sha256_ssse3_glue.c 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * Cryptographic API.
 *
 * Glue code for the SHA256 Secure Hash Algorithm assembler
 * implementation using supplemental SSE3 / AVX / AVX2 instructions.
 *
 * This file is based on sha256_generic.c
 *
 * Copyright (C) 2013 Intel Corporation.
 *
 * Author:
 *     Tim Chen <tim.c.chen@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */


#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/cryptohash.h>
#include <linux/types.h>
#include <crypto/sha.h>
#include <asm/byteorder.h>
#include <asm/i387.h>
#include <asm/xcr.h>
#include <asm/xsave.h>
#include <linux/string.h>

asmlinkage void sha256_transform_ssse3(const char *data, u32 *digest,
				     u64 rounds);
#ifdef CONFIG_AS_AVX
asmlinkage void sha256_transform_avx(const char *data, u32 *digest,
				     u64 rounds);
#endif
#ifdef CONFIG_AS_AVX2
asmlinkage void sha256_transform_rorx(const char *data, u32 *digest,
				     u64 rounds);
#endif

static asmlinkage void (*sha256_transform_asm)(const char *, u32 *, u64);


static int sha256_ssse3_init(struct shash_desc *desc)
{
	struct sha256_state *sctx = shash_desc_ctx(desc);

	sctx->state[0] = SHA256_H0;
	sctx->state[1] = SHA256_H1;
	sctx->state[2] = SHA256_H2;
	sctx->state[3] = SHA256_H3;
	sctx->state[4] = SHA256_H4;
	sctx->state[5] = SHA256_H5;
	sctx->state[6] = SHA256_H6;
	sctx->state[7] = SHA256_H7;
	sctx->count = 0;

	return 0;
}

static int __sha256_ssse3_update(struct shash_desc *desc, const u8 *data,
			       unsigned int len, unsigned int partial)
{
	struct sha256_state *sctx = shash_desc_ctx(desc);
	unsigned int done = 0;

	sctx->count += len;

	if (partial) {
		done = SHA256_BLOCK_SIZE - partial;
		memcpy(sctx->buf + partial, data, done);
		sha256_transform_asm(sctx->buf, sctx->state, 1);
	}

	if (len - done >= SHA256_BLOCK_SIZE) {
		const unsigned int rounds = (len - done) / SHA256_BLOCK_SIZE;

		sha256_transform_asm(data + done, sctx->state, (u64) rounds);

		done += rounds * SHA256_BLOCK_SIZE;
	}

	memcpy(sctx->buf, data + done, len - done);

	return 0;
}

static int sha256_ssse3_update(struct shash_desc *desc, const u8 *data,
			     unsigned int len)
{
	struct sha256_state *sctx = shash_desc_ctx(desc);
	unsigned int partial = sctx->count % SHA256_BLOCK_SIZE;
	int res;

	/* Handle the fast case right here */
	if (partial + len < SHA256_BLOCK_SIZE) {
		sctx->count += len;
		memcpy(sctx->buf + partial, data, len);

		return 0;
	}

	if (!irq_fpu_usable()) {
		res = crypto_sha256_update(desc, data, len);
	} else {
		kernel_fpu_begin();
		res = __sha256_ssse3_update(desc, data, len, partial);
		kernel_fpu_end();
	}

	return res;
}


/* Add padding and return the message digest. */
static int sha256_ssse3_final(struct shash_desc *desc, u8 *out)
{
	struct sha256_state *sctx = shash_desc_ctx(desc);
	unsigned int i, index, padlen;
	__be32 *dst = (__be32 *)out;
	__be64 bits;
	static const u8 padding[SHA256_BLOCK_SIZE] = { 0x80, };

	bits = cpu_to_be64(sctx->count << 3);

	/* Pad out to 56 mod 64 and append length */
	index = sctx->count % SHA256_BLOCK_SIZE;
	padlen = (index < 56) ? (56 - index) : ((SHA256_BLOCK_SIZE+56)-index);

	if (!irq_fpu_usable()) {
		crypto_sha256_update(desc, padding, padlen);
		crypto_sha256_update(desc, (const u8 *)&bits, sizeof(bits));
	} else {
		kernel_fpu_begin();
		/* We need to fill a whole block for __sha256_ssse3_update() */
		if (padlen <= 56) {
			sctx->count += padlen;
			memcpy(sctx->buf + index, padding, padlen);
		} else {
			__sha256_ssse3_update(desc, padding, padlen, index);
		}
		__sha256_ssse3_update(desc, (const u8 *)&bits,
					sizeof(bits), 56);
		kernel_fpu_end();
	}

	/* Store state in digest */
	for (i = 0; i < 8; i++)
		dst[i] = cpu_to_be32(sctx->state[i]);

