mv_cesa.c 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Support for Marvell's crypto engine which can be found on some Orion5X
 * boards.
 *
 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
 * License: GPLv2
 *
 */
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <linux/crypto.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kthread.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
17
#include <linux/slab.h>
18
#include <linux/module.h>
19
#include <linux/clk.h>
20 21
#include <crypto/internal/hash.h>
#include <crypto/sha.h>
22 23

#include "mv_cesa.h"
24 25 26

#define MV_CESA	"MV-CESA:"
#define MAX_HW_HASH_SIZE	0xFFFF
27
#define MV_CESA_EXPIRE		500 /* msec */
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/*
 * STM:
 *   /---------------------------------------\
 *   |					     | request complete
 *  \./					     |
 * IDLE -> new request -> BUSY -> done -> DEQUEUE
 *                         /°\               |
 *			    |		     | more scatter entries
 *			    \________________/
 */
enum engine_status {
	ENGINE_IDLE,
	ENGINE_BUSY,
	ENGINE_W_DEQUEUE,
};

/**
 * struct req_progress - used for every crypt request
 * @src_sg_it:		sg iterator for src
 * @dst_sg_it:		sg iterator for dst
 * @sg_src_left:	bytes left in src to process (scatter list)
 * @src_start:		offset to add to src start position (scatter list)
51
 * @crypt_len:		length of current hw crypt/hash process
52
 * @hw_nbytes:		total bytes to process in hw for this request
53
 * @copy_back:		whether to copy data back (crypt) or not (hash)
54 55
 * @sg_dst_left:	bytes left dst to process in this scatter list
 * @dst_start:		offset to add to dst start position (scatter list)
56
 * @hw_processed_bytes:	number of bytes processed by hw (request).
57 58 59 60 61 62 63 64
 *
 * sg helper are used to iterate over the scatterlist. Since the size of the
 * SRAM may be less than the scatter size, this struct struct is used to keep
 * track of progress within current scatterlist.
 */
struct req_progress {
	struct sg_mapping_iter src_sg_it;
	struct sg_mapping_iter dst_sg_it;
65 66
	void (*complete) (void);
	void (*process) (int is_first);
67 68 69 70 71

	/* src mostly */
	int sg_src_left;
	int src_start;
	int crypt_len;
72
	int hw_nbytes;
73
	/* dst mostly */
74
	int copy_back;
75 76
	int sg_dst_left;
	int dst_start;
77
	int hw_processed_bytes;
78 79 80 81 82 83
};

struct crypto_priv {
	void __iomem *reg;
	void __iomem *sram;
	int irq;
84
	struct clk *clk;
85 86 87 88 89 90
	struct task_struct *queue_th;

	/* the lock protects queue and eng_st */
	spinlock_t lock;
	struct crypto_queue queue;
	enum engine_status eng_st;
91
	struct timer_list completion_timer;
92
	struct crypto_async_request *cur_req;
93 94 95
	struct req_progress p;
	int max_req_size;
	int sram_size;
96 97
	int has_sha1;
	int has_hmac_sha1;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
};

static struct crypto_priv *cpg;

struct mv_ctx {
	u8 aes_enc_key[AES_KEY_LEN];
	u32 aes_dec_key[8];
	int key_len;
	u32 need_calc_aes_dkey;
};

enum crypto_op {
	COP_AES_ECB,
	COP_AES_CBC,
};

struct mv_req_ctx {
	enum crypto_op op;
	int decrypt;
};

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
enum hash_op {
	COP_SHA1,
	COP_HMAC_SHA1
};

struct mv_tfm_hash_ctx {
	struct crypto_shash *fallback;
	struct crypto_shash *base_hash;
	u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
	int count_add;
	enum hash_op op;
};

struct mv_req_hash_ctx {
	u64 count;
	u32 state[SHA1_DIGEST_SIZE / 4];
	u8 buffer[SHA1_BLOCK_SIZE];
	int first_hash;		/* marks that we don't have previous state */
	int last_chunk;		/* marks that this is the 'final' request */
	int extra_bytes;	/* unprocessed bytes in buffer */
	enum hash_op op;
	int count_add;
};

