure that SW_DONE is asserted */
343
	REG_WAIT(AUX_SW_STATUS, AUX_SW_DONE, 1,
344
				10, aux110->polling_timeout_period/10);
345

346
	value = REG_READ(AUX_SW_STATUS);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	/* in case HPD is LOW, exit AUX transaction */
	if ((value & AUX_SW_STATUS__AUX_SW_HPD_DISCON_MASK))
		return AUX_CHANNEL_OPERATION_FAILED_HPD_DISCON;

	/* Note that the following bits are set in 'status.bits'
	 * during CTS 4.2.1.2 (FW 3.3.1):
	 * AUX_SW_RX_MIN_COUNT_VIOL, AUX_SW_RX_INVALID_STOP,
	 * AUX_SW_RX_RECV_NO_DET, AUX_SW_RX_RECV_INVALID_H.
	 *
	 * AUX_SW_RX_MIN_COUNT_VIOL is an internal,
	 * HW debugging bit and should be ignored.
	 */
	if (value & AUX_SW_STATUS__AUX_SW_DONE_MASK) {
		if ((value & AUX_SW_STATUS__AUX_SW_RX_TIMEOUT_STATE_MASK) ||
			(value & AUX_SW_STATUS__AUX_SW_RX_TIMEOUT_MASK))
			return AUX_CHANNEL_OPERATION_FAILED_TIMEOUT;

		else if ((value & AUX_SW_STATUS__AUX_SW_RX_INVALID_STOP_MASK) ||
			(value & AUX_SW_STATUS__AUX_SW_RX_RECV_NO_DET_MASK) ||
			(value &
				AUX_SW_STATUS__AUX_SW_RX_RECV_INVALID_H_MASK) ||
			(value & AUX_SW_STATUS__AUX_SW_RX_RECV_INVALID_L_MASK))
			return AUX_CHANNEL_OPERATION_FAILED_INVALID_REPLY;

		*returned_bytes = get_reg_field_value(value,
				AUX_SW_STATUS,
				AUX_SW_REPLY_BYTE_COUNT);

		if (*returned_bytes == 0)
			return
			AUX_CHANNEL_OPERATION_FAILED_INVALID_REPLY;
		else {
			*returned_bytes -= 1;
			return AUX_CHANNEL_OPERATION_SUCCEEDED;
		}
	} else {
		/*time_elapsed >= aux_engine->timeout_period
		 *  AUX_SW_STATUS__AUX_SW_HPD_DISCON = at this point
		 */
		ASSERT_CRITICAL(false);
		return AUX_CHANNEL_OPERATION_FAILED_TIMEOUT;
	}
}

enum i2caux_engine_type get_engine_type(
392
		const struct dce_aux *engine)
393 394 395 396
{
	return I2CAUX_ENGINE_TYPE_AUX;
}

397
static bool acquire(
398
	struct dce_aux *engine,
399 400 401 402
	struct ddc *ddc)
{
	enum gpio_result result;

403 404
	if (!is_engine_available(engine))
		return false;
405 406 407 408 409

	result = dal_ddc_open(ddc, GPIO_MODE_HARDWARE,
		GPIO_DDC_CONFIG_TYPE_MODE_AUX);

	if (result != GPIO_RESULT_OK)
410
		return false;
411

412
	if (!acquire_engine(engine)) {
413
		dal_ddc_close(ddc);
414
		return false;
415 416 417 418
	}

	engine->ddc = ddc;

419
	return true;
420 421
}

422
void dce110_engine_destroy(struct dce_aux **engine)
423 424
{

425
	struct aux_engine_dce110 *engine110 = FROM_AUX_ENGINE(*engine);
426 427 428 429 430

	kfree(engine110);
	*engine = NULL;

}
431

432
static uint32_t dce_aux_configure_timeout(struct ddc_service *ddc,
433 434 435 436
		uint32_t timeout_in_us)
{
	uint32_t multiplier = 0;
	uint32_t length = 0;
437 438 439
	uint32_t prev_length = 0;
	uint32_t prev_mult = 0;
	uint32_t prev_timeout_val = 0;
440 441 442 443 444 445 446 447
	struct ddc *ddc_pin = ddc->ddc_pin;
	struct dce_aux *aux_engine = ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en];
	struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(aux_engine);

	/* 1-Update polling timeout period */
	aux110->polling_timeout_period = timeout_in_us * SW_AUX_TIMEOUT_PERIOD_MULTIPLIER;