	/* Wipe context */
	memset(sctx, 0, sizeof(*sctx));

	return 0;
}

static int sha256_ssse3_export(struct shash_desc *desc, void *out)
{
	struct sha256_state *sctx = shash_desc_ctx(desc);

	memcpy(out, sctx, sizeof(*sctx));

	return 0;
}

static int sha256_ssse3_import(struct shash_desc *desc, const void *in)
{
	struct sha256_state *sctx = shash_desc_ctx(desc);

	memcpy(sctx, in, sizeof(*sctx));

	return 0;
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static int sha224_ssse3_init(struct shash_desc *desc)
{
	struct sha256_state *sctx = shash_desc_ctx(desc);

	sctx->state[0] = SHA224_H0;
	sctx->state[1] = SHA224_H1;
	sctx->state[2] = SHA224_H2;
	sctx->state[3] = SHA224_H3;
	sctx->state[4] = SHA224_H4;
	sctx->state[5] = SHA224_H5;
	sctx->state[6] = SHA224_H6;
	sctx->state[7] = SHA224_H7;
	sctx->count = 0;

	return 0;
}

static int sha224_ssse3_final(struct shash_desc *desc, u8 *hash)
{
	u8 D[SHA256_DIGEST_SIZE];

	sha256_ssse3_final(desc, D);

	memcpy(hash, D, SHA224_DIGEST_SIZE);
	memset(D, 0, SHA256_DIGEST_SIZE);

	return 0;
}

static struct shash_alg algs[] = { {
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	.digestsize	=	SHA256_DIGEST_SIZE,
	.init		=	sha256_ssse3_init,
	.update		=	sha256_ssse3_update,
	.final		=	sha256_ssse3_final,
	.export		=	sha256_ssse3_export,
	.import		=	sha256_ssse3_import,
	.descsize	=	sizeof(struct sha256_state),
	.statesize	=	sizeof(struct sha256_state),
	.base		=	{
		.cra_name	=	"sha256",
		.cra_driver_name =	"sha256-ssse3",
		.cra_priority	=	150,
		.cra_flags	=	CRYPTO_ALG_TYPE_SHASH,
		.cra_blocksize	=	SHA256_BLOCK_SIZE,
		.cra_module	=	THIS_MODULE,
	}
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
}, {
	.digestsize	=	SHA224_DIGEST_SIZE,
	.init		=	sha224_ssse3_init,
	.update		=	sha256_ssse3_update,
	.final		=	sha224_ssse3_final,
	.export		=	sha256_ssse3_export,
	.import		=	sha256_ssse3_import,
	.descsize	=	sizeof(struct sha256_state),
	.statesize	=	sizeof(struct sha256_state),
	.base		=	{
		.cra_name	=	"sha224",
		.cra_driver_name =	"sha224-ssse3",
		.cra_priority	=	150,
		.cra_flags	=	CRYPTO_ALG_TYPE_SHASH,
		.cra_blocksize	=	SHA224_BLOCK_SIZE,
		.cra_module	=	THIS_MODULE,
	}
} };
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

#ifdef CONFIG_AS_AVX
static bool __init avx_usable(void)
{
	u64 xcr0;

	if (!cpu_has_avx || !cpu_has_osxsave)
		return false;

	xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
	if ((xcr0 & (XSTATE_SSE | XSTATE_YMM)) != (XSTATE_SSE | XSTATE_YMM)) {
		pr_info("AVX detected but unusable.\n");

		return false;
	}

	return true;
}
#endif

static int __init sha256_ssse3_mod_init(void)
{
276
	/* test for SSSE3 first */
277 278 279 280 281 282 283
	if (cpu_has_ssse3)
		sha256_transform_asm = sha256_transform_ssse3;

#ifdef CONFIG_AS_AVX
	/* allow AVX to override SSSE3, it's a little faster */
	if (avx_usable()) {
#ifdef CONFIG_AS_AVX2
284
		if (boot_cpu_has(X86_FEATURE_AVX2) && boot_cpu_has(X86_FEATURE_BMI2))
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
			sha256_transform_asm = sha256_transform_rorx;
		else
#endif
			sha256_transform_asm = sha256_transform_avx;
	}
#endif

	if (sha256_transform_asm) {
#ifdef CONFIG_AS_AVX
		if (sha256_transform_asm == sha256_transform_avx)
			pr_info("Using AVX optimized SHA-256 implementation\n");
#ifdef CONFIG_AS_AVX2
		else if (sha256_transform_asm == sha256_transform_rorx)
			pr_info("Using AVX2 optimized SHA-256 implementation\n");
#endif
		else
#endif
			pr_info("Using SSSE3 optimized SHA-256 implementation\n");
303
		return crypto_register_shashes(algs, ARRAY_SIZE(algs));
304 305 306 307 308 309 310 311
	}
	pr_info("Neither AVX nor SSSE3 is available/usable.\n");

	return -ENODEV;
}

static void __exit sha256_ssse3_mod_fini(void)
{
312
	crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
313 314 315 316 317 318 319 320 321
}

module_init(sha256_ssse3_mod_init);
module_exit(sha256_ssse3_mod_fini);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA256 Secure Hash Algorithm, Supplemental SSE3 accelerated");

MODULE_ALIAS("sha256");
322
MODULE_ALIAS("sha224");