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
static void mv_completion_timer_callback(unsigned long unused)
{
	int active = readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_EN_SEC_ACCL0;

	printk(KERN_ERR MV_CESA
	       "completion timer expired (CESA %sactive), cleaning up.\n",
	       active ? "" : "in");

	del_timer(&cpg->completion_timer);
	writel(SEC_CMD_DISABLE_SEC, cpg->reg + SEC_ACCEL_CMD);
	while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
		printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
	cpg->eng_st = ENGINE_W_DEQUEUE;
	wake_up_process(cpg->queue_th);
}

static void mv_setup_timer(void)
{
	setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
	mod_timer(&cpg->completion_timer,
			jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static void compute_aes_dec_key(struct mv_ctx *ctx)
{
	struct crypto_aes_ctx gen_aes_key;
	int key_pos;

	if (!ctx->need_calc_aes_dkey)
		return;

	crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);

	key_pos = ctx->key_len + 24;
	memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
	switch (ctx->key_len) {
	case AES_KEYSIZE_256:
		key_pos -= 2;
		/* fall */
	case AES_KEYSIZE_192:
		key_pos -= 2;
		memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
				4 * 4);
		break;
	}
	ctx->need_calc_aes_dkey = 0;
}

static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
		unsigned int len)
{
	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
	struct mv_ctx *ctx = crypto_tfm_ctx(tfm);

	switch (len) {
	case AES_KEYSIZE_128:
	case AES_KEYSIZE_192:
	case AES_KEYSIZE_256:
		break;
	default:
		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}
	ctx->key_len = len;
	ctx->need_calc_aes_dkey = 1;

	memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
	return 0;
}

213
static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
214 215
{
	int ret;
216
	void *sbuf;
217
	int copy_len;
218

219
	while (len) {
220 221 222 223 224 225
		if (!p->sg_src_left) {
			ret = sg_miter_next(&p->src_sg_it);
			BUG_ON(!ret);
			p->sg_src_left = p->src_sg_it.length;
			p->src_start = 0;
		}
226

227 228
		sbuf = p->src_sg_it.addr + p->src_start;

229 230 231 232 233 234 235 236
		copy_len = min(p->sg_src_left, len);
		memcpy(dbuf, sbuf, copy_len);

		p->src_start += copy_len;
		p->sg_src_left -= copy_len;

		len -= copy_len;
		dbuf += copy_len;
237 238
	}
}
239

240
static void setup_data_in(void)
241 242
{
	struct req_progress *p = &cpg->p;
243
	int data_in_sram =
244
	    min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
245 246 247
	copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
			data_in_sram - p->crypt_len);
	p->crypt_len = data_in_sram;
248 249 250 251
}

static void mv_process_current_q(int first_block)
{
252
	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
253 254 255 256 257 258 259 260 261
	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
	struct sec_accel_config op;

	switch (req_ctx->op) {
	case COP_AES_ECB:
		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
		break;
	case COP_AES_CBC:
262
	default:
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
		op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
			ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
		if (first_block)
			memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
		break;
	}
	if (req_ctx->decrypt) {
		op.config |= CFG_DIR_DEC;
		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
				AES_KEY_LEN);
	} else {
		op.config |= CFG_DIR_ENC;
		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
				AES_KEY_LEN);
	}

	switch (ctx->key_len) {
	case AES_KEYSIZE_128:
		op.config |= CFG_AES_LEN_128;
		break;
	case AES_KEYSIZE_192:
		op.config |= CFG_AES_LEN_192;
		break;
	case AES_KEYSIZE_256:
		op.config |= CFG_AES_LEN_256;
		break;
	}
	op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
		ENC_P_DST(SRAM_DATA_OUT_START);
	op.enc_key_p = SRAM_DATA_KEY_P;

295
	setup_data_in();
296 297 298 299 300
	op.enc_len = cpg->p.crypt_len;
	memcpy(cpg->sram + SRAM_CONFIG, &op,
			sizeof(struct sec_accel_config));

