bio-integrity.c 17.4 KB
Newer Older
1 2 3
/*
 * bio-integrity.c - bio data integrity extensions
 *
4
 * Copyright (C) 2007, 2008, 2009 Oracle Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 * Written by: Martin K. Petersen <martin.petersen@oracle.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License version
 * 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; see the file COPYING.  If not, write to
 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
 * USA.
 *
 */

#include <linux/blkdev.h>
#include <linux/mempool.h>
25
#include <linux/export.h>
26 27
#include <linux/bio.h>
#include <linux/workqueue.h>
28
#include <linux/slab.h>
29

30
#define BIP_INLINE_VECS	4
31

32
static struct kmem_cache *bip_slab;
33 34 35
static struct workqueue_struct *kintegrityd_wq;

/**
36
 * bio_integrity_alloc - Allocate integrity payload and attach it to bio
37 38 39 40 41 42 43 44
 * @bio:	bio to attach integrity metadata to
 * @gfp_mask:	Memory allocation mask
 * @nr_vecs:	Number of integrity metadata scatter-gather elements
 *
 * Description: This function prepares a bio for attaching integrity
 * metadata.  nr_vecs specifies the maximum number of pages containing
 * integrity metadata that can be attached.
 */
45 46 47
struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
						  gfp_t gfp_mask,
						  unsigned int nr_vecs)
48 49
{
	struct bio_integrity_payload *bip;
50
	struct bio_set *bs = bio->bi_pool;
51 52 53 54 55 56 57 58
	unsigned long idx = BIO_POOL_NONE;
	unsigned inline_vecs;

	if (!bs) {
		bip = kmalloc(sizeof(struct bio_integrity_payload) +
			      sizeof(struct bio_vec) * nr_vecs, gfp_mask);
		inline_vecs = nr_vecs;
	} else {
59
		bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask);
60
		inline_vecs = BIP_INLINE_VECS;
61 62
	}

63 64 65
	if (unlikely(!bip))
		return NULL;

66 67
	memset(bip, 0, sizeof(*bip));

68 69 70 71 72
	if (nr_vecs > inline_vecs) {
		bip->bip_vec = bvec_alloc(gfp_mask, nr_vecs, &idx,
					  bs->bvec_integrity_pool);
		if (!bip->bip_vec)
			goto err;
73
		bip->bip_max_vcnt = bvec_nr_vecs(idx);
74 75
	} else {
		bip->bip_vec = bip->bip_inline_vecs;
76
		bip->bip_max_vcnt = inline_vecs;
77 78
	}

79
	bip->bip_slab = idx;
80 81
	bip->bip_bio = bio;
	bio->bi_integrity = bip;
82
	bio->bi_rw |= REQ_INTEGRITY;
83 84

	return bip;
85 86 87
err:
	mempool_free(bip, bs->bio_integrity_pool);
	return NULL;
88 89 90 91 92 93 94 95 96 97
}
EXPORT_SYMBOL(bio_integrity_alloc);

/**
 * bio_integrity_free - Free bio integrity payload
 * @bio:	bio containing bip to be freed
 *
 * Description: Used to free the integrity portion of a bio. Usually
 * called from bio_free().
 */
98
void bio_integrity_free(struct bio *bio)
99
{
100
	struct bio_integrity_payload *bip = bio_integrity(bio);
101 102
	struct bio_set *bs = bio->bi_pool;

103
	if (bip->bip_owns_buf)
104 105
		kfree(bip->bip_buf);

106 107 108 109 110
	if (bs) {
		if (bip->bip_slab != BIO_POOL_NONE)
			bvec_free(bs->bvec_integrity_pool, bip->bip_vec,
				  bip->bip_slab);

111
		mempool_free(bip, bs->bio_integrity_pool);
112 113 114
	} else {
		kfree(bip);
	}
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

	bio->bi_integrity = NULL;
}
EXPORT_SYMBOL(bio_integrity_free);

/**
 * bio_integrity_add_page - Attach integrity metadata
 * @bio:	bio to update
 * @page:	page containing integrity metadata
 * @len:	number of bytes of integrity metadata in page
 * @offset:	start offset within page
 *
 * Description: Attach a page containing integrity metadata to bio.
 */
int bio_integrity_add_page(struct bio *bio, struct page *page,
			   unsigned int len, unsigned int offset)
{
132
	struct bio_integrity_payload *bip = bio_integrity(bio);
133 134
	struct bio_vec *iv;

