umem_odp.c 21.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/types.h>
#include <linux/sched.h>
35
#include <linux/sched/mm.h>
36 37 38 39 40 41 42 43 44
#include <linux/pid.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/vmalloc.h>

#include <rdma/ib_verbs.h>
#include <rdma/ib_umem.h>
#include <rdma/ib_umem_odp.h>

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static void ib_umem_notifier_start_account(struct ib_umem *item)
{
	mutex_lock(&item->odp_data->umem_mutex);

	/* Only update private counters for this umem if it has them.
	 * Otherwise skip it. All page faults will be delayed for this umem. */
	if (item->odp_data->mn_counters_active) {
		int notifiers_count = item->odp_data->notifiers_count++;

		if (notifiers_count == 0)
			/* Initialize the completion object for waiting on
			 * notifiers. Since notifier_count is zero, no one
			 * should be waiting right now. */
			reinit_completion(&item->odp_data->notifier_completion);
	}
	mutex_unlock(&item->odp_data->umem_mutex);
}

static void ib_umem_notifier_end_account(struct ib_umem *item)
{
	mutex_lock(&item->odp_data->umem_mutex);

	/* Only update private counters for this umem if it has them.
	 * Otherwise skip it. All page faults will be delayed for this umem. */
	if (item->odp_data->mn_counters_active) {
		/*
		 * This sequence increase will notify the QP page fault that
		 * the page that is going to be mapped in the spte could have
		 * been freed.
		 */
		++item->odp_data->notifiers_seq;
		if (--item->odp_data->notifiers_count == 0)
			complete_all(&item->odp_data->notifier_completion);
	}
	mutex_unlock(&item->odp_data->umem_mutex);
}

/* Account for a new mmu notifier in an ib_ucontext. */
static void ib_ucontext_notifier_start_account(struct ib_ucontext *context)
{
	atomic_inc(&context->notifier_count);
}

/* Account for a terminating mmu notifier in an ib_ucontext.
 *
 * Must be called with the ib_ucontext->umem_rwsem semaphore unlocked, since
 * the function takes the semaphore itself. */
static void ib_ucontext_notifier_end_account(struct ib_ucontext *context)
{
	int zero_notifiers = atomic_dec_and_test(&context->notifier_count);

	if (zero_notifiers &&
	    !list_empty(&context->no_private_counters)) {
		/* No currently running mmu notifiers. Now is the chance to
		 * add private accounting to all previously added umems. */
		struct ib_umem_odp *odp_data, *next;

		/* Prevent concurrent mmu notifiers from working on the
		 * no_private_counters list. */
		down_write(&context->umem_rwsem);

		/* Read the notifier_count again, with the umem_rwsem
		 * semaphore taken for write. */
		if (!atomic_read(&context->notifier_count)) {
			list_for_each_entry_safe(odp_data, next,
						 &context->no_private_counters,
						 no_private_counters) {
				mutex_lock(&odp_data->umem_mutex);
				odp_data->mn_counters_active = true;
				list_del(&odp_data->no_private_counters);
				complete_all(&odp_data->notifier_completion);
				mutex_unlock(&odp_data->umem_mutex);
			}
		}

		up_write(&context->umem_rwsem);
	}
}

static int ib_umem_notifier_release_trampoline(struct ib_umem *item, u64 start,
					       u64 end, void *cookie) {
	/*
	 * Increase the number of notifiers running, to
	 * prevent any further fault handling on this MR.
	 */
	ib_umem_notifier_start_account(item);
	item->odp_data->dying = 1;
	/* Make sure that the fact the umem is dying is out before we release
	 * all pending page faults. */
	smp_wmb();
	complete_all(&item->odp_data->notifier_completion);
	item->context->invalidate_range(item, ib_umem_start(item),
					ib_umem_end(item));
	return 0;
}

static void ib_umem_notifier_release(struct mmu_notifier *mn,
				     struct mm_struct *mm)
{
	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);

	if (!context->invalidate_range)
		return;