	/* GO */
301
	mv_setup_timer();
302 303 304 305 306
	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
}

static void mv_crypto_algo_completion(void)
{
307
	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
308 309
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

310 311 312
	sg_miter_stop(&cpg->p.src_sg_it);
	sg_miter_stop(&cpg->p.dst_sg_it);

313 314 315 316 317 318
	if (req_ctx->op != COP_AES_CBC)
		return ;

	memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
}

319 320 321
static void mv_process_hash_current(int first_block)
{
	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
322
	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
323 324 325 326 327 328 329 330 331 332 333 334
	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
	struct req_progress *p = &cpg->p;
	struct sec_accel_config op = { 0 };
	int is_last;

	switch (req_ctx->op) {
	case COP_SHA1:
	default:
		op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
		break;
	case COP_HMAC_SHA1:
		op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
335 336
		memcpy(cpg->sram + SRAM_HMAC_IV_IN,
				tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
		break;
	}

	op.mac_src_p =
		MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
		req_ctx->
		count);

	setup_data_in();

	op.mac_digest =
		MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
	op.mac_iv =
		MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
		MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);

	is_last = req_ctx->last_chunk
		&& (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
		&& (req_ctx->count <= MAX_HW_HASH_SIZE);
	if (req_ctx->first_hash) {
		if (is_last)
			op.config |= CFG_NOT_FRAG;
		else
			op.config |= CFG_FIRST_FRAG;

		req_ctx->first_hash = 0;
	} else {
		if (is_last)
			op.config |= CFG_LAST_FRAG;
		else
			op.config |= CFG_MID_FRAG;
368

369 370 371 372 373 374 375
		if (first_block) {
			writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
			writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
			writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
			writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
			writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
		}
376 377 378 379 380
	}

	memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));

	/* GO */
381
	mv_setup_timer();
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
}

static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
					  struct shash_desc *desc)
{
	int i;
	struct sha1_state shash_state;

	shash_state.count = ctx->count + ctx->count_add;
	for (i = 0; i < 5; i++)
		shash_state.state[i] = ctx->state[i];
	memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
	return crypto_shash_import(desc, &shash_state);
}

static int mv_hash_final_fallback(struct ahash_request *req)
{
	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
	struct {
		struct shash_desc shash;
		char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
	} desc;
	int rc;

	desc.shash.tfm = tfm_ctx->fallback;
	desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
	if (unlikely(req_ctx->first_hash)) {
		crypto_shash_init(&desc.shash);
		crypto_shash_update(&desc.shash, req_ctx->buffer,
				    req_ctx->extra_bytes);
	} else {
		/* only SHA1 for now....
		 */
		rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
		if (rc)
			goto out;
	}
	rc = crypto_shash_final(&desc.shash, req->result);
out:
	return rc;
}

static void mv_hash_algo_completion(void)
{
	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);

	if (ctx->extra_bytes)
		copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
	sg_miter_stop(&cpg->p.src_sg_it);

	if (likely(ctx->last_chunk)) {
		if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
			memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
			       crypto_ahash_digestsize(crypto_ahash_reqtfm
						       (req)));
		} else
			mv_hash_final_fallback(req);
442 443 444 445 446 447
	} else {
		ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
		ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
		ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
		ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
		ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
448 449 450
	}
}

451 452
static void dequeue_complete_req(void)
{
453
	struct crypto_async_request *req = cpg->cur_req;
454 455
	void *buf;
	int ret;
456
	cpg->p.hw_processed_bytes += cpg->p.crypt_len;
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	if (cpg->p.copy_back) {
		int need_copy_len = cpg->p.crypt_len;
		int sram_offset = 0;
		do {
			int dst_copy;

			if (!cpg->p.sg_dst_left) {
				ret = sg_miter_next(&cpg->p.dst_sg_it);
				BUG_ON(!ret);
				cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
				cpg->p.dst_start = 0;
			}

			buf = cpg->p.dst_sg_it.addr;
			buf += cpg->p.dst_start;

			dst_copy = min(need_copy_len, cpg->p.sg_dst_left);

			memcpy(buf,
			       cpg->sram + SRAM_DATA_OUT_START + sram_offset,
			       dst_copy);
			sram_offset += dst_copy;
			cpg->p.sg_dst_left -= dst_copy;
			need_copy_len -= dst_copy;
			cpg->p.dst_start += dst_copy;
		} while (need_copy_len > 0);
	}
484