135
	if (bip->bip_vcnt >= bip->bip_max_vcnt) {
136 137 138 139
		printk(KERN_ERR "%s: bip_vec full\n", __func__);
		return 0;
	}

140
	iv = bip->bip_vec + bip->bip_vcnt;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

	iv->bv_page = page;
	iv->bv_len = len;
	iv->bv_offset = offset;
	bip->bip_vcnt++;

	return len;
}
EXPORT_SYMBOL(bio_integrity_add_page);

/**
 * bio_integrity_enabled - Check whether integrity can be passed
 * @bio:	bio to check
 *
 * Description: Determines whether bio_integrity_prep() can be called
 * on this bio or not.	bio data direction and target device must be
 * set prior to calling.  The functions honors the write_generate and
 * read_verify flags in sysfs.
 */
160
bool bio_integrity_enabled(struct bio *bio)
161
{
162 163
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);

164
	if (!bio_is_rw(bio))
165
		return false;
166

167 168
	/* Already protected? */
	if (bio_integrity(bio))
169 170 171 172 173 174 175 176 177 178 179 180
		return false;

	if (bi == NULL)
		return false;

	if (bio_data_dir(bio) == READ && bi->verify_fn != NULL &&
	    (bi->flags & INTEGRITY_FLAG_READ))
		return true;

	if (bio_data_dir(bio) == WRITE && bi->generate_fn != NULL &&
	    (bi->flags & INTEGRITY_FLAG_WRITE))
		return true;
181

182
	return false;
183 184 185 186 187 188 189 190 191 192 193 194 195
}
EXPORT_SYMBOL(bio_integrity_enabled);

/**
 * bio_integrity_hw_sectors - Convert 512b sectors to hardware ditto
 * @bi:		blk_integrity profile for device
 * @sectors:	Number of 512 sectors to convert
 *
 * Description: The block layer calculates everything in 512 byte
 * sectors but integrity metadata is done in terms of the hardware
 * sector size of the storage device.  Convert the block layer sectors
 * to physical sectors.
 */
196 197
static inline unsigned int bio_integrity_hw_sectors(struct blk_integrity *bi,
						    unsigned int sectors)
198 199 200 201 202 203 204 205
{
	/* At this point there are only 512b or 4096b DIF/EPP devices */
	if (bi->sector_size == 4096)
		return sectors >>= 3;

	return sectors;
}

206 207 208 209 210 211
static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
					       unsigned int sectors)
{
	return bio_integrity_hw_sectors(bi, sectors) * bi->tuple_size;
}

212 213 214 215 216 217 218 219 220 221 222 223
/**
 * bio_integrity_tag_size - Retrieve integrity tag space
 * @bio:	bio to inspect
 *
 * Description: Returns the maximum number of tag bytes that can be
 * attached to this bio. Filesystems can use this to determine how
 * much metadata to attach to an I/O.
 */
unsigned int bio_integrity_tag_size(struct bio *bio)
{
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);

224
	BUG_ON(bio->bi_iter.bi_size == 0);
225

226
	return bi->tag_size * (bio->bi_iter.bi_size / bi->sector_size);
227 228 229
}
EXPORT_SYMBOL(bio_integrity_tag_size);

230 231
static int bio_integrity_tag(struct bio *bio, void *tag_buf, unsigned int len,
			     int set)
232
{
233
	struct bio_integrity_payload *bip = bio_integrity(bio);
234 235 236 237 238 239 240 241
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
	unsigned int nr_sectors;

	BUG_ON(bip->bip_buf == NULL);

	if (bi->tag_size == 0)
		return -1;

242 243
	nr_sectors = bio_integrity_hw_sectors(bi,
					DIV_ROUND_UP(len, bi->tag_size));
244