	ib_ucontext_notifier_start_account(context);
	down_read(&context->umem_rwsem);
	rbt_ib_umem_for_each_in_range(&context->umem_tree, 0,
				      ULLONG_MAX,
				      ib_umem_notifier_release_trampoline,
				      NULL);
	up_read(&context->umem_rwsem);
}

static int invalidate_page_trampoline(struct ib_umem *item, u64 start,
				      u64 end, void *cookie)
{
	ib_umem_notifier_start_account(item);
	item->context->invalidate_range(item, start, start + PAGE_SIZE);
	ib_umem_notifier_end_account(item);
	return 0;
}

static void ib_umem_notifier_invalidate_page(struct mmu_notifier *mn,
					     struct mm_struct *mm,
					     unsigned long address)
{
	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);

	if (!context->invalidate_range)
		return;

	ib_ucontext_notifier_start_account(context);
	down_read(&context->umem_rwsem);
	rbt_ib_umem_for_each_in_range(&context->umem_tree, address,
				      address + PAGE_SIZE,
				      invalidate_page_trampoline, NULL);
	up_read(&context->umem_rwsem);
	ib_ucontext_notifier_end_account(context);
}

static int invalidate_range_start_trampoline(struct ib_umem *item, u64 start,
					     u64 end, void *cookie)
{
	ib_umem_notifier_start_account(item);
	item->context->invalidate_range(item, start, end);
	return 0;
}

static void ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
						    struct mm_struct *mm,
						    unsigned long start,
						    unsigned long end)
{
	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);

	if (!context->invalidate_range)
		return;

	ib_ucontext_notifier_start_account(context);
	down_read(&context->umem_rwsem);
	rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
				      end,
				      invalidate_range_start_trampoline, NULL);
	up_read(&context->umem_rwsem);
}

static int invalidate_range_end_trampoline(struct ib_umem *item, u64 start,
					   u64 end, void *cookie)
{
	ib_umem_notifier_end_account(item);
	return 0;
}

static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
						  struct mm_struct *mm,
						  unsigned long start,
						  unsigned long end)
{
	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);

	if (!context->invalidate_range)
		return;

	down_read(&context->umem_rwsem);
	rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
				      end,
				      invalidate_range_end_trampoline, NULL);
	up_read(&context->umem_rwsem);
	ib_ucontext_notifier_end_account(context);
}

236
static const struct mmu_notifier_ops ib_umem_notifiers = {
237 238 239 240 241 242
	.release                    = ib_umem_notifier_release,
	.invalidate_page            = ib_umem_notifier_invalidate_page,
	.invalidate_range_start     = ib_umem_notifier_invalidate_range_start,
	.invalidate_range_end       = ib_umem_notifier_invalidate_range_end,
};

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
struct ib_umem *ib_alloc_odp_umem(struct ib_ucontext *context,
				  unsigned long addr,
				  size_t size)
{
	struct ib_umem *umem;
	struct ib_umem_odp *odp_data;
	int pages = size >> PAGE_SHIFT;
	int ret;

	umem = kzalloc(sizeof(*umem), GFP_KERNEL);
	if (!umem)
		return ERR_PTR(-ENOMEM);

	umem->context   = context;
	umem->length    = size;
	umem->address   = addr;
	umem->page_size = PAGE_SIZE;
	umem->writable  = 1;

	odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
	if (!odp_data) {
		ret = -ENOMEM;
		goto out_umem;
	}
	odp_data->umem = umem;

	mutex_init(&odp_data->umem_mutex);
	init_completion(&odp_data->notifier_completion);

	odp_data->page_list = vzalloc(pages * sizeof(*odp_data->page_list));
	if (!odp_data->page_list) {
		ret = -ENOMEM;
		goto out_odp_data;
	}

	odp_data->dma_list = vzalloc(pages * sizeof(*odp_data->dma_list));
	if (!odp_data->dma_list) {
		ret = -ENOMEM;
		goto out_page_list;
	}

	down_write(&context->umem_rwsem);
	context->odp_mrs_count++;
	rbt_ib_umem_insert(&odp_data->interval_tree, &context->umem_tree);
	if (likely(!atomic_read(&context->notifier_count)))
		odp_data->mn_counters_active = true;
	else
		list_add(&odp_data->no_private_counters,
			 &context->no_private_counters);
	up_write(&context->umem_rwsem);

	umem->odp_data = odp_data;

	return umem;

out_page_list:
	vfree(odp_data->page_list);
out_odp_data:
	kfree(odp_data);
out_umem:
	kfree(umem);
	return ERR_PTR(ret);
}
EXPORT_SYMBOL(ib_alloc_odp_umem);

