bio.c 53.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
9
#include <linux/uio.h>
10
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
11 12 13
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
14
#include <linux/export.h>
L
Linus Torvalds 已提交
15 16
#include <linux/mempool.h>
#include <linux/workqueue.h>
17
#include <linux/cgroup.h>
18
#include <linux/blk-cgroup.h>
L
Linus Torvalds 已提交
19

20
#include <trace/events/block.h>
21
#include "blk.h"
J
Josef Bacik 已提交
22
#include "blk-rq-qos.h"
23

24 25 26 27 28 29
/*
 * Test patch to inline a certain number of bi_io_vec's inside the bio
 * itself, to shrink a bio data allocation from two mempool calls to one
 */
#define BIO_INLINE_VECS		4

L
Linus Torvalds 已提交
30 31 32 33 34
/*
 * if you change this list, also change bvec_alloc or things will
 * break badly! cannot be bigger than what you can fit into an
 * unsigned short
 */
35
#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
36
static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
37
	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
L
Linus Torvalds 已提交
38 39 40 41 42 43 44
};
#undef BV

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
45
struct bio_set fs_bio_set;
46
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static struct bio_slab *bio_slabs;
static unsigned int bio_slab_nr, bio_slab_max;

static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
{
	unsigned int sz = sizeof(struct bio) + extra_size;
	struct kmem_cache *slab = NULL;
65
	struct bio_slab *bslab, *new_bio_slabs;
66
	unsigned int new_bio_slab_max;
67 68 69 70 71 72
	unsigned int i, entry = -1;

	mutex_lock(&bio_slab_lock);

	i = 0;
	while (i < bio_slab_nr) {
73
		bslab = &bio_slabs[i];
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

		if (!bslab->slab && entry == -1)
			entry = i;
		else if (bslab->slab_size == sz) {
			slab = bslab->slab;
			bslab->slab_ref++;
			break;
		}
		i++;
	}

	if (slab)
		goto out_unlock;

	if (bio_slab_nr == bio_slab_max && entry == -1) {
89
		new_bio_slab_max = bio_slab_max << 1;
90
		new_bio_slabs = krealloc(bio_slabs,
91
					 new_bio_slab_max * sizeof(struct bio_slab),
92 93
					 GFP_KERNEL);
		if (!new_bio_slabs)
94
			goto out_unlock;
95
		bio_slab_max = new_bio_slab_max;
96
		bio_slabs = new_bio_slabs;
97 98 99 100 101 102 103
	}
	if (entry == -1)
		entry = bio_slab_nr++;

	bslab = &bio_slabs[entry];

	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
104 105
	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
				 SLAB_HWCACHE_ALIGN, NULL);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	if (!slab)
		goto out_unlock;

	bslab->slab = slab;
	bslab->slab_ref = 1;
	bslab->slab_size = sz;
out_unlock:
	mutex_unlock(&bio_slab_lock);
	return slab;
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
	unsigned int i;

	mutex_lock(&bio_slab_lock);

	for (i = 0; i < bio_slab_nr; i++) {
		if (bs->bio_slab == bio_slabs[i].slab) {
			bslab = &bio_slabs[i];
			break;
		}
	}

	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

	kmem_cache_destroy(bslab->slab);
	bslab->slab = NULL;

out:
	mutex_unlock(&bio_slab_lock);
}

146 147
unsigned int bvec_nr_vecs(unsigned short idx)
{
148
	return bvec_slabs[--idx].nr_vecs;
149 150
}

151
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
152
{
153 154 155 156 157
	if (!idx)
		return;
	idx--;

	BIO_BUG_ON(idx >= BVEC_POOL_NR);
158

159
	if (idx == BVEC_POOL_MAX) {
160
		mempool_free(bv, pool);
161
	} else {
162 163 164 165 166 167
		struct biovec_slab *bvs = bvec_slabs + idx;

		kmem_cache_free(bvs->slab, bv);
	}
}

168 169
struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
			   mempool_t *pool)
L
Linus Torvalds 已提交
170 171 172
{
	struct bio_vec *bvl;

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	/*
	 * see comment near bvec_array define!
	 */
	switch (nr) {
	case 1:
		*idx = 0;
		break;
	case 2 ... 4:
		*idx = 1;
		break;
	case 5 ... 16:
		*idx = 2;
		break;
	case 17 ... 64:
		*idx = 3;
		break;
	case 65 ... 128:
		*idx = 4;
		break;
	case 129 ... BIO_MAX_PAGES:
		*idx = 5;
		break;
	default:
		return NULL;
	}

	/*
	 * idx now points to the pool we want to allocate from. only the
	 * 1-vec entry pool is mempool backed.
	 */
203
	if (*idx == BVEC_POOL_MAX) {
204
fallback:
205
		bvl = mempool_alloc(pool, gfp_mask);
206 207
	} else {
		struct biovec_slab *bvs = bvec_slabs