245 246 247
	if (nr_sectors * bi->tuple_size > bip->bip_iter.bi_size) {
		printk(KERN_ERR "%s: tag too big for bio: %u > %u\n", __func__,
		       nr_sectors * bi->tuple_size, bip->bip_iter.bi_size);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
		return -1;
	}

	if (set)
		bi->set_tag_fn(bip->bip_buf, tag_buf, nr_sectors);
	else
		bi->get_tag_fn(bip->bip_buf, tag_buf, nr_sectors);

	return 0;
}

/**
 * bio_integrity_set_tag - Attach a tag buffer to a bio
 * @bio:	bio to attach buffer to
 * @tag_buf:	Pointer to a buffer containing tag data
 * @len:	Length of the included buffer
 *
 * Description: Use this function to tag a bio by leveraging the extra
 * space provided by devices formatted with integrity protection.  The
 * size of the integrity buffer must be <= to the size reported by
 * bio_integrity_tag_size().
 */
int bio_integrity_set_tag(struct bio *bio, void *tag_buf, unsigned int len)
{
	BUG_ON(bio_data_dir(bio) != WRITE);

	return bio_integrity_tag(bio, tag_buf, len, 1);
}
EXPORT_SYMBOL(bio_integrity_set_tag);

/**
 * bio_integrity_get_tag - Retrieve a tag buffer from a bio
 * @bio:	bio to retrieve buffer from
 * @tag_buf:	Pointer to a buffer for the tag data
 * @len:	Length of the target buffer
 *
 * Description: Use this function to retrieve the tag buffer from a
 * completed I/O. The size of the integrity buffer must be <= to the
 * size reported by bio_integrity_tag_size().
 */
int bio_integrity_get_tag(struct bio *bio, void *tag_buf, unsigned int len)
{
	BUG_ON(bio_data_dir(bio) != READ);

	return bio_integrity_tag(bio, tag_buf, len, 0);
}
EXPORT_SYMBOL(bio_integrity_get_tag);

/**
297 298 299
 * bio_integrity_generate_verify - Generate/verify integrity metadata for a bio
 * @bio:	bio to generate/verify integrity metadata for
 * @operate:	operate number, 1 for generate, 0 for verify
300
 */
301
static int bio_integrity_generate_verify(struct bio *bio, int operate)
302 303 304
{
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
	struct blk_integrity_exchg bix;
305
	struct bio_vec *bv;
306
	sector_t sector;
307
	unsigned int sectors, ret = 0, i;
308
	void *prot_buf = bio_integrity(bio)->bip_buf;
309

310 311 312
	if (operate)
		sector = bio->bi_iter.bi_sector;
	else
313
		sector = bio_integrity(bio)->bip_iter.bi_sector;
314

315 316 317
	bix.disk_name = bio->bi_bdev->bd_disk->disk_name;
	bix.sector_size = bi->sector_size;

318 319 320 321
	bio_for_each_segment_all(bv, bio, i) {
		void *kaddr = kmap_atomic(bv->bv_page);
		bix.data_buf = kaddr + bv->bv_offset;
		bix.data_size = bv->bv_len;
322 323 324
		bix.prot_buf = prot_buf;
		bix.sector = sector;

325
		if (operate)
326
			bi->generate_fn(&bix);
327
		else {
328 329 330 331 332 333
			ret = bi->verify_fn(&bix);
			if (ret) {
				kunmap_atomic(kaddr);
				return ret;
			}
		}
334

335
		sectors = bv->bv_len / bi->sector_size;
336 337 338
		sector += sectors;
		prot_buf += sectors * bi->tuple_size;

339
		kunmap_atomic(kaddr);
340
	}
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	return ret;
}

/**
 * bio_integrity_generate - Generate integrity metadata for a bio
 * @bio:	bio to generate integrity metadata for
 *
 * Description: Generates integrity metadata for a bio by calling the
 * block device's generation callback function.  The bio must have a
 * bip attached with enough room to accommodate the generated
 * integrity metadata.
 */
static void bio_integrity_generate(struct bio *bio)
{
	bio_integrity_generate_verify(bio, 1);
356 357
}

358 359 360 361 362 363 364 365
static inline unsigned short blk_integrity_tuple_size(struct blk_integrity *bi)
{
	if (bi)
		return bi->tuple_size;

	return 0;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
/**
 * bio_integrity_prep - Prepare bio for integrity I/O
 * @bio:	bio to prepare
 *
 * Description: Allocates a buffer for integrity metadata, maps the
 * pages and attaches them to a bio.  The bio must have data
 * direction, target device and start sector set priot to calling.  In
 * the WRITE case, integrity metadata will be generated using the
 * block device's integrity function.  In the READ case, the buffer
 * will be prepared for DMA and a suitable end_io handler set up.
 */
int bio_integrity_prep(struct bio *bio)
{
	struct bio_integrity_payload *bip;
	struct blk_integrity *bi;
	struct request_queue *q;
	void *buf;
	unsigned long start, end;
	unsigned int len, nr_pages;
	unsigned int bytes, offset, i;
	unsigned int sectors;

	bi = bdev_get_integrity(bio->bi_bdev);
	q = bdev_get_queue(bio->bi_bdev);
	BUG_ON(bi == NULL);
	BUG_ON(bio_integrity(bio));

	sectors = bio_integrity_hw_sectors(bi, bio_sectors(bio));

