arm-smmu-v3.c 69.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/module.h>
29
#include <linux/msi.h>
30 31
#include <linux/of.h>
#include <linux/of_address.h>
32
#include <linux/of_platform.h>
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
#include <linux/pci.h>
#include <linux/platform_device.h>

#include "io-pgtable.h"

/* MMIO registers */
#define ARM_SMMU_IDR0			0x0
#define IDR0_ST_LVL_SHIFT		27
#define IDR0_ST_LVL_MASK		0x3
#define IDR0_ST_LVL_2LVL		(1 << IDR0_ST_LVL_SHIFT)
#define IDR0_STALL_MODEL		(3 << 24)
#define IDR0_TTENDIAN_SHIFT		21
#define IDR0_TTENDIAN_MASK		0x3
#define IDR0_TTENDIAN_LE		(2 << IDR0_TTENDIAN_SHIFT)
#define IDR0_TTENDIAN_BE		(3 << IDR0_TTENDIAN_SHIFT)
#define IDR0_TTENDIAN_MIXED		(0 << IDR0_TTENDIAN_SHIFT)
#define IDR0_CD2L			(1 << 19)
#define IDR0_VMID16			(1 << 18)
#define IDR0_PRI			(1 << 16)
#define IDR0_SEV			(1 << 14)
#define IDR0_MSI			(1 << 13)
#define IDR0_ASID16			(1 << 12)
#define IDR0_ATS			(1 << 10)
#define IDR0_HYP			(1 << 9)
#define IDR0_COHACC			(1 << 4)
#define IDR0_TTF_SHIFT			2
#define IDR0_TTF_MASK			0x3
#define IDR0_TTF_AARCH64		(2 << IDR0_TTF_SHIFT)
#define IDR0_S1P			(1 << 1)
#define IDR0_S2P			(1 << 0)

#define ARM_SMMU_IDR1			0x4
#define IDR1_TABLES_PRESET		(1 << 30)
#define IDR1_QUEUES_PRESET		(1 << 29)
#define IDR1_REL			(1 << 28)
#define IDR1_CMDQ_SHIFT			21
#define IDR1_CMDQ_MASK			0x1f
#define IDR1_EVTQ_SHIFT			16
#define IDR1_EVTQ_MASK			0x1f
#define IDR1_PRIQ_SHIFT			11
#define IDR1_PRIQ_MASK			0x1f
#define IDR1_SSID_SHIFT			6
#define IDR1_SSID_MASK			0x1f
#define IDR1_SID_SHIFT			0
#define IDR1_SID_MASK			0x3f

#define ARM_SMMU_IDR5			0x14
#define IDR5_STALL_MAX_SHIFT		16
#define IDR5_STALL_MAX_MASK		0xffff
#define IDR5_GRAN64K			(1 << 6)
#define IDR5_GRAN16K			(1 << 5)
#define IDR5_GRAN4K			(1 << 4)
#define IDR5_OAS_SHIFT			0
#define IDR5_OAS_MASK			0x7
#define IDR5_OAS_32_BIT			(0 << IDR5_OAS_SHIFT)
#define IDR5_OAS_36_BIT			(1 << IDR5_OAS_SHIFT)
#define IDR5_OAS_40_BIT			(2 << IDR5_OAS_SHIFT)
#define IDR5_OAS_42_BIT			(3 << IDR5_OAS_SHIFT)
#define IDR5_OAS_44_BIT			(4 << IDR5_OAS_SHIFT)
#define IDR5_OAS_48_BIT			(5 << IDR5_OAS_SHIFT)

#define ARM_SMMU_CR0			0x20
#define CR0_CMDQEN			(1 << 3)
#define CR0_EVTQEN			(1 << 2)
#define CR0_PRIQEN			(1 << 1)
#define CR0_SMMUEN			(1 << 0)

#define ARM_SMMU_CR0ACK			0x24

#define ARM_SMMU_CR1			0x28
#define CR1_SH_NSH			0
#define CR1_SH_OSH			2
#define CR1_SH_ISH			3
#define CR1_CACHE_NC			0
#define CR1_CACHE_WB			1
#define CR1_CACHE_WT			2
#define CR1_TABLE_SH_SHIFT		10
#define CR1_TABLE_OC_SHIFT		8
#define CR1_TABLE_IC_SHIFT		6
#define CR1_QUEUE_SH_SHIFT		4
#define CR1_QUEUE_OC_SHIFT		2
#define CR1_QUEUE_IC_SHIFT		0

#define ARM_SMMU_CR2			0x2c
#define CR2_PTM				(1 << 2)
#define CR2_RECINVSID			(1 << 1)
#define CR2_E2H				(1 << 0)

#define ARM_SMMU_IRQ_CTRL		0x50
#define IRQ_CTRL_EVTQ_IRQEN		(1 << 2)
123
#define IRQ_CTRL_PRIQ_IRQEN		(1 << 1)
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
#define IRQ_CTRL_GERROR_IRQEN		(1 << 0)

#define ARM_SMMU_IRQ_CTRLACK		0x54

#define ARM_SMMU_GERROR			0x60
#define GERROR_SFM_ERR			(1 << 8)
#define GERROR_MSI_GERROR_ABT_ERR	(1 << 7)
#define GERROR_MSI_PRIQ_ABT_ERR		(1 << 6)
#define GERROR_MSI_EVTQ_ABT_ERR		(1 << 5)
#define GERROR_MSI_CMDQ_ABT_ERR		(1 << 4)
#define GERROR_PRIQ_ABT_ERR		(1 << 3)
#define GERROR_EVTQ_ABT_ERR		(1 << 2)
#define GERROR_CMDQ_ERR			(1 << 0)
#define GERROR_ERR_MASK			0xfd

#define ARM_SMMU_GERRORN		0x64

#define ARM_SMMU_GERROR_IRQ_CFG0	0x68
#define ARM_SMMU_GERROR_IRQ_CFG1	0x70
#define ARM_SMMU_GERROR_IRQ_CFG2	0x74

#define ARM_SMMU_STRTAB_BASE		0x80
#define STRTAB_BASE_RA			(1UL << 62)
#define STRTAB_BASE_ADDR_SHIFT		6
#define STRTAB_BASE_ADDR_MASK		0x3ffffffffffUL

#define ARM_SMMU_STRTAB_BASE_CFG	0x88
#define STRTAB_BASE_CFG_LOG2SIZE_SHIFT	0
#define STRTAB_BASE_CFG_LOG2SIZE_MASK	0x3f
#define STRTAB_BASE_CFG_SPLIT_SHIFT	6
#define STRTAB_BASE_CFG_SPLIT_MASK	0x1f
#define STRTAB_BASE_CFG_FMT_SHIFT	16
#define STRTAB_BASE_CFG_FMT_MASK	0x3
#define STRTAB_BASE_CFG_FMT_LINEAR	(0 << STRTAB_BASE_CFG_FMT_SHIFT)
#define STRTAB_BASE_CFG_FMT_2LVL	(1 << STRTAB_BASE_CFG_FMT_SHIFT)