485
	cpg->p.crypt_len = 0;
486 487

	BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
488
	if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
489 490
		/* process next scatter list entry */
		cpg->eng_st = ENGINE_BUSY;
491
		cpg->p.process(0);
492
	} else {
493
		cpg->p.complete();
494
		cpg->eng_st = ENGINE_IDLE;
495
		local_bh_disable();
496
		req->complete(req, 0);
497
		local_bh_enable();
498 499 500 501 502 503
	}
}

static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
{
	int i = 0;
504 505
	size_t cur_len;

506
	while (sl) {
507 508 509 510 511 512 513
		cur_len = sl[i].length;
		++i;
		if (total_bytes > cur_len)
			total_bytes -= cur_len;
		else
			break;
	}
514 515 516 517

	return i;
}

518
static void mv_start_new_crypt_req(struct ablkcipher_request *req)
519
{
520
	struct req_progress *p = &cpg->p;
521 522
	int num_sgs;

523 524 525
	cpg->cur_req = &req->base;
	memset(p, 0, sizeof(struct req_progress));
	p->hw_nbytes = req->nbytes;
526 527
	p->complete = mv_crypto_algo_completion;
	p->process = mv_process_current_q;
528
	p->copy_back = 1;
529 530

	num_sgs = count_sgs(req->src, req->nbytes);
531
	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
532 533

	num_sgs = count_sgs(req->dst, req->nbytes);
534 535
	sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);

536 537 538
	mv_process_current_q(1);
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
static void mv_start_new_hash_req(struct ahash_request *req)
{
	struct req_progress *p = &cpg->p;
	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
	int num_sgs, hw_bytes, old_extra_bytes, rc;
	cpg->cur_req = &req->base;
	memset(p, 0, sizeof(struct req_progress));
	hw_bytes = req->nbytes + ctx->extra_bytes;
	old_extra_bytes = ctx->extra_bytes;

	ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
	if (ctx->extra_bytes != 0
	    && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
		hw_bytes -= ctx->extra_bytes;
	else
		ctx->extra_bytes = 0;

	num_sgs = count_sgs(req->src, req->nbytes);
	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);

	if (hw_bytes) {
		p->hw_nbytes = hw_bytes;
		p->complete = mv_hash_algo_completion;
		p->process = mv_process_hash_current;

564 565 566 567 568 569
		if (unlikely(old_extra_bytes)) {
			memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
			       old_extra_bytes);
			p->crypt_len = old_extra_bytes;
		}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
		mv_process_hash_current(1);
	} else {
		copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
				ctx->extra_bytes - old_extra_bytes);
		sg_miter_stop(&p->src_sg_it);
		if (ctx->last_chunk)
			rc = mv_hash_final_fallback(req);
		else
			rc = 0;
		cpg->eng_st = ENGINE_IDLE;
		local_bh_disable();
		req->base.complete(&req->base, rc);
		local_bh_enable();
	}
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
static int queue_manag(void *data)
{
	cpg->eng_st = ENGINE_IDLE;
	do {
		struct crypto_async_request *async_req = NULL;
		struct crypto_async_request *backlog;

		__set_current_state(TASK_INTERRUPTIBLE);

		if (cpg->eng_st == ENGINE_W_DEQUEUE)
			dequeue_complete_req();

		spin_lock_irq(&cpg->lock);
		if (cpg->eng_st == ENGINE_IDLE) {
			backlog = crypto_get_backlog(&cpg->queue);
			async_req = crypto_dequeue_request(&cpg->queue);
			if (async_req) {
				BUG_ON(cpg->eng_st != ENGINE_IDLE);
				cpg->eng_st = ENGINE_BUSY;
			}
		}
		spin_unlock_irq(&cpg->lock);

		if (backlog) {
			backlog->complete(backlog, -EINPROGRESS);
			backlog = NULL;
		}

		if (async_req) {
615 616 617
			if (async_req->tfm->__crt_alg->cra_type !=
			    &crypto_ahash_type) {
				struct ablkcipher_request *req =
618
				    ablkcipher_request_cast(async_req);
619 620 621 622 623 624
				mv_start_new_crypt_req(req);
			} else {
				struct ahash_request *req =
				    ahash_request_cast(async_req);
				mv_start_new_hash_req(req);
			}
625 626 627 628 629 630 631 632 633
			async_req = NULL;
		}

		schedule();