308 309 310 311
int ib_umem_odp_get(struct ib_ucontext *context, struct ib_umem *umem)
{
	int ret_val;
	struct pid *our_pid;
312 313 314 315
	struct mm_struct *mm = get_task_mm(current);

	if (!mm)
		return -EINVAL;
316 317 318 319 320 321

	/* Prevent creating ODP MRs in child processes */
	rcu_read_lock();
	our_pid = get_task_pid(current->group_leader, PIDTYPE_PID);
	rcu_read_unlock();
	put_pid(our_pid);
322 323 324 325
	if (context->tgid != our_pid) {
		ret_val = -EINVAL;
		goto out_mm;
	}
326 327 328

	umem->hugetlb = 0;
	umem->odp_data = kzalloc(sizeof(*umem->odp_data), GFP_KERNEL);
329 330 331 332 333
	if (!umem->odp_data) {
		ret_val = -ENOMEM;
		goto out_mm;
	}
	umem->odp_data->umem = umem;
334 335 336

	mutex_init(&umem->odp_data->umem_mutex);

337 338
	init_completion(&umem->odp_data->notifier_completion);

339 340
	if (ib_umem_num_pages(umem)) {
		umem->odp_data->page_list = vzalloc(ib_umem_num_pages(umem) *
341
					    sizeof(*umem->odp_data->page_list));
342 343 344 345
		if (!umem->odp_data->page_list) {
			ret_val = -ENOMEM;
			goto out_odp_data;
		}
346

347
		umem->odp_data->dma_list = vzalloc(ib_umem_num_pages(umem) *
348
					  sizeof(*umem->odp_data->dma_list));
349 350 351 352
		if (!umem->odp_data->dma_list) {
			ret_val = -ENOMEM;
			goto out_page_list;
		}
353 354
	}

355 356 357 358 359 360 361 362 363 364
	/*
	 * When using MMU notifiers, we will get a
	 * notification before the "current" task (and MM) is
	 * destroyed. We use the umem_rwsem semaphore to synchronize.
	 */
	down_write(&context->umem_rwsem);
	context->odp_mrs_count++;
	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
		rbt_ib_umem_insert(&umem->odp_data->interval_tree,
				   &context->umem_tree);
365 366
	if (likely(!atomic_read(&context->notifier_count)) ||
	    context->odp_mrs_count == 1)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
		umem->odp_data->mn_counters_active = true;
	else
		list_add(&umem->odp_data->no_private_counters,
			 &context->no_private_counters);
	downgrade_write(&context->umem_rwsem);

	if (context->odp_mrs_count == 1) {
		/*
		 * Note that at this point, no MMU notifier is running
		 * for this context!
		 */
		atomic_set(&context->notifier_count, 0);
		INIT_HLIST_NODE(&context->mn.hlist);
		context->mn.ops = &ib_umem_notifiers;
		/*
		 * Lock-dep detects a false positive for mmap_sem vs.
		 * umem_rwsem, due to not grasping downgrade_write correctly.
		 */
		lockdep_off();
		ret_val = mmu_notifier_register(&context->mn, mm);
		lockdep_on();
		if (ret_val) {
			pr_err("Failed to register mmu_notifier %d\n", ret_val);
			ret_val = -EBUSY;
			goto out_mutex;
		}
	}

	up_read(&context->umem_rwsem);

	/*
	 * Note that doing an mmput can cause a notifier for the relevant mm.
	 * If the notifier is called while we hold the umem_rwsem, this will
	 * cause a deadlock. Therefore, we release the reference only after we
	 * released the semaphore.
	 */
	mmput(mm);
404 405
	return 0;