#define ARM_SMMU_CMDQ_BASE		0x90
#define ARM_SMMU_CMDQ_PROD		0x98
#define ARM_SMMU_CMDQ_CONS		0x9c

#define ARM_SMMU_EVTQ_BASE		0xa0
#define ARM_SMMU_EVTQ_PROD		0x100a8
#define ARM_SMMU_EVTQ_CONS		0x100ac
#define ARM_SMMU_EVTQ_IRQ_CFG0		0xb0
#define ARM_SMMU_EVTQ_IRQ_CFG1		0xb8
#define ARM_SMMU_EVTQ_IRQ_CFG2		0xbc

#define ARM_SMMU_PRIQ_BASE		0xc0
#define ARM_SMMU_PRIQ_PROD		0x100c8
#define ARM_SMMU_PRIQ_CONS		0x100cc
#define ARM_SMMU_PRIQ_IRQ_CFG0		0xd0
#define ARM_SMMU_PRIQ_IRQ_CFG1		0xd8
#define ARM_SMMU_PRIQ_IRQ_CFG2		0xdc

/* Common MSI config fields */
#define MSI_CFG0_ADDR_SHIFT		2
#define MSI_CFG0_ADDR_MASK		0x3fffffffffffUL
181 182 183 184 185 186
#define MSI_CFG2_SH_SHIFT		4
#define MSI_CFG2_SH_NSH			(0UL << MSI_CFG2_SH_SHIFT)
#define MSI_CFG2_SH_OSH			(2UL << MSI_CFG2_SH_SHIFT)
#define MSI_CFG2_SH_ISH			(3UL << MSI_CFG2_SH_SHIFT)
#define MSI_CFG2_MEMATTR_SHIFT		0
#define MSI_CFG2_MEMATTR_DEVICE_nGnRE	(0x1 << MSI_CFG2_MEMATTR_SHIFT)
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

#define Q_IDX(q, p)			((p) & ((1 << (q)->max_n_shift) - 1))
#define Q_WRP(q, p)			((p) & (1 << (q)->max_n_shift))
#define Q_OVERFLOW_FLAG			(1 << 31)
#define Q_OVF(q, p)			((p) & Q_OVERFLOW_FLAG)
#define Q_ENT(q, p)			((q)->base +			\
					 Q_IDX(q, p) * (q)->ent_dwords)

#define Q_BASE_RWA			(1UL << 62)
#define Q_BASE_ADDR_SHIFT		5
#define Q_BASE_ADDR_MASK		0xfffffffffffUL
#define Q_BASE_LOG2SIZE_SHIFT		0
#define Q_BASE_LOG2SIZE_MASK		0x1fUL

/*
 * Stream table.
 *
 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
205 206
 * 2lvl: 128k L1 entries,
 *       256 lazy entries per table (each table covers a PCI bus)
207
 */
208
#define STRTAB_L1_SZ_SHIFT		20
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
#define STRTAB_SPLIT			8

#define STRTAB_L1_DESC_DWORDS		1
#define STRTAB_L1_DESC_SPAN_SHIFT	0
#define STRTAB_L1_DESC_SPAN_MASK	0x1fUL
#define STRTAB_L1_DESC_L2PTR_SHIFT	6
#define STRTAB_L1_DESC_L2PTR_MASK	0x3ffffffffffUL

#define STRTAB_STE_DWORDS		8
#define STRTAB_STE_0_V			(1UL << 0)
#define STRTAB_STE_0_CFG_SHIFT		1
#define STRTAB_STE_0_CFG_MASK		0x7UL
#define STRTAB_STE_0_CFG_ABORT		(0UL << STRTAB_STE_0_CFG_SHIFT)
#define STRTAB_STE_0_CFG_BYPASS		(4UL << STRTAB_STE_0_CFG_SHIFT)
#define STRTAB_STE_0_CFG_S1_TRANS	(5UL << STRTAB_STE_0_CFG_SHIFT)
#define STRTAB_STE_0_CFG_S2_TRANS	(6UL << STRTAB_STE_0_CFG_SHIFT)

#define STRTAB_STE_0_S1FMT_SHIFT	4
#define STRTAB_STE_0_S1FMT_LINEAR	(0UL << STRTAB_STE_0_S1FMT_SHIFT)
#define STRTAB_STE_0_S1CTXPTR_SHIFT	6
#define STRTAB_STE_0_S1CTXPTR_MASK	0x3ffffffffffUL
#define STRTAB_STE_0_S1CDMAX_SHIFT	59
#define STRTAB_STE_0_S1CDMAX_MASK	0x1fUL

#define STRTAB_STE_1_S1C_CACHE_NC	0UL
#define STRTAB_STE_1_S1C_CACHE_WBRA	1UL
#define STRTAB_STE_1_S1C_CACHE_WT	2UL
#define STRTAB_STE_1_S1C_CACHE_WB	3UL
#define STRTAB_STE_1_S1C_SH_NSH		0UL
#define STRTAB_STE_1_S1C_SH_OSH		2UL
#define STRTAB_STE_1_S1C_SH_ISH		3UL
#define STRTAB_STE_1_S1CIR_SHIFT	2
#define STRTAB_STE_1_S1COR_SHIFT	4
#define STRTAB_STE_1_S1CSH_SHIFT	6

#define STRTAB_STE_1_S1STALLD		(1UL << 27)

#define STRTAB_STE_1_EATS_ABT		0UL
#define STRTAB_STE_1_EATS_TRANS		1UL
#define STRTAB_STE_1_EATS_S1CHK		2UL
#define STRTAB_STE_1_EATS_SHIFT		28

#define STRTAB_STE_1_STRW_NSEL1		0UL
#define STRTAB_STE_1_STRW_EL2		2UL
#define STRTAB_STE_1_STRW_SHIFT		30

#define STRTAB_STE_2_S2VMID_SHIFT	0
#define STRTAB_STE_2_S2VMID_MASK	0xffffUL
#define STRTAB_STE_2_VTCR_SHIFT		32
#define STRTAB_STE_2_VTCR_MASK		0x7ffffUL
#define STRTAB_STE_2_S2AA64		(1UL << 51)
#define STRTAB_STE_2_S2ENDI		(1UL << 52)
#define STRTAB_STE_2_S2PTW		(1UL << 54)
#define STRTAB_STE_2_S2R		(1UL << 58)

#define STRTAB_STE_3_S2TTB_SHIFT	4
#define STRTAB_STE_3_S2TTB_MASK		0xfffffffffffUL