	} while (!kthread_should_stop());
	return 0;
}

634
static int mv_handle_req(struct crypto_async_request *req)
635 636 637 638 639
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&cpg->lock, flags);
640
	ret = crypto_enqueue_request(&cpg->queue, req);
641 642 643 644 645 646 647 648 649 650 651 652
	spin_unlock_irqrestore(&cpg->lock, flags);
	wake_up_process(cpg->queue_th);
	return ret;
}

static int mv_enc_aes_ecb(struct ablkcipher_request *req)
{
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

	req_ctx->op = COP_AES_ECB;
	req_ctx->decrypt = 0;

653
	return mv_handle_req(&req->base);
654 655 656 657 658 659 660 661 662 663 664
}

static int mv_dec_aes_ecb(struct ablkcipher_request *req)
{
	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

	req_ctx->op = COP_AES_ECB;
	req_ctx->decrypt = 1;

	compute_aes_dec_key(ctx);
665
	return mv_handle_req(&req->base);
666 667 668 669 670 671 672 673 674
}

static int mv_enc_aes_cbc(struct ablkcipher_request *req)
{
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

	req_ctx->op = COP_AES_CBC;
	req_ctx->decrypt = 0;

675
	return mv_handle_req(&req->base);
676 677 678 679 680 681 682 683 684 685 686
}

static int mv_dec_aes_cbc(struct ablkcipher_request *req)
{
	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

	req_ctx->op = COP_AES_CBC;
	req_ctx->decrypt = 1;

	compute_aes_dec_key(ctx);
687
	return mv_handle_req(&req->base);
688 689 690 691 692 693 694 695
}

static int mv_cra_init(struct crypto_tfm *tfm)
{
	tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
	return 0;
}

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
				 int is_last, unsigned int req_len,
				 int count_add)
{
	memset(ctx, 0, sizeof(*ctx));
	ctx->op = op;
	ctx->count = req_len;
	ctx->first_hash = 1;
	ctx->last_chunk = is_last;
	ctx->count_add = count_add;
}

static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
				   unsigned req_len)
{
	ctx->last_chunk = is_last;
	ctx->count += req_len;
}

static int mv_hash_init(struct ahash_request *req)
{
	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
			     tfm_ctx->count_add);
	return 0;
}

static int mv_hash_update(struct ahash_request *req)
{
	if (!req->nbytes)
		return 0;

	mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
	return mv_handle_req(&req->base);
}

static int mv_hash_final(struct ahash_request *req)
{
	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
735

736
	ahash_request_set_crypt(req, NULL, req->result, 0);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	mv_update_hash_req_ctx(ctx, 1, 0);
	return mv_handle_req(&req->base);
}

static int mv_hash_finup(struct ahash_request *req)
{
	mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
	return mv_handle_req(&req->base);
}

static int mv_hash_digest(struct ahash_request *req)
{
	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
			     req->nbytes, tfm_ctx->count_add);
	return mv_handle_req(&req->base);
}

static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
			     const void *ostate)
{
	const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
	int i;
	for (i = 0; i < 5; i++) {
		ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
		ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
	}
}

static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
			  unsigned int keylen)
{
	int rc;
	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
	int bs, ds, ss;

	if (!ctx->base_hash)
		return 0;

	rc = crypto_shash_setkey(ctx->fallback, key, keylen);
	if (rc)
		return rc;

	/* Can't see a way to extract the ipad/opad from the fallback tfm
	   so I'm basically copying code from the hmac module */
	bs = crypto_shash_blocksize(ctx->base_hash);
	ds = crypto_shash_digestsize(ctx->base_hash);
	ss = crypto_shash_statesize(ctx->base_hash);