406 407 408
out_mutex:
	up_read(&context->umem_rwsem);
	vfree(umem->odp_data->dma_list);
409 410 411 412
out_page_list:
	vfree(umem->odp_data->page_list);
out_odp_data:
	kfree(umem->odp_data);
413 414
out_mm:
	mmput(mm);
415 416 417 418 419
	return ret_val;
}

void ib_umem_odp_release(struct ib_umem *umem)
{
420 421
	struct ib_ucontext *context = umem->context;

422 423 424 425 426 427 428 429 430
	/*
	 * Ensure that no more pages are mapped in the umem.
	 *
	 * It is the driver's responsibility to ensure, before calling us,
	 * that the hardware will not attempt to access the MR any more.
	 */
	ib_umem_odp_unmap_dma_pages(umem, ib_umem_start(umem),
				    ib_umem_end(umem));

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
	down_write(&context->umem_rwsem);
	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
		rbt_ib_umem_remove(&umem->odp_data->interval_tree,
				   &context->umem_tree);
	context->odp_mrs_count--;
	if (!umem->odp_data->mn_counters_active) {
		list_del(&umem->odp_data->no_private_counters);
		complete_all(&umem->odp_data->notifier_completion);
	}

	/*
	 * Downgrade the lock to a read lock. This ensures that the notifiers
	 * (who lock the mutex for reading) will be able to finish, and we
	 * will be able to enventually obtain the mmu notifiers SRCU. Note
	 * that since we are doing it atomically, no other user could register
	 * and unregister while we do the check.
	 */
	downgrade_write(&context->umem_rwsem);
	if (!context->odp_mrs_count) {
		struct task_struct *owning_process = NULL;
		struct mm_struct *owning_mm        = NULL;

		owning_process = get_pid_task(context->tgid,
					      PIDTYPE_PID);
		if (owning_process == NULL)
			/*
			 * The process is already dead, notifier were removed
			 * already.
			 */
			goto out;

		owning_mm = get_task_mm(owning_process);
		if (owning_mm == NULL)
			/*
			 * The process' mm is already dead, notifier were
			 * removed already.
			 */
			goto out_put_task;
		mmu_notifier_unregister(&context->mn, owning_mm);

		mmput(owning_mm);

out_put_task:
		put_task_struct(owning_process);
	}
out:
	up_read(&context->umem_rwsem);

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	vfree(umem->odp_data->dma_list);
	vfree(umem->odp_data->page_list);
	kfree(umem->odp_data);
	kfree(umem);
}

/*
 * Map for DMA and insert a single page into the on-demand paging page tables.
 *
 * @umem: the umem to insert the page to.
 * @page_index: index in the umem to add the page to.
 * @page: the page struct to map and add.
 * @access_mask: access permissions needed for this page.
 * @current_seq: sequence number for synchronization with invalidations.
 *               the sequence number is taken from
 *               umem->odp_data->notifiers_seq.
 *
496 497
 * The function returns -EFAULT if the DMA mapping operation fails. It returns
 * -EAGAIN if a concurrent invalidation prevents us from updating the page.
498 499 500 501 502 503 504 505
 *
 * The page is released via put_page even if the operation failed. For
 * on-demand pinning, the page is released whenever it isn't stored in the
 * umem.
 */
static int ib_umem_odp_map_dma_single_page(
		struct ib_umem *umem,
		int page_index,
506
		u64 base_virt_addr,
507 508 509 510 511 512 513
		struct page *page,
		u64 access_mask,
		unsigned long current_seq)
{
	struct ib_device *dev = umem->context->device;
	dma_addr_t dma_addr;
	int stored_page = 0;
514
	int remove_existing_mapping = 0;
515 516
	int ret = 0;