	/* 2-Update aux timeout period length and multiplier */
448 449 450 451
	if (timeout_in_us == 0) {
		multiplier = DEFAULT_AUX_ENGINE_MULT;
		length = DEFAULT_AUX_ENGINE_LENGTH;
	} else if (timeout_in_us <= TIME_OUT_INCREMENT) {
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
		multiplier = 0;
		length = timeout_in_us/TIME_OUT_MULTIPLIER_8;
		if (timeout_in_us % TIME_OUT_MULTIPLIER_8 != 0)
			length++;
	} else if (timeout_in_us <= 2 * TIME_OUT_INCREMENT) {
		multiplier = 1;
		length = timeout_in_us/TIME_OUT_MULTIPLIER_16;
		if (timeout_in_us % TIME_OUT_MULTIPLIER_16 != 0)
			length++;
	} else if (timeout_in_us <= 4 * TIME_OUT_INCREMENT) {
		multiplier = 2;
		length = timeout_in_us/TIME_OUT_MULTIPLIER_32;
		if (timeout_in_us % TIME_OUT_MULTIPLIER_32 != 0)
			length++;
	} else if (timeout_in_us > 4 * TIME_OUT_INCREMENT) {
		multiplier = 3;
		length = timeout_in_us/TIME_OUT_MULTIPLIER_64;
		if (timeout_in_us % TIME_OUT_MULTIPLIER_64 != 0)
			length++;
	}

	length = (length < MAX_TIMEOUT_LENGTH) ? length : MAX_TIMEOUT_LENGTH;

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	REG_GET_2(AUX_DPHY_RX_CONTROL1, AUX_RX_TIMEOUT_LEN, &prev_length, AUX_RX_TIMEOUT_LEN_MUL, &prev_mult);

	switch (prev_mult) {
	case 0:
		prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_8;
		break;
	case 1:
		prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_16;
		break;
	case 2:
		prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_32;
		break;
	case 3:
		prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_64;
		break;
	default:
		prev_timeout_val = DEFAULT_AUX_ENGINE_LENGTH * TIME_OUT_MULTIPLIER_8;
		break;
	}

495 496
	REG_UPDATE_SEQ_2(AUX_DPHY_RX_CONTROL1, AUX_RX_TIMEOUT_LEN, length, AUX_RX_TIMEOUT_LEN_MUL, multiplier);

497
	return prev_timeout_val;
498 499 500 501 502 503 504
}

static struct dce_aux_funcs aux_functions = {
	.configure_timeout = NULL,
	.destroy = NULL,
};

505
struct dce_aux *dce110_aux_engine_construct(struct aux_engine_dce110 *aux_engine110,
506 507 508
		struct dc_context *ctx,
		uint32_t inst,
		uint32_t timeout_period,
509 510
		const struct dce110_aux_registers *regs,
		const struct dce110_aux_registers_mask *mask,
511 512
		const struct dce110_aux_registers_shift *shift,
		bool is_ext_aux_timeout_configurable)
513
{
514 515
	aux_engine110->base.ddc = NULL;
	aux_engine110->base.ctx = ctx;
516 517
	aux_engine110->base.delay = 0;
	aux_engine110->base.max_defer_write_retry = 0;
518
	aux_engine110->base.inst = inst;
519
	aux_engine110->polling_timeout_period = timeout_period;
520 521
	aux_engine110->regs = regs;

522 523
	aux_engine110->mask = mask;
	aux_engine110->shift = shift;
524 525 526 527
	aux_engine110->base.funcs = &aux_functions;
	if (is_ext_aux_timeout_configurable)
		aux_engine110->base.funcs->configure_timeout = &dce_aux_configure_timeout;

528 529 530
	return &aux_engine110->base;
}

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
static enum i2caux_transaction_action i2caux_action_from_payload(struct aux_payload *payload)
{
	if (payload->i2c_over_aux) {
		if (payload->write) {
			if (payload->mot)
				return I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT;
			return I2CAUX_TRANSACTION_ACTION_I2C_WRITE;
		}
		if (payload->mot)
			return I2CAUX_TRANSACTION_ACTION_I2C_READ_MOT;
		return I2CAUX_TRANSACTION_ACTION_I2C_READ;
	}
	if (payload->write)
		return I2CAUX_TRANSACTION_ACTION_DP_WRITE;
	return I2CAUX_TRANSACTION_ACTION_DP_READ;
}

548 549 550
int dce_aux_transfer_raw(struct ddc_service *ddc,
		struct aux_payload *payload,
		enum aux_channel_operation_result *operation_result)
551 552
{
	struct ddc *ddc_pin = ddc->ddc_pin;
553
	struct dce_aux *aux_engine;
554 555 556 557 558 559 560 561 562 563
	struct aux_request_transaction_data aux_req;
	struct aux_reply_transaction_data aux_rep;
	uint8_t returned_bytes = 0;
	int res = -1;
	uint32_t status;

	memset(&aux_req, 0, sizeof(aux_req));
	memset(&aux_rep, 0, sizeof(aux_rep));

	aux_engine = ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en];
564 565
	if (!acquire(aux_engine, ddc_pin)) {
		*operation_result = AUX_CHANNEL_OPERATION_FAILED_ENGINE_ACQUIRE;
566
		return -1;
567
	}
568 569 570 571 572 573 574 575 576

	if (payload->i2c_over_aux)
		aux_req.type = AUX_TRANSACTION_TYPE_I2C;
	else
		aux_req.type = AUX_TRANSACTION_TYPE_DP;

	aux_req.action = i2caux_action_from_payload(payload);

	aux_req.address = payload->address;
577
	aux_req.delay = 0;
578 579 580
	aux_req.length = payload->length;
	aux_req.data = payload->data;