/* Context descriptor (stage-1 only) */
#define CTXDESC_CD_DWORDS		8
#define CTXDESC_CD_0_TCR_T0SZ_SHIFT	0
#define ARM64_TCR_T0SZ_SHIFT		0
#define ARM64_TCR_T0SZ_MASK		0x1fUL
#define CTXDESC_CD_0_TCR_TG0_SHIFT	6
#define ARM64_TCR_TG0_SHIFT		14
#define ARM64_TCR_TG0_MASK		0x3UL
#define CTXDESC_CD_0_TCR_IRGN0_SHIFT	8
276
#define ARM64_TCR_IRGN0_SHIFT		8
277 278
#define ARM64_TCR_IRGN0_MASK		0x3UL
#define CTXDESC_CD_0_TCR_ORGN0_SHIFT	10
279
#define ARM64_TCR_ORGN0_SHIFT		10
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
#define ARM64_TCR_ORGN0_MASK		0x3UL
#define CTXDESC_CD_0_TCR_SH0_SHIFT	12
#define ARM64_TCR_SH0_SHIFT		12
#define ARM64_TCR_SH0_MASK		0x3UL
#define CTXDESC_CD_0_TCR_EPD0_SHIFT	14
#define ARM64_TCR_EPD0_SHIFT		7
#define ARM64_TCR_EPD0_MASK		0x1UL
#define CTXDESC_CD_0_TCR_EPD1_SHIFT	30
#define ARM64_TCR_EPD1_SHIFT		23
#define ARM64_TCR_EPD1_MASK		0x1UL

#define CTXDESC_CD_0_ENDI		(1UL << 15)
#define CTXDESC_CD_0_V			(1UL << 31)

#define CTXDESC_CD_0_TCR_IPS_SHIFT	32
#define ARM64_TCR_IPS_SHIFT		32
#define ARM64_TCR_IPS_MASK		0x7UL
#define CTXDESC_CD_0_TCR_TBI0_SHIFT	38
#define ARM64_TCR_TBI0_SHIFT		37
#define ARM64_TCR_TBI0_MASK		0x1UL

#define CTXDESC_CD_0_AA64		(1UL << 41)
#define CTXDESC_CD_0_R			(1UL << 45)
#define CTXDESC_CD_0_A			(1UL << 46)
#define CTXDESC_CD_0_ASET_SHIFT		47
#define CTXDESC_CD_0_ASET_SHARED	(0UL << CTXDESC_CD_0_ASET_SHIFT)
#define CTXDESC_CD_0_ASET_PRIVATE	(1UL << CTXDESC_CD_0_ASET_SHIFT)
#define CTXDESC_CD_0_ASID_SHIFT		48
#define CTXDESC_CD_0_ASID_MASK		0xffffUL

#define CTXDESC_CD_1_TTB0_SHIFT		4
#define CTXDESC_CD_1_TTB0_MASK		0xfffffffffffUL

#define CTXDESC_CD_3_MAIR_SHIFT		0

/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
#define ARM_SMMU_TCR2CD(tcr, fld)					\
	(((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)	\
	 << CTXDESC_CD_0_TCR_##fld##_SHIFT)

/* Command queue */
#define CMDQ_ENT_DWORDS			2
#define CMDQ_MAX_SZ_SHIFT		8

#define CMDQ_ERR_SHIFT			24
#define CMDQ_ERR_MASK			0x7f
#define CMDQ_ERR_CERROR_NONE_IDX	0
#define CMDQ_ERR_CERROR_ILL_IDX		1
#define CMDQ_ERR_CERROR_ABT_IDX		2

#define CMDQ_0_OP_SHIFT			0
#define CMDQ_0_OP_MASK			0xffUL
#define CMDQ_0_SSV			(1UL << 11)

#define CMDQ_PREFETCH_0_SID_SHIFT	32
#define CMDQ_PREFETCH_1_SIZE_SHIFT	0
#define CMDQ_PREFETCH_1_ADDR_MASK	~0xfffUL

#define CMDQ_CFGI_0_SID_SHIFT		32
#define CMDQ_CFGI_0_SID_MASK		0xffffffffUL
#define CMDQ_CFGI_1_LEAF		(1UL << 0)
#define CMDQ_CFGI_1_RANGE_SHIFT		0
#define CMDQ_CFGI_1_RANGE_MASK		0x1fUL

#define CMDQ_TLBI_0_VMID_SHIFT		32
#define CMDQ_TLBI_0_ASID_SHIFT		48
#define CMDQ_TLBI_1_LEAF		(1UL << 0)
#define CMDQ_TLBI_1_ADDR_MASK		~0xfffUL

#define CMDQ_PRI_0_SSID_SHIFT		12
#define CMDQ_PRI_0_SSID_MASK		0xfffffUL
#define CMDQ_PRI_0_SID_SHIFT		32
#define CMDQ_PRI_0_SID_MASK		0xffffffffUL
#define CMDQ_PRI_1_GRPID_SHIFT		0
#define CMDQ_PRI_1_GRPID_MASK		0x1ffUL
#define CMDQ_PRI_1_RESP_SHIFT		12
#define CMDQ_PRI_1_RESP_DENY		(0UL << CMDQ_PRI_1_RESP_SHIFT)
#define CMDQ_PRI_1_RESP_FAIL		(1UL << CMDQ_PRI_1_RESP_SHIFT)
#define CMDQ_PRI_1_RESP_SUCC		(2UL << CMDQ_PRI_1_RESP_SHIFT)

#define CMDQ_SYNC_0_CS_SHIFT		12
#define CMDQ_SYNC_0_CS_NONE		(0UL << CMDQ_SYNC_0_CS_SHIFT)
#define CMDQ_SYNC_0_CS_SEV		(2UL << CMDQ_SYNC_0_CS_SHIFT)

/* Event queue */
#define EVTQ_ENT_DWORDS			4
#define EVTQ_MAX_SZ_SHIFT		7

#define EVTQ_0_ID_SHIFT			0
#define EVTQ_0_ID_MASK			0xffUL

/* PRI queue */
#define PRIQ_ENT_DWORDS			2
#define PRIQ_MAX_SZ_SHIFT		8

#define PRIQ_0_SID_SHIFT		0
#define PRIQ_0_SID_MASK			0xffffffffUL
#define PRIQ_0_SSID_SHIFT		32
#define PRIQ_0_SSID_MASK		0xfffffUL
#define PRIQ_0_OF			(1UL << 57)
#define PRIQ_0_PERM_PRIV		(1UL << 58)
#define PRIQ_0_PERM_EXEC		(1UL << 59)
#define PRIQ_0_PERM_READ		(1UL << 60)
#define PRIQ_0_PERM_WRITE		(1UL << 61)
#define PRIQ_0_PRG_LAST			(1UL << 62)
#define PRIQ_0_SSID_V			(1UL << 63)

#define PRIQ_1_PRG_IDX_SHIFT		0
#define PRIQ_1_PRG_IDX_MASK		0x1ffUL
#define PRIQ_1_ADDR_SHIFT		12
#define PRIQ_1_ADDR_MASK		0xfffffffffffffUL

/* High-level queue structures */
#define ARM_SMMU_POLL_TIMEOUT_US	100

static bool disable_bypass;
module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");

enum pri_resp {
	PRI_RESP_DENY,
	PRI_RESP_FAIL,
	PRI_RESP_SUCC,
};