	{
		struct {
			struct shash_desc shash;
			char ctx[crypto_shash_descsize(ctx->base_hash)];
		} desc;
		unsigned int i;
		char ipad[ss];
		char opad[ss];

		desc.shash.tfm = ctx->base_hash;
		desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
		    CRYPTO_TFM_REQ_MAY_SLEEP;

		if (keylen > bs) {
			int err;

			err =
			    crypto_shash_digest(&desc.shash, key, keylen, ipad);
			if (err)
				return err;

			keylen = ds;
		} else
			memcpy(ipad, key, keylen);

		memset(ipad + keylen, 0, bs - keylen);
		memcpy(opad, ipad, bs);

		for (i = 0; i < bs; i++) {
			ipad[i] ^= 0x36;
			opad[i] ^= 0x5c;
		}

		rc = crypto_shash_init(&desc.shash) ? :
		    crypto_shash_update(&desc.shash, ipad, bs) ? :
		    crypto_shash_export(&desc.shash, ipad) ? :
		    crypto_shash_init(&desc.shash) ? :
		    crypto_shash_update(&desc.shash, opad, bs) ? :
		    crypto_shash_export(&desc.shash, opad);

		if (rc == 0)
			mv_hash_init_ivs(ctx, ipad, opad);

		return rc;
	}
}

static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
			    enum hash_op op, int count_add)
{
	const char *fallback_driver_name = tfm->__crt_alg->cra_name;
	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypto_shash *fallback_tfm = NULL;
	struct crypto_shash *base_hash = NULL;
	int err = -ENOMEM;

	ctx->op = op;
	ctx->count_add = count_add;

	/* Allocate a fallback and abort if it failed. */
	fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
					  CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(fallback_tfm)) {
		printk(KERN_WARNING MV_CESA
		       "Fallback driver '%s' could not be loaded!\n",
		       fallback_driver_name);
		err = PTR_ERR(fallback_tfm);
		goto out;
	}
	ctx->fallback = fallback_tfm;

	if (base_hash_name) {
		/* Allocate a hash to compute the ipad/opad of hmac. */
		base_hash = crypto_alloc_shash(base_hash_name, 0,
					       CRYPTO_ALG_NEED_FALLBACK);
		if (IS_ERR(base_hash)) {
			printk(KERN_WARNING MV_CESA
			       "Base driver '%s' could not be loaded!\n",
			       base_hash_name);
865
			err = PTR_ERR(base_hash);
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
			goto err_bad_base;
		}
	}
	ctx->base_hash = base_hash;

	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct mv_req_hash_ctx) +
				 crypto_shash_descsize(ctx->fallback));
	return 0;
err_bad_base:
	crypto_free_shash(fallback_tfm);
out:
	return err;
}

static void mv_cra_hash_exit(struct crypto_tfm *tfm)
{
	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_free_shash(ctx->fallback);
	if (ctx->base_hash)
		crypto_free_shash(ctx->base_hash);
}

static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
{
	return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
}

static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
{
	return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
}

900 901 902 903 904 905 906 907
irqreturn_t crypto_int(int irq, void *priv)
{
	u32 val;

	val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
	if (!(val & SEC_INT_ACCEL0_DONE))
		return IRQ_NONE;

908 909 910 911
	if (!del_timer(&cpg->completion_timer)) {
		printk(KERN_WARNING MV_CESA
		       "got an interrupt but no pending timer?\n");
	}
912 913 914 915 916 917 918 919 920 921 922 923 924
	val &= ~SEC_INT_ACCEL0_DONE;
	writel(val, cpg->reg + FPGA_INT_STATUS);
	writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
	BUG_ON(cpg->eng_st != ENGINE_BUSY);
	cpg->eng_st = ENGINE_W_DEQUEUE;
	wake_up_process(cpg->queue_th);
	return IRQ_HANDLED;
}