	/* Allocate kernel buffer for protection data */
	len = sectors * blk_integrity_tuple_size(bi);
397
	buf = kmalloc(len, GFP_NOIO | q->bounce_gfp);
398 399
	if (unlikely(buf == NULL)) {
		printk(KERN_ERR "could not allocate integrity buffer\n");
400
		return -ENOMEM;
401 402 403 404 405 406 407 408 409 410 411 412 413 414
	}

	end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	start = ((unsigned long) buf) >> PAGE_SHIFT;
	nr_pages = end - start;

	/* Allocate bio integrity payload and integrity vectors */
	bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
	if (unlikely(bip == NULL)) {
		printk(KERN_ERR "could not allocate data integrity bioset\n");
		kfree(buf);
		return -EIO;
	}

415
	bip->bip_owns_buf = 1;
416
	bip->bip_buf = buf;
417 418
	bip->bip_iter.bi_size = len;
	bip->bip_iter.bi_sector = bio->bi_iter.bi_sector;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

	/* Map it */
	offset = offset_in_page(buf);
	for (i = 0 ; i < nr_pages ; i++) {
		int ret;
		bytes = PAGE_SIZE - offset;

		if (len <= 0)
			break;

		if (bytes > len)
			bytes = len;

		ret = bio_integrity_add_page(bio, virt_to_page(buf),
					     bytes, offset);

		if (ret == 0)
			return 0;

		if (ret < bytes)
			break;

		buf += bytes;
		len -= bytes;
		offset = 0;
	}

	/* Install custom I/O completion handler if read verify is enabled */
	if (bio_data_dir(bio) == READ) {
		bip->bip_end_io = bio->bi_end_io;
		bio->bi_end_io = bio_integrity_endio;
	}

	/* Auto-generate integrity metadata if this is a write */
	if (bio_data_dir(bio) == WRITE)
		bio_integrity_generate(bio);

	return 0;
}
EXPORT_SYMBOL(bio_integrity_prep);

/**
 * bio_integrity_verify - Verify integrity metadata for a bio
 * @bio:	bio to verify
 *
 * Description: This function is called to verify the integrity of a
 * bio.	 The data in the bio io_vec is compared to the integrity
 * metadata returned by the HBA.
 */
static int bio_integrity_verify(struct bio *bio)
{
470
	return bio_integrity_generate_verify(bio, 0);
471 472 473 474 475 476 477 478 479 480 481 482
}

/**
 * bio_integrity_verify_fn - Integrity I/O completion worker
 * @work:	Work struct stored in bio to be verified
 *
 * Description: This workqueue function is called to complete a READ
 * request.  The function verifies the transferred integrity metadata
 * and then calls the original bio end_io function.
 */
static void bio_integrity_verify_fn(struct work_struct *work)
{
483
	struct bio_integrity_payload *bip =
484 485
		container_of(work, struct bio_integrity_payload, bip_work);
	struct bio *bio = bip->bip_bio;
486
	int error;
487

488
	error = bio_integrity_verify(bio);
489 490 491

	/* Restore original bio completion handler */
	bio->bi_end_io = bip->bip_end_io;
K
Kent Overstreet 已提交
492
	bio_endio_nodec(bio, error);
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
}

/**
 * bio_integrity_endio - Integrity I/O completion function
 * @bio:	Protected bio
 * @error:	Pointer to errno
 *
 * Description: Completion for integrity I/O
 *
 * Normally I/O completion is done in interrupt context.  However,
 * verifying I/O integrity is a time-consuming task which must be run
 * in process context.	This function postpones completion
 * accordingly.
 */
void bio_integrity_endio(struct bio *bio, int error)
{
509
	struct bio_integrity_payload *bip = bio_integrity(bio);
510 511 512

	BUG_ON(bip->bip_bio != bio);