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
struct arm_smmu_cmdq_ent {
	/* Common fields */
	u8				opcode;
	bool				substream_valid;

	/* Command-specific fields */
	union {
		#define CMDQ_OP_PREFETCH_CFG	0x1
		struct {
			u32			sid;
			u8			size;
			u64			addr;
		} prefetch;

		#define CMDQ_OP_CFGI_STE	0x3
		#define CMDQ_OP_CFGI_ALL	0x4
		struct {
			u32			sid;
			union {
				bool		leaf;
				u8		span;
			};
		} cfgi;

		#define CMDQ_OP_TLBI_NH_ASID	0x11
		#define CMDQ_OP_TLBI_NH_VA	0x12
		#define CMDQ_OP_TLBI_EL2_ALL	0x20
		#define CMDQ_OP_TLBI_S12_VMALL	0x28
		#define CMDQ_OP_TLBI_S2_IPA	0x2a
		#define CMDQ_OP_TLBI_NSNH_ALL	0x30
		struct {
			u16			asid;
			u16			vmid;
			bool			leaf;
			u64			addr;
		} tlbi;

		#define CMDQ_OP_PRI_RESP	0x41
		struct {
			u32			sid;
			u32			ssid;
			u16			grpid;
			enum pri_resp		resp;
		} pri;

		#define CMDQ_OP_CMD_SYNC	0x46
	};
};

struct arm_smmu_queue {
	int				irq; /* Wired interrupt */

	__le64				*base;
	dma_addr_t			base_dma;
	u64				q_base;

	size_t				ent_dwords;
	u32				max_n_shift;
	u32				prod;
	u32				cons;

	u32 __iomem			*prod_reg;
	u32 __iomem			*cons_reg;
};

struct arm_smmu_cmdq {
	struct arm_smmu_queue		q;
	spinlock_t			lock;
};

struct arm_smmu_evtq {
	struct arm_smmu_queue		q;
	u32				max_stalls;
};

struct arm_smmu_priq {
	struct arm_smmu_queue		q;
};

/* High-level stream table and context descriptor structures */
struct arm_smmu_strtab_l1_desc {
	u8				span;

	__le64				*l2ptr;
	dma_addr_t			l2ptr_dma;
};

struct arm_smmu_s1_cfg {
	__le64				*cdptr;
	dma_addr_t			cdptr_dma;

	struct arm_smmu_ctx_desc {
		u16	asid;
		u64	ttbr;
		u64	tcr;
		u64	mair;
	}				cd;
};

struct arm_smmu_s2_cfg {
	u16				vmid;
	u64				vttbr;
	u64				vtcr;
};

struct arm_smmu_strtab_ent {
	bool				valid;

	bool				bypass;	/* Overrides s1/s2 config */
	struct arm_smmu_s1_cfg		*s1_cfg;
	struct arm_smmu_s2_cfg		*s2_cfg;
};

struct arm_smmu_strtab_cfg {
	__le64				*strtab;
	dma_addr_t			strtab_dma;
	struct arm_smmu_strtab_l1_desc	*l1_desc;
	unsigned int			num_l1_ents;

	u64				strtab_base;
	u32				strtab_base_cfg;
};

/* An SMMUv3 instance */
struct arm_smmu_device {
	struct device			*dev;
	void __iomem			*base;

#define ARM_SMMU_FEAT_2_LVL_STRTAB	(1 << 0)
#define ARM_SMMU_FEAT_2_LVL_CDTAB	(1 << 1)
#define ARM_SMMU_FEAT_TT_LE		(1 << 2)
#define ARM_SMMU_FEAT_TT_BE		(1 << 3)
#define ARM_SMMU_FEAT_PRI		(1 << 4)
#define ARM_SMMU_FEAT_ATS		(1 << 5)
#define ARM_SMMU_FEAT_SEV		(1 << 6)
#define ARM_SMMU_FEAT_MSI		(1 << 7)
#define ARM_SMMU_FEAT_COHERENCY		(1 << 8)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 9)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 10)
#define ARM_SMMU_FEAT_STALLS		(1 << 11)
#define ARM_SMMU_FEAT_HYP		(1 << 12)
	u32				features;

574 575 576
#define ARM_SMMU_OPT_SKIP_PREFETCH	(1 << 0)
	u32				options;

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	struct arm_smmu_cmdq		cmdq;
	struct arm_smmu_evtq		evtq;
	struct arm_smmu_priq		priq;

	int				gerr_irq;

	unsigned long			ias; /* IPA */
	unsigned long			oas; /* PA */

#define ARM_SMMU_MAX_ASIDS		(1 << 16)
	unsigned int			asid_bits;
	DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);

#define ARM_SMMU_MAX_VMIDS		(1 << 16)
	unsigned int			vmid_bits;
	DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);

	unsigned int			ssid_bits;
	unsigned int			sid_bits;

	struct arm_smmu_strtab_cfg	strtab_cfg;
};

/* SMMU private data for an IOMMU group */
struct arm_smmu_group {
	struct arm_smmu_device		*smmu;
	struct arm_smmu_domain		*domain;
	int				num_sids;
	u32				*sids;
	struct arm_smmu_strtab_ent	ste;
};

/* SMMU private data for an IOMMU domain */
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

struct arm_smmu_domain {
	struct arm_smmu_device		*smmu;
	struct mutex			init_mutex; /* Protects smmu pointer */

	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;

	enum arm_smmu_domain_stage	stage;
	union {
		struct arm_smmu_s1_cfg	s1_cfg;
		struct arm_smmu_s2_cfg	s2_cfg;
	};

	struct iommu_domain		domain;
};

632 633 634 635 636 637 638 639 640 641
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
	{ 0, NULL},
};

642 643 644 645 646
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/* Low-level queue manipulation functions */
static bool queue_full(struct arm_smmu_queue *q)
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
}

static bool queue_empty(struct arm_smmu_queue *q)
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
}

static void queue_sync_cons(struct arm_smmu_queue *q)
{
	q->cons = readl_relaxed(q->cons_reg);
}

static void queue_inc_cons(struct arm_smmu_queue *q)
{
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;

	q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
	writel(q->cons, q->cons_reg);
}

static int queue_sync_prod(struct arm_smmu_queue *q)
{
	int ret = 0;
	u32 prod = readl_relaxed(q->prod_reg);

	if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
		ret = -EOVERFLOW;

	q->prod = prod;
	return ret;
}

static void queue_inc_prod(struct arm_smmu_queue *q)
{
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;

	q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
	writel(q->prod, q->prod_reg);
}

static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
{
	if (Q_WRP(q, q->cons) == Q_WRP(q, until))
		return Q_IDX(q, q->cons) < Q_IDX(q, until);

	return Q_IDX(q, q->cons) >= Q_IDX(q, until);
}

static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
{
	ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);