struct crypto_alg mv_aes_alg_ecb = {
	.cra_name		= "ecb(aes)",
	.cra_driver_name	= "mv-ecb-aes",
	.cra_priority	= 300,
925 926
	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	.cra_blocksize	= 16,
	.cra_ctxsize	= sizeof(struct mv_ctx),
	.cra_alignmask	= 0,
	.cra_type	= &crypto_ablkcipher_type,
	.cra_module	= THIS_MODULE,
	.cra_init	= mv_cra_init,
	.cra_u		= {
		.ablkcipher = {
			.min_keysize	=	AES_MIN_KEY_SIZE,
			.max_keysize	=	AES_MAX_KEY_SIZE,
			.setkey		=	mv_setkey_aes,
			.encrypt	=	mv_enc_aes_ecb,
			.decrypt	=	mv_dec_aes_ecb,
		},
	},
};

struct crypto_alg mv_aes_alg_cbc = {
	.cra_name		= "cbc(aes)",
	.cra_driver_name	= "mv-cbc-aes",
	.cra_priority	= 300,
948 949
	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	.cra_blocksize	= AES_BLOCK_SIZE,
	.cra_ctxsize	= sizeof(struct mv_ctx),
	.cra_alignmask	= 0,
	.cra_type	= &crypto_ablkcipher_type,
	.cra_module	= THIS_MODULE,
	.cra_init	= mv_cra_init,
	.cra_u		= {
		.ablkcipher = {
			.ivsize		=	AES_BLOCK_SIZE,
			.min_keysize	=	AES_MIN_KEY_SIZE,
			.max_keysize	=	AES_MAX_KEY_SIZE,
			.setkey		=	mv_setkey_aes,
			.encrypt	=	mv_enc_aes_cbc,
			.decrypt	=	mv_dec_aes_cbc,
		},
	},
};

968 969 970 971 972 973 974 975 976 977 978 979 980
struct ahash_alg mv_sha1_alg = {
	.init = mv_hash_init,
	.update = mv_hash_update,
	.final = mv_hash_final,
	.finup = mv_hash_finup,
	.digest = mv_hash_digest,
	.halg = {
		 .digestsize = SHA1_DIGEST_SIZE,
		 .base = {
			  .cra_name = "sha1",
			  .cra_driver_name = "mv-sha1",
			  .cra_priority = 300,
			  .cra_flags =
981 982
			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
			  CRYPTO_ALG_NEED_FALLBACK,
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
			  .cra_blocksize = SHA1_BLOCK_SIZE,
			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
			  .cra_init = mv_cra_hash_sha1_init,
			  .cra_exit = mv_cra_hash_exit,
			  .cra_module = THIS_MODULE,
			  }
		 }
};

struct ahash_alg mv_hmac_sha1_alg = {
	.init = mv_hash_init,
	.update = mv_hash_update,
	.final = mv_hash_final,
	.finup = mv_hash_finup,
	.digest = mv_hash_digest,
	.setkey = mv_hash_setkey,
	.halg = {
		 .digestsize = SHA1_DIGEST_SIZE,
		 .base = {
			  .cra_name = "hmac(sha1)",
			  .cra_driver_name = "mv-hmac-sha1",
			  .cra_priority = 300,
			  .cra_flags =
1006 1007
			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
			  CRYPTO_ALG_NEED_FALLBACK,
1008 1009 1010 1011 1012 1013 1014 1015 1016
			  .cra_blocksize = SHA1_BLOCK_SIZE,
			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
			  .cra_init = mv_cra_hash_hmac_sha1_init,
			  .cra_exit = mv_cra_hash_exit,
			  .cra_module = THIS_MODULE,
			  }
		 }
};

1017 1018 1019 1020 1021 1022 1023 1024
static int mv_probe(struct platform_device *pdev)
{
	struct crypto_priv *cp;
	struct resource *res;
	int irq;
	int ret;

	if (cpg) {
1025
		printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		return -EEXIST;
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
	if (!res)
		return -ENXIO;