513 514 515 516 517 518
	/* In case of an I/O error there is no point in verifying the
	 * integrity metadata.  Restore original bio end_io handler
	 * and run it.
	 */
	if (error) {
		bio->bi_end_io = bip->bip_end_io;
519
		bio_endio_nodec(bio, error);
520 521 522 523

		return;
	}

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
	queue_work(kintegrityd_wq, &bip->bip_work);
}
EXPORT_SYMBOL(bio_integrity_endio);

/**
 * bio_integrity_advance - Advance integrity vector
 * @bio:	bio whose integrity vector to update
 * @bytes_done:	number of data bytes that have been completed
 *
 * Description: This function calculates how many integrity bytes the
 * number of completed data bytes correspond to and advances the
 * integrity vector accordingly.
 */
void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
{
540
	struct bio_integrity_payload *bip = bio_integrity(bio);
541
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
542
	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
543

544
	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
545 546 547 548 549 550 551 552 553 554 555 556 557 558
}
EXPORT_SYMBOL(bio_integrity_advance);

/**
 * bio_integrity_trim - Trim integrity vector
 * @bio:	bio whose integrity vector to update
 * @offset:	offset to first data sector
 * @sectors:	number of data sectors
 *
 * Description: Used to trim the integrity vector in a cloned bio.
 * The ivec will be advanced corresponding to 'offset' data sectors
 * and the length will be truncated corresponding to 'len' data
 * sectors.
 */
559 560
void bio_integrity_trim(struct bio *bio, unsigned int offset,
			unsigned int sectors)
561
{
562
	struct bio_integrity_payload *bip = bio_integrity(bio);
563 564
	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);

565 566
	bio_integrity_advance(bio, offset << 9);
	bip->bip_iter.bi_size = bio_integrity_bytes(bi, sectors);
567 568 569 570 571 572 573
}
EXPORT_SYMBOL(bio_integrity_trim);

/**
 * bio_integrity_clone - Callback for cloning bios with integrity metadata
 * @bio:	New bio
 * @bio_src:	Original bio
574
 * @gfp_mask:	Memory allocation mask
575 576 577
 *
 * Description:	Called to allocate a bip when cloning a bio
 */
578
int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
579
			gfp_t gfp_mask)
580
{
581
	struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
582 583 584 585
	struct bio_integrity_payload *bip;

	BUG_ON(bip_src == NULL);

586
	bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt);
587 588 589 590 591 592 593 594

	if (bip == NULL)
		return -EIO;

	memcpy(bip->bip_vec, bip_src->bip_vec,
	       bip_src->bip_vcnt * sizeof(struct bio_vec));

	bip->bip_vcnt = bip_src->bip_vcnt;
595
	bip->bip_iter = bip_src->bip_iter;
596 597 598 599 600

	return 0;
}
EXPORT_SYMBOL(bio_integrity_clone);

601
int bioset_integrity_create(struct bio_set *bs, int pool_size)
602
{
603 604 605
	if (bs->bio_integrity_pool)
		return 0;

606
	bs->bio_integrity_pool = mempool_create_slab_pool(pool_size, bip_slab);
607
	if (!bs->bio_integrity_pool)
608
		return -1;
609

610
	bs->bvec_integrity_pool = biovec_create_pool(pool_size);
611 612
	if (!bs->bvec_integrity_pool) {
		mempool_destroy(bs->bio_integrity_pool);
613
		return -1;
614
	}
615 616 617 618 619 620 621 622 623

	return 0;
}
EXPORT_SYMBOL(bioset_integrity_create);

void bioset_integrity_free(struct bio_set *bs)
{
	if (bs->bio_integrity_pool)
		mempool_destroy(bs->bio_integrity_pool);
624 625

	if (bs->bvec_integrity_pool)
626
		mempool_destroy(bs->bvec_integrity_pool);
627 628 629 630 631
}
EXPORT_SYMBOL(bioset_integrity_free);

void __init bio_integrity_init(void)
{
632 633 634 635 636 637
	/*
	 * kintegrityd won't block much but may burn a lot of CPU cycles.
	 * Make it highpri CPU intensive wq with max concurrency of 1.
	 */
	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
638 639
	if (!kintegrityd_wq)
		panic("Failed to create kintegrityd\n");
640

641 642 643 644 645 646
	bip_slab = kmem_cache_create("bio_integrity_payload",
				     sizeof(struct bio_integrity_payload) +
				     sizeof(struct bio_vec) * BIP_INLINE_VECS,
				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
	if (!bip_slab)
		panic("Failed to create slab\n");
647
}