	while (queue_sync_cons(q), __queue_cons_before(q, until)) {
		if (ktime_compare(ktime_get(), timeout) > 0)
			return -ETIMEDOUT;

		if (wfe) {
			wfe();
		} else {
			cpu_relax();
			udelay(1);
		}
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
{
	if (queue_full(q))
		return -ENOSPC;

	queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
	queue_inc_prod(q);
	return 0;
}

static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
	if (queue_empty(q))
		return -EAGAIN;

	queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
	queue_inc_cons(q);
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
	memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
	cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
		cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
		cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
		break;
	case CMDQ_OP_CFGI_STE:
		cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
		cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
		break;
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
		cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
		break;
	case CMDQ_OP_TLBI_NH_VA:
		cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
		/* Fallthrough */
	case CMDQ_OP_TLBI_S2_IPA:
		cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
		cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_ADDR_MASK;
		break;
	case CMDQ_OP_TLBI_NH_ASID:
		cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
		/* Fallthrough */
	case CMDQ_OP_TLBI_S12_VMALL:
		cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
		break;
	case CMDQ_OP_PRI_RESP:
		cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
		cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
		cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
		cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
			cmd[1] |= CMDQ_PRI_1_RESP_DENY;
			break;
		case PRI_RESP_FAIL:
			cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
			break;
		case PRI_RESP_SUCC:
			cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
			break;
		default:
			return -EINVAL;
		}
		break;
	case CMDQ_OP_CMD_SYNC:
		cmd[0] |= CMDQ_SYNC_0_CS_SEV;
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	static const char *cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	u32 cons = readl_relaxed(q->cons_reg);
	u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
		cerror_str[idx]);

	switch (idx) {
	case CMDQ_ERR_CERROR_ILL_IDX:
		break;
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
	queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
		return;
	}

	queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
}

static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				    struct arm_smmu_cmdq_ent *ent)
{
	u32 until;
	u64 cmd[CMDQ_ENT_DWORDS];
	bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	struct arm_smmu_queue *q = &smmu->cmdq.q;

	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return;
	}

	spin_lock(&smmu->cmdq.lock);
	while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
		/*
		 * Keep the queue locked, otherwise the producer could wrap
		 * twice and we could see a future consumer pointer that looks
		 * like it's behind us.
		 */
		if (queue_poll_cons(q, until, wfe))
			dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
	}

	if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
		dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
	spin_unlock(&smmu->cmdq.lock);
}

/* Context descriptor manipulation functions */
static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
{
	u64 val = 0;

	/* Repack the TCR. Just care about TTBR0 for now */
	val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
	val |= ARM_SMMU_TCR2CD(tcr, TG0);
	val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
	val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
	val |= ARM_SMMU_TCR2CD(tcr, SH0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD1);
	val |= ARM_SMMU_TCR2CD(tcr, IPS);
	val |= ARM_SMMU_TCR2CD(tcr, TBI0);

	return val;
}

static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
				    struct arm_smmu_s1_cfg *cfg)
{
	u64 val;

	/*
	 * We don't need to issue any invalidation here, as we'll invalidate
	 * the STE when installing the new entry anyway.
	 */
	val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
#ifdef __BIG_ENDIAN
	      CTXDESC_CD_0_ENDI |
#endif
	      CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
	      CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
	      CTXDESC_CD_0_V;
	cfg->cdptr[0] = cpu_to_le64(val);

	val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
	cfg->cdptr[1] = cpu_to_le64(val);

	cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
}

/* Stream table manipulation functions */
static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

	val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
		<< STRTAB_L1_DESC_SPAN_SHIFT;
	val |= desc->l2ptr_dma &
	       STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;

	*dst = cpu_to_le64(val);
}

static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	cmd.opcode = CMDQ_OP_CMD_SYNC;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
}

static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
				      __le64 *dst, struct arm_smmu_strtab_ent *ste)
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
	 * 1. Invalid (all zero) -> bypass  (init)
	 * 2. Bypass -> translation (attach)
	 * 3. Translation -> bypass (detach)
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

	if (val & STRTAB_STE_0_V) {
		u64 cfg;

		cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
		switch (cfg) {
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
		default:
			BUG(); /* STE corruption */
		}
	}

	/* Nuke the existing Config, as we're going to rewrite it */
	val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);

	if (ste->valid)
		val |= STRTAB_STE_0_V;
	else
		val &= ~STRTAB_STE_0_V;

	if (ste->bypass) {
		val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
				      : STRTAB_STE_0_CFG_BYPASS;
		dst[0] = cpu_to_le64(val);
		dst[2] = 0; /* Nuke the VMID */
		if (ste_live)
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

	if (ste->s1_cfg) {
		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
			 STRTAB_STE_1_S1C_CACHE_WBRA
			 << STRTAB_STE_1_S1CIR_SHIFT |
			 STRTAB_STE_1_S1C_CACHE_WBRA
			 << STRTAB_STE_1_S1COR_SHIFT |
			 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
			 STRTAB_STE_1_S1STALLD |
#ifdef CONFIG_PCI_ATS
			 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
#endif
			 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);

		val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
		        << STRTAB_STE_0_S1CTXPTR_SHIFT) |
			STRTAB_STE_0_CFG_S1_TRANS;

	}

	if (ste->s2_cfg) {
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
			 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
			 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
			  << STRTAB_STE_2_VTCR_SHIFT |
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

		dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
			 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);

		val |= STRTAB_STE_0_CFG_S2_TRANS;
	}

	arm_smmu_sync_ste_for_sid(smmu, sid);
	dst[0] = cpu_to_le64(val);
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
1090 1091
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
}

static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
{
	unsigned int i;
	struct arm_smmu_strtab_ent ste = {
		.valid	= true,
		.bypass	= true,
	};

	for (i = 0; i < nent; ++i) {
		arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1119
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

	desc->span = STRTAB_SPLIT + 1;
	desc->l2ptr = dma_zalloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
					  GFP_KERNEL);
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}

/* IRQ and event handlers */
static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
	u64 evt[EVTQ_ENT_DWORDS];

	while (!queue_remove_raw(q, evt)) {
		u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;

		dev_info(smmu->dev, "event 0x%02x received:\n", id);
		for (i = 0; i < ARRAY_SIZE(evt); ++i)
			dev_info(smmu->dev, "\t0x%016llx\n",
				 (unsigned long long)evt[i]);
	}

	/* Sync our overflow flag, as we believe we're up to speed */
	q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
{
	irqreturn_t ret = IRQ_WAKE_THREAD;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;