581
	submit_channel_request(aux_engine, &aux_req);
582 583 584
	*operation_result = get_channel_status(aux_engine, &returned_bytes);

	if (*operation_result == AUX_CHANNEL_OPERATION_SUCCEEDED) {
585 586
		int bytes_replied = 0;
		bytes_replied = read_channel_reply(aux_engine, payload->length,
587 588
					 payload->data, payload->reply,
					 &status);
589 590 591
		EVENT_LOG_AUX_REP(aux_engine->ddc->pin_data->en,
					EVENT_LOG_AUX_ORIGIN_NATIVE, *payload->reply,
					bytes_replied, payload->data);
592 593
		res = returned_bytes;
	} else {
594 595
		res = -1;
	}
596

597
	release_engine(aux_engine);
598 599 600
	return res;
}

601 602 603 604 605
#define AUX_MAX_RETRIES 7
#define AUX_MAX_DEFER_RETRIES 7
#define AUX_MAX_I2C_DEFER_RETRIES 7
#define AUX_MAX_INVALID_REPLY_RETRIES 2
#define AUX_MAX_TIMEOUT_RETRIES 3
606 607 608 609 610 611 612

bool dce_aux_transfer_with_retries(struct ddc_service *ddc,
		struct aux_payload *payload)
{
	int i, ret = 0;
	uint8_t reply;
	bool payload_reply = true;
613 614 615 616 617 618
	enum aux_channel_operation_result operation_result;
	int aux_ack_retries = 0,
		aux_defer_retries = 0,
		aux_i2c_defer_retries = 0,
		aux_timeout_retries = 0,
		aux_invalid_reply_retries = 0;
619 620 621 622 623 624

	if (!payload->reply) {
		payload_reply = false;
		payload->reply = &reply;
	}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	for (i = 0; i < AUX_MAX_RETRIES; i++) {
		ret = dce_aux_transfer_raw(ddc, payload, &operation_result);
		switch (operation_result) {
		case AUX_CHANNEL_OPERATION_SUCCEEDED:
			aux_timeout_retries = 0;
			aux_invalid_reply_retries = 0;

			switch (*payload->reply) {
			case AUX_TRANSACTION_REPLY_AUX_ACK:
				if (!payload->write && payload->length != ret) {
					if (++aux_ack_retries >= AUX_MAX_RETRIES)
						goto fail;
					else
						udelay(300);
				} else
					return true;
			break;

			case AUX_TRANSACTION_REPLY_AUX_DEFER:
644 645
			case AUX_TRANSACTION_REPLY_I2C_OVER_AUX_NACK:
			case AUX_TRANSACTION_REPLY_I2C_OVER_AUX_DEFER:
646
				if (++aux_defer_retries >= AUX_MAX_DEFER_RETRIES) {
647
					goto fail;
648 649 650 651 652 653 654
				} else {
					if ((*payload->reply == AUX_TRANSACTION_REPLY_AUX_DEFER) ||
						(*payload->reply == AUX_TRANSACTION_REPLY_I2C_OVER_AUX_DEFER)) {
						if (payload->defer_delay > 0)
							msleep(payload->defer_delay);
					}
				}
655 656 657 658 659 660 661 662 663 664 665 666
				break;

			case AUX_TRANSACTION_REPLY_I2C_DEFER:
				aux_defer_retries = 0;
				if (++aux_i2c_defer_retries >= AUX_MAX_I2C_DEFER_RETRIES)
					goto fail;
				break;

			case AUX_TRANSACTION_REPLY_AUX_NACK:
			case AUX_TRANSACTION_REPLY_HPD_DISCON:
			default:
				goto fail;
667
			}
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
			break;

		case AUX_CHANNEL_OPERATION_FAILED_INVALID_REPLY:
			if (++aux_invalid_reply_retries >= AUX_MAX_INVALID_REPLY_RETRIES)
				goto fail;
			else
				udelay(400);
			break;

		case AUX_CHANNEL_OPERATION_FAILED_TIMEOUT:
			if (++aux_timeout_retries >= AUX_MAX_TIMEOUT_RETRIES)
				goto fail;
			else {
				/*
				 * DP 1.4, 2.8.2:  AUX Transaction Response/Reply Timeouts
				 * According to the DP spec there should be 3 retries total
				 * with a 400us wait inbetween each. Hardware already waits
				 * for 550us therefore no wait is required here.
				 */
			}
			break;
689

690
		case AUX_CHANNEL_OPERATION_FAILED_HPD_DISCON:
691
		case AUX_CHANNEL_OPERATION_FAILED_ENGINE_ACQUIRE:
692 693 694 695
		case AUX_CHANNEL_OPERATION_FAILED_REASON_UNKNOWN:
		default:
			goto fail;
		}
696
	}
697 698 699 700

fail:
	if (!payload_reply)
		payload->reply = NULL;
701 702
	return false;
}