	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
	if (!cp)
		return -ENOMEM;

	spin_lock_init(&cp->lock);
	crypto_init_queue(&cp->queue, 50);
1039
	cp->reg = ioremap(res->start, resource_size(res));
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	if (!cp->reg) {
		ret = -ENOMEM;
		goto err;
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
	if (!res) {
		ret = -ENXIO;
		goto err_unmap_reg;
	}
1050
	cp->sram_size = resource_size(res);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
	cp->sram = ioremap(res->start, cp->sram_size);
	if (!cp->sram) {
		ret = -ENOMEM;
		goto err_unmap_reg;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0 || irq == NO_IRQ) {
		ret = irq;
		goto err_unmap_sram;
	}
	cp->irq = irq;

	platform_set_drvdata(pdev, cp);
	cpg = cp;

	cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
	if (IS_ERR(cp->queue_th)) {
		ret = PTR_ERR(cp->queue_th);
1071
		goto err_unmap_sram;
1072 1073 1074 1075 1076
	}

	ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
			cp);
	if (ret)
1077
		goto err_thread;
1078

1079 1080 1081 1082 1083 1084
	/* Not all platforms can gate the clock, so it is not
	   an error if the clock does not exists. */
	cp->clk = clk_get(&pdev->dev, NULL);
	if (!IS_ERR(cp->clk))
		clk_prepare_enable(cp->clk);

1085 1086
	writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
	writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1087
	writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1088 1089

	ret = crypto_register_alg(&mv_aes_alg_ecb);
1090 1091 1092
	if (ret) {
		printk(KERN_WARNING MV_CESA
		       "Could not register aes-ecb driver\n");
1093
		goto err_irq;
1094
	}
1095 1096

	ret = crypto_register_alg(&mv_aes_alg_cbc);
1097 1098 1099
	if (ret) {
		printk(KERN_WARNING MV_CESA
		       "Could not register aes-cbc driver\n");
1100
		goto err_unreg_ecb;
1101
	}
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

	ret = crypto_register_ahash(&mv_sha1_alg);
	if (ret == 0)
		cpg->has_sha1 = 1;
	else
		printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");

	ret = crypto_register_ahash(&mv_hmac_sha1_alg);
	if (ret == 0) {
		cpg->has_hmac_sha1 = 1;
	} else {
		printk(KERN_WARNING MV_CESA
		       "Could not register hmac-sha1 driver\n");
	}

1117 1118 1119
	return 0;
err_unreg_ecb:
	crypto_unregister_alg(&mv_aes_alg_ecb);
1120
err_irq:
1121
	free_irq(irq, cp);
1122
err_thread:
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	kthread_stop(cp->queue_th);
err_unmap_sram:
	iounmap(cp->sram);
err_unmap_reg:
	iounmap(cp->reg);
err:
	kfree(cp);
	cpg = NULL;
	platform_set_drvdata(pdev, NULL);
	return ret;
}

static int mv_remove(struct platform_device *pdev)
{
	struct crypto_priv *cp = platform_get_drvdata(pdev);

	crypto_unregister_alg(&mv_aes_alg_ecb);
	crypto_unregister_alg(&mv_aes_alg_cbc);
1141 1142 1143 1144
	if (cp->has_sha1)
		crypto_unregister_ahash(&mv_sha1_alg);
	if (cp->has_hmac_sha1)
		crypto_unregister_ahash(&mv_hmac_sha1_alg);
1145 1146 1147 1148 1149
	kthread_stop(cp->queue_th);
	free_irq(cp->irq, cp);
	memset(cp->sram, 0, cp->sram_size);
	iounmap(cp->sram);
	iounmap(cp->reg);
1150 1151 1152 1153 1154 1155

	if (!IS_ERR(cp->clk)) {
		clk_disable_unprepare(cp->clk);
		clk_put(cp->clk);
	}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	kfree(cp);
	cpg = NULL;
	return 0;
}

static struct platform_driver marvell_crypto = {
	.probe		= mv_probe,
	.remove		= mv_remove,
	.driver		= {
		.owner	= THIS_MODULE,
		.name	= "mv_crypto",
	},
};
MODULE_ALIAS("platform:mv_crypto");

1171
module_platform_driver(marvell_crypto);
1172 1173 1174 1175

MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
MODULE_LICENSE("GPL");