	/*
	 * Not much we can do on overflow, so scream and pretend we're
	 * trying harder.
	 */
	if (queue_sync_prod(q) == -EOVERFLOW)
		dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
	else if (queue_empty(q))
		ret = IRQ_NONE;

	return ret;
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
	u64 evt[PRIQ_ENT_DWORDS];

	while (!queue_remove_raw(q, evt)) {
		u32 sid, ssid;
		u16 grpid;
		bool ssv, last;

		sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
		ssv = evt[0] & PRIQ_0_SSID_V;
		ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
		last = evt[0] & PRIQ_0_PRG_LAST;
		grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;

		dev_info(smmu->dev, "unexpected PRI request received:\n");
		dev_info(smmu->dev,
			 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
			 sid, ssid, grpid, last ? "L" : "",
			 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
			 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
			 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
			 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
			 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);

		if (last) {
			struct arm_smmu_cmdq_ent cmd = {
				.opcode			= CMDQ_OP_PRI_RESP,
				.substream_valid	= ssv,
				.pri			= {
					.sid	= sid,
					.ssid	= ssid,
					.grpid	= grpid,
					.resp	= PRI_RESP_DENY,
				},
			};

			arm_smmu_cmdq_issue_cmd(smmu, &cmd);
		}
	}

	/* Sync our overflow flag, as we believe we're up to speed */
	q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
{
	irqreturn_t ret = IRQ_WAKE_THREAD;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;

	/* PRIQ overflow indicates a programming error */
	if (queue_sync_prod(q) == -EOVERFLOW)
		dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
	else if (queue_empty(q))
		ret = IRQ_NONE;

	return ret;
}

static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
{
	/* We don't actually use CMD_SYNC interrupts for anything */
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
	u32 gerror, gerrorn;
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

	gerror ^= gerrorn;
	if (!(gerror & GERROR_ERR_MASK))
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
		 gerror);

	if (gerror & GERROR_SFM_ERR) {
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

	if (gerror & GERROR_MSI_GERROR_ABT_ERR)
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

	if (gerror & GERROR_MSI_PRIQ_ABT_ERR) {
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
		arm_smmu_priq_handler(irq, smmu->dev);
	}

	if (gerror & GERROR_MSI_EVTQ_ABT_ERR) {
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
		arm_smmu_evtq_handler(irq, smmu->dev);
	}

	if (gerror & GERROR_MSI_CMDQ_ABT_ERR) {
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
		arm_smmu_cmdq_sync_handler(irq, smmu->dev);
	}

	if (gerror & GERROR_PRIQ_ABT_ERR)
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

	if (gerror & GERROR_EVTQ_ABT_ERR)
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

	if (gerror & GERROR_CMDQ_ERR)
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

/* IO_PGTABLE API */
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
{
	struct arm_smmu_cmdq_ent cmd;

	cmd.opcode = CMDQ_OP_CMD_SYNC;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
}

static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_ASID;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
		cmd.tlbi.vmid	= 0;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
					  bool leaf, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
			.addr	= iova,
		},
	};

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_VA;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

/* IOMMU API */
static bool arm_smmu_capable(enum iommu_cap cap)
{
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return true;
	case IOMMU_CAP_INTR_REMAP:
		return true; /* MSIs are just memory writes */
	case IOMMU_CAP_NOEXEC:
		return true;
	default:
		return false;
	}
}

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

	if (type != IOMMU_DOMAIN_UNMANAGED)
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
	return &smmu_domain->domain;
}

static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
{
	int idx, size = 1 << span;

	do {
		idx = find_first_zero_bit(map, size);
		if (idx == size)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void arm_smmu_bitmap_free(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

static void arm_smmu_domain_free(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1421
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

	/* Free the CD and ASID, if we allocated them */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

		if (cfg->cdptr) {
			dma_free_coherent(smmu_domain->smmu->dev,
					  CTXDESC_CD_DWORDS << 3,
					  cfg->cdptr,
					  cfg->cdptr_dma);

			arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
		}
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
1448
	int asid;
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

	asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
	if (IS_ERR_VALUE(asid))
		return asid;

	cfg->cdptr = dma_zalloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
					 &cfg->cdptr_dma, GFP_KERNEL);
	if (!cfg->cdptr) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1460
		ret = -ENOMEM;
1461 1462 1463
		goto out_free_asid;
	}

1464
	cfg->cd.asid	= (u16)asid;
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
	cfg->cd.tcr	= pgtbl_cfg->arm_lpae_s1_cfg.tcr;
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
	return 0;

out_free_asid:
	arm_smmu_bitmap_free(smmu->asid_map, asid);
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
1478
	int vmid;
1479 1480 1481 1482 1483 1484 1485
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;

	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
	if (IS_ERR_VALUE(vmid))
		return vmid;

1486
	cfg->vmid	= (u16)vmid;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
	cfg->vtcr	= pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
	return 0;
}

static struct iommu_ops arm_smmu_ops;

static int arm_smmu_domain_finalise(struct iommu_domain *domain)
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		ias = VA_BITS;
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
1535
		.iommu_dev	= smmu->dev,
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	};

	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
	smmu_domain->pgtbl_ops = pgtbl_ops;

	ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
	if (IS_ERR_VALUE(ret))
		free_io_pgtable_ops(pgtbl_ops);

	return ret;
}

static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
{
	struct iommu_group *group;
	struct arm_smmu_group *smmu_group;

	group = iommu_group_get(dev);
	if (!group)
		return NULL;

	smmu_group = iommu_group_get_iommudata(group);
	iommu_group_put(group);
	return smmu_group;
}

static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
{
	int i;
	struct arm_smmu_domain *smmu_domain = smmu_group->domain;
	struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
	struct arm_smmu_device *smmu = smmu_group->smmu;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		ste->s1_cfg = &smmu_domain->s1_cfg;
		ste->s2_cfg = NULL;
		arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
	} else {
		ste->s1_cfg = NULL;
		ste->s2_cfg = &smmu_domain->s2_cfg;
	}

	for (i = 0; i < smmu_group->num_sids; ++i) {
		u32 sid = smmu_group->sids[i];
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

		arm_smmu_write_strtab_ent(smmu, sid, step, ste);
	}

	return 0;
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);

	if (!smmu_group)
		return -ENOENT;

	/* Already attached to a different domain? */
	if (smmu_group->domain && smmu_group->domain != smmu_domain)
		return -EEXIST;

	smmu = smmu_group->smmu;
	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
		ret = arm_smmu_domain_finalise(domain);
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
	}

	/* Group already attached to this domain? */
	if (smmu_group->domain)
		goto out_unlock;

	smmu_group->domain	= smmu_domain;
	smmu_group->ste.bypass	= false;

	ret = arm_smmu_install_ste_for_group(smmu_group);
	if (IS_ERR_VALUE(ret))
		smmu_group->domain = NULL;

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);

	BUG_ON(!smmu_domain);
	BUG_ON(!smmu_group);

	mutex_lock(&smmu_domain->init_mutex);
	BUG_ON(smmu_group->domain != smmu_domain);

	smmu_group->ste.bypass = true;
	if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
		dev_warn(dev, "failed to install bypass STE\n");

	smmu_group->domain = NULL;
	mutex_unlock(&smmu_domain->init_mutex);
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
			phys_addr_t paddr, size_t size, int prot)
{
	int ret;
	unsigned long flags;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;

	if (!ops)
		return -ENODEV;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
}

static size_t
arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
{
	size_t ret;
	unsigned long flags;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;