517 518 519 520 521 522 523 524 525
	/*
	 * Note: we avoid writing if seq is different from the initial seq, to
	 * handle case of a racing notifier. This check also allows us to bail
	 * early if we have a notifier running in parallel with us.
	 */
	if (ib_umem_mmu_notifier_retry(umem, current_seq)) {
		ret = -EAGAIN;
		goto out;
	}
526 527 528 529 530 531 532 533 534 535 536
	if (!(umem->odp_data->dma_list[page_index])) {
		dma_addr = ib_dma_map_page(dev,
					   page,
					   0, PAGE_SIZE,
					   DMA_BIDIRECTIONAL);
		if (ib_dma_mapping_error(dev, dma_addr)) {
			ret = -EFAULT;
			goto out;
		}
		umem->odp_data->dma_list[page_index] = dma_addr | access_mask;
		umem->odp_data->page_list[page_index] = page;
537
		umem->npages++;
538 539 540 541 542 543
		stored_page = 1;
	} else if (umem->odp_data->page_list[page_index] == page) {
		umem->odp_data->dma_list[page_index] |= access_mask;
	} else {
		pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
		       umem->odp_data->page_list[page_index], page);
544 545 546
		/* Better remove the mapping now, to prevent any further
		 * damage. */
		remove_existing_mapping = 1;
547 548 549
	}

out:
550 551
	/* On Demand Paging - avoid pinning the page */
	if (umem->context->invalidate_range || !stored_page)
552 553
		put_page(page);

554 555 556 557 558 559 560 561 562
	if (remove_existing_mapping && umem->context->invalidate_range) {
		invalidate_page_trampoline(
			umem,
			base_virt_addr + (page_index * PAGE_SIZE),
			base_virt_addr + ((page_index+1)*PAGE_SIZE),
			NULL);
		ret = -EAGAIN;
	}

563 564 565 566 567 568 569 570 571 572 573 574
	return ret;
}

/**
 * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
 *
 * Pins the range of pages passed in the argument, and maps them to
 * DMA addresses. The DMA addresses of the mapped pages is updated in
 * umem->odp_data->dma_list.
 *
 * Returns the number of pages mapped in success, negative error code
 * for failure.
575 576
 * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
 * the function from completing its task.
577 578
 * An -ENOENT error code indicates that userspace process is being terminated
 * and mm was already destroyed.
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
 * @umem: the umem to map and pin
 * @user_virt: the address from which we need to map.
 * @bcnt: the minimal number of bytes to pin and map. The mapping might be
 *        bigger due to alignment, and may also be smaller in case of an error
 *        pinning or mapping a page. The actual pages mapped is returned in
 *        the return value.
 * @access_mask: bit mask of the requested access permissions for the given
 *               range.
 * @current_seq: the MMU notifiers sequance value for synchronization with
 *               invalidations. the sequance number is read from
 *               umem->odp_data->notifiers_seq before calling this function
 */
int ib_umem_odp_map_dma_pages(struct ib_umem *umem, u64 user_virt, u64 bcnt,
			      u64 access_mask, unsigned long current_seq)
{
	struct task_struct *owning_process  = NULL;
	struct mm_struct   *owning_mm       = NULL;
	struct page       **local_page_list = NULL;
	u64 off;
	int j, k, ret = 0, start_idx, npages = 0;
599
	u64 base_virt_addr;
600
	unsigned int flags = 0;
601 602 603 604 605 606 607 608 609 610 611 612 613 614

	if (access_mask == 0)
		return -EINVAL;

	if (user_virt < ib_umem_start(umem) ||
	    user_virt + bcnt > ib_umem_end(umem))
		return -EFAULT;

	local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
	if (!local_page_list)
		return -ENOMEM;

	off = user_virt & (~PAGE_MASK);
	user_virt = user_virt & PAGE_MASK;
615
	base_virt_addr = user_virt;
616 617 618 619 620 621 622 623 624 625
	bcnt += off; /* Charge for the first page offset as well. */

	owning_process = get_pid_task(umem->context->tgid, PIDTYPE_PID);
	if (owning_process == NULL) {
		ret = -EINVAL;
		goto out_no_task;
	}

	owning_mm = get_task_mm(owning_process);
	if (owning_mm == NULL) {
626
		ret = -ENOENT;
627 628 629
		goto out_put_task;
	}