	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
}

static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
	phys_addr_t ret;
	unsigned long flags;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;

	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->iova_to_phys(ops, iova);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);

	return ret;
}

static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
{
	*(u32 *)sidp = alias;
	return 0; /* Continue walking */
}

static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
{
	struct device_node *of_node;
1748 1749
	struct platform_device *smmu_pdev;
	struct arm_smmu_device *smmu = NULL;
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	struct pci_bus *bus = pdev->bus;

	/* Walk up to the root bus */
	while (!pci_is_root_bus(bus))
		bus = bus->parent;

	/* Follow the "iommus" phandle from the host controller */
	of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
	if (!of_node)
		return NULL;

	/* See if we can find an SMMU corresponding to the phandle */
1762 1763 1764 1765
	smmu_pdev = of_find_device_by_node(of_node);
	if (smmu_pdev)
		smmu = platform_get_drvdata(smmu_pdev);

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	of_node_put(of_node);
	return smmu;
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

static int arm_smmu_add_device(struct device *dev)
{
	int i, ret;
	u32 sid, *sids;
	struct pci_dev *pdev;
	struct iommu_group *group;
	struct arm_smmu_group *smmu_group;
	struct arm_smmu_device *smmu;

	/* We only support PCI, for now */
	if (!dev_is_pci(dev))
		return -ENODEV;

	pdev = to_pci_dev(dev);
	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group))
		return PTR_ERR(group);

	smmu_group = iommu_group_get_iommudata(group);
	if (!smmu_group) {
		smmu = arm_smmu_get_for_pci_dev(pdev);
		if (!smmu) {
			ret = -ENOENT;
			goto out_put_group;
		}

		smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
		if (!smmu_group) {
			ret = -ENOMEM;
			goto out_put_group;
		}

		smmu_group->ste.valid	= true;
		smmu_group->smmu	= smmu;
		iommu_group_set_iommudata(group, smmu_group,
					  __arm_smmu_release_pci_iommudata);
	} else {
		smmu = smmu_group->smmu;
	}

	/* Assume SID == RID until firmware tells us otherwise */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < smmu_group->num_sids; ++i) {
		/* If we already know about this SID, then we're done */
		if (smmu_group->sids[i] == sid)
			return 0;
	}

	/* Check the SID is in range of the SMMU and our stream table */
	if (!arm_smmu_sid_in_range(smmu, sid)) {
		ret = -ERANGE;
		goto out_put_group;
	}

	/* Ensure l2 strtab is initialised */
	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		ret = arm_smmu_init_l2_strtab(smmu, sid);
		if (ret)
			goto out_put_group;
	}

	/* Resize the SID array for the group */
	smmu_group->num_sids++;
	sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
			GFP_KERNEL);
	if (!sids) {
		smmu_group->num_sids--;
		ret = -ENOMEM;
		goto out_put_group;
	}

	/* Add the new SID */
	sids[smmu_group->num_sids - 1] = sid;
	smmu_group->sids = sids;
	return 0;

out_put_group:
	iommu_group_put(group);
	return ret;
}

static void arm_smmu_remove_device(struct device *dev)
{
	iommu_group_remove_device(dev);
}

static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	int ret = 0;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	mutex_lock(&smmu_domain->init_mutex);

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

		break;
	default:
		ret = -ENODEV;
	}

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static struct iommu_ops arm_smmu_ops = {
	.capable		= arm_smmu_capable,
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
	.attach_dev		= arm_smmu_attach_dev,
	.detach_dev		= arm_smmu_detach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
				   unsigned long prod_off,
				   unsigned long cons_off,
				   size_t dwords)
{
	size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;

	q->base = dma_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
	if (!q->base) {
		dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
			qsz);
		return -ENOMEM;
	}

	q->prod_reg	= smmu->base + prod_off;
	q->cons_reg	= smmu->base + cons_off;
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
	q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
		     << Q_BASE_LOG2SIZE_SHIFT;

	q->prod = q->cons = 0;
	return 0;
}

static void arm_smmu_free_one_queue(struct arm_smmu_device *smmu,
				    struct arm_smmu_queue *q)
{
	size_t qsz = ((1 << q->max_n_shift) * q->ent_dwords) << 3;

	dma_free_coherent(smmu->dev, qsz, q->base, q->base_dma);
}

static void arm_smmu_free_queues(struct arm_smmu_device *smmu)
{
	arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
	arm_smmu_free_one_queue(smmu, &smmu->evtq.q);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_free_one_queue(smmu, &smmu->priq.q);
}

static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
	spin_lock_init(&smmu->cmdq.lock);
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
				      ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
	if (ret)
		goto out;

	/* evtq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
				      ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
	if (ret)
		goto out_free_cmdq;

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

	ret = arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
				      ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
	if (ret)
		goto out_free_evtq;

	return 0;

out_free_evtq:
	arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
out_free_cmdq:
	arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
out:
	return ret;
}

static void arm_smmu_free_l2_strtab(struct arm_smmu_device *smmu)
{
	int i;
	size_t size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
	for (i = 0; i < cfg->num_l1_ents; ++i) {
		struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[i];

		if (!desc->l2ptr)
			continue;

		dma_free_coherent(smmu->dev, size, desc->l2ptr,
				  desc->l2ptr_dma);
	}
}

static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
{
	unsigned int i;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
	void *strtab = smmu->strtab_cfg.strtab;

	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
	if (!cfg->l1_desc) {
		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
		return -ENOMEM;
	}

	for (i = 0; i < cfg->num_l1_ents; ++i) {
		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
		strtab += STRTAB_L1_DESC_DWORDS << 3;
	}

	return 0;
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
2051
	u32 size, l1size;
2052 2053 2054
	int ret;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	/*
	 * If we can resolve everything with a single L2 table, then we
	 * just need a single L1 descriptor. Otherwise, calculate the L1
	 * size, capped to the SIDSIZE.
	 */
	if (smmu->sid_bits < STRTAB_SPLIT) {
		size = 0;
	} else {
		size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
		size = min(size, smmu->sid_bits - STRTAB_SPLIT);
	}
2066 2067 2068 2069
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
2070 2071
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
2072
			 size, smmu->sid_bits);
2073

2074 2075
	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
	strtab = dma_zalloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
				     GFP_KERNEL);
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
	reg  = STRTAB_BASE_CFG_FMT_2LVL;
	reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
		<< STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
	reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
		<< STRTAB_BASE_CFG_SPLIT_SHIFT;
	cfg->strtab_base_cfg = reg;

	ret = arm_smmu_init_l1_strtab(smmu);
	if (ret)
		dma_free_coherent(smmu->dev,
2096
				  l1size,
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
				  strtab,
				  cfg->strtab_dma);
	return ret;
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
	strtab = dma_zalloc_coherent(smmu->dev, size, &cfg->strtab_dma,
				     GFP_KERNEL);
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
	reg  = STRTAB_BASE_CFG_FMT_LINEAR;
	reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
		<< STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
	reg  = smmu->strtab_cfg.strtab_dma &
	       STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	/* Allocate the first VMID for stage-2 bypass STEs */
	set_bit(0, smmu->vmid_map);
	return 0;
}

static void arm_smmu_free_strtab(struct arm_smmu_device *smmu)
{
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	u32 size = cfg->num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		arm_smmu_free_l2_strtab(smmu);
		size *= STRTAB_L1_DESC_DWORDS << 3;
	} else {
		size *= STRTAB_STE_DWORDS * 3;
	}

	dma_free_coherent(smmu->dev, size, cfg->strtab, cfg->strtab_dma);
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

	ret = arm_smmu_init_strtab(smmu);
	if (ret)
		goto out_free_queues;

	return 0;

out_free_queues:
	arm_smmu_free_queues(smmu);
	return ret;
}

static void arm_smmu_free_structures(struct arm_smmu_device *smmu)
{
	arm_smmu_free_strtab(smmu);
	arm_smmu_free_queues(smmu);
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;
	platform_msi_domain_free_irqs(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
	doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
	writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	struct msi_desc *desc;
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
		dev_warn(dev, "failed to allocate MSIs\n");
		return;
	}

	for_each_msi_entry(desc, dev) {
		switch (desc->platform.msi_index) {
		case EVTQ_MSI_INDEX:
			smmu->evtq.q.irq = desc->irq;
			break;
		case GERROR_MSI_INDEX:
			smmu->gerr_irq = desc->irq;
			break;
		case PRIQ_MSI_INDEX:
			smmu->priq.q.irq = desc->irq;
			break;
		default:	/* Unknown */
			continue;
		}
	}

	/* Add callback to free MSIs on teardown */
	devm_add_action(dev, arm_smmu_free_msis, dev);
}

2271 2272 2273
static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
2274
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2275 2276 2277 2278 2279 2280 2281 2282 2283

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

2284
	arm_smmu_setup_msis(smmu);
2285

2286
	/* Request interrupt lines */
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	irq = smmu->evtq.q.irq;
	if (irq) {
		ret = devm_request_threaded_irq(smmu->dev, irq,
						arm_smmu_evtq_handler,
						arm_smmu_evtq_thread,
						0, "arm-smmu-v3-evtq", smmu);
		if (IS_ERR_VALUE(ret))
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
	}

	irq = smmu->cmdq.q.irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq,
				       arm_smmu_cmdq_sync_handler, 0,
				       "arm-smmu-v3-cmdq-sync", smmu);
		if (IS_ERR_VALUE(ret))
			dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
		if (IS_ERR_VALUE(ret))
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
			ret = devm_request_threaded_irq(smmu->dev, irq,
							arm_smmu_priq_handler,
							arm_smmu_priq_thread,
							0, "arm-smmu-v3-priq",
							smmu);
			if (IS_ERR_VALUE(ret))
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
2325 2326
			else
				irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2327 2328 2329 2330
		}
	}

	/* Enable interrupt generation on the SMMU */
2331
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
	if (reg & CR0_SMMUEN)
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
	reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
	      (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
	      (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
	      (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
	      (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
	      (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
	writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	cmd.opcode = CMDQ_OP_CMD_SYNC;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	cmd.opcode = CMDQ_OP_CMD_SYNC;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
	writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
	writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
		writel_relaxed(smmu->priq.q.prod,
			       smmu->base + ARM_SMMU_PRIQ_PROD);
		writel_relaxed(smmu->priq.q.cons,
			       smmu->base + ARM_SMMU_PRIQ_CONS);

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}

	/* Enable the SMMU interface */
	enables |= CR0_SMMUEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
{
	u32 reg;
	bool coherent;
	unsigned long pgsize_bitmap = 0;

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
	if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
	switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

	if (reg & IDR0_MSI)
		smmu->features |= ARM_SMMU_FEAT_MSI;

	if (reg & IDR0_HYP)
		smmu->features |= ARM_SMMU_FEAT_HYP;

	/*
	 * The dma-coherent property is used in preference to the ID
	 * register, but warn on mismatch.
	 */
	coherent = of_dma_is_coherent(smmu->dev->of_node);
	if (coherent)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	if (!!(reg & IDR0_COHACC) != coherent)
		dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
			 coherent ? "true" : "false");

	if (reg & IDR0_STALL_MODEL)
		smmu->features |= ARM_SMMU_FEAT_STALLS;

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
	if ((reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) < IDR0_TTF_AARCH64) {
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

	/* Queue sizes, capped at 4k */
	smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
				       reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
	if (!smmu->cmdq.q.max_n_shift) {
		/* Odd alignment restrictions on the base, so ignore for now */
		dev_err(smmu->dev, "unit-length command queue not supported\n");
		return -ENXIO;
	}

	smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
				       reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
	smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
				       reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);

	/* SID/SSID sizes */
	smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
	smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;

	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
	smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
				& IDR5_STALL_MAX_MASK;

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
		pgsize_bitmap |= SZ_64K | SZ_512M;
	if (reg & IDR5_GRAN16K)
		pgsize_bitmap |= SZ_16K | SZ_32M;
	if (reg & IDR5_GRAN4K)
		pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;

	arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;

	/* Output address size */
	switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
2613 2614 2615 2616
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
		/* Fallthrough */
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

	if (!smmu->ias)
		smmu->ias = smmu->oas;

	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (resource_size(res) + 1 < SZ_128K) {
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}

	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

	/* Interrupt lines */
	irq = platform_get_irq_byname(pdev, "eventq");
	if (irq > 0)
		smmu->evtq.q.irq = irq;

	irq = platform_get_irq_byname(pdev, "priq");
	if (irq > 0)
		smmu->priq.q.irq = irq;

	irq = platform_get_irq_byname(pdev, "cmdq-sync");
	if (irq > 0)
		smmu->cmdq.q.irq = irq;

	irq = platform_get_irq_byname(pdev, "gerror");
	if (irq > 0)
		smmu->gerr_irq = irq;

2676 2677
	parse_driver_options(smmu);

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	/* Probe the h/w */
	ret = arm_smmu_device_probe(smmu);
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

2688 2689 2690
	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
	/* Reset the device */
	ret = arm_smmu_device_reset(smmu);
	if (ret)
		goto out_free_structures;

	return 0;

out_free_structures:
	arm_smmu_free_structures(smmu);
	return ret;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
2705
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755

	arm_smmu_device_disable(smmu);
	arm_smmu_free_structures(smmu);
	return 0;
}

static struct of_device_id arm_smmu_of_match[] = {
	{ .compatible = "arm,smmu-v3", },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu-v3",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
	struct device_node *np;
	int ret;

	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

subsys_initcall(arm_smmu_init);
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");