630 631 632
	if (access_mask & ODP_WRITE_ALLOWED_BIT)
		flags |= FOLL_WRITE;

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	start_idx = (user_virt - ib_umem_start(umem)) >> PAGE_SHIFT;
	k = start_idx;

	while (bcnt > 0) {
		const size_t gup_num_pages =
			min_t(size_t, ALIGN(bcnt, PAGE_SIZE) / PAGE_SIZE,
			      PAGE_SIZE / sizeof(struct page *));

		down_read(&owning_mm->mmap_sem);
		/*
		 * Note: this might result in redundent page getting. We can
		 * avoid this by checking dma_list to be 0 before calling
		 * get_user_pages. However, this make the code much more
		 * complex (and doesn't gain us much performance in most use
		 * cases).
		 */
649 650
		npages = get_user_pages_remote(owning_process, owning_mm,
				user_virt, gup_num_pages,
651
				flags, local_page_list, NULL, NULL);
652 653 654 655 656 657 658
		up_read(&owning_mm->mmap_sem);

		if (npages < 0)
			break;

		bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
		user_virt += npages << PAGE_SHIFT;
659
		mutex_lock(&umem->odp_data->umem_mutex);
660 661
		for (j = 0; j < npages; ++j) {
			ret = ib_umem_odp_map_dma_single_page(
662 663
				umem, k, base_virt_addr, local_page_list[j],
				access_mask, current_seq);
664 665 666 667
			if (ret < 0)
				break;
			k++;
		}
668
		mutex_unlock(&umem->odp_data->umem_mutex);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702

		if (ret < 0) {
			/* Release left over pages when handling errors. */
			for (++j; j < npages; ++j)
				put_page(local_page_list[j]);
			break;
		}
	}

	if (ret >= 0) {
		if (npages < 0 && k == start_idx)
			ret = npages;
		else
			ret = k - start_idx;
	}

	mmput(owning_mm);
out_put_task:
	put_task_struct(owning_process);
out_no_task:
	free_page((unsigned long)local_page_list);
	return ret;
}
EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);

void ib_umem_odp_unmap_dma_pages(struct ib_umem *umem, u64 virt,
				 u64 bound)
{
	int idx;
	u64 addr;
	struct ib_device *dev = umem->context->device;

	virt  = max_t(u64, virt,  ib_umem_start(umem));
	bound = min_t(u64, bound, ib_umem_end(umem));
703 704 705 706 707
	/* Note that during the run of this function, the
	 * notifiers_count of the MR is > 0, preventing any racing
	 * faults from completion. We might be racing with other
	 * invalidations, so we must make sure we free each page only
	 * once. */
708
	mutex_lock(&umem->odp_data->umem_mutex);
709 710 711 712 713 714 715 716 717 718 719
	for (addr = virt; addr < bound; addr += (u64)umem->page_size) {
		idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
		if (umem->odp_data->page_list[idx]) {
			struct page *page = umem->odp_data->page_list[idx];
			dma_addr_t dma = umem->odp_data->dma_list[idx];
			dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;

			WARN_ON(!dma_addr);

			ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE,
					  DMA_BIDIRECTIONAL);
G
Guy Shapiro 已提交
720 721
			if (dma & ODP_WRITE_ALLOWED_BIT) {
				struct page *head_page = compound_head(page);
722 723 724 725 726 727 728 729 730 731
				/*
				 * set_page_dirty prefers being called with
				 * the page lock. However, MMU notifiers are
				 * called sometimes with and sometimes without
				 * the lock. We rely on the umem_mutex instead
				 * to prevent other mmu notifiers from
				 * continuing and allowing the page mapping to
				 * be removed.
				 */
				set_page_dirty(head_page);
G
Guy Shapiro 已提交
732
			}
733 734 735 736 737
			/* on demand pinning support */
			if (!umem->context->invalidate_range)
				put_page(page);
			umem->odp_data->page_list[idx] = NULL;
			umem->odp_data->dma_list[idx] = 0;
738
			umem->npages--;
739 740
		}
	}
741
	mutex_unlock(&umem->odp_data->umem_mutex);
742 743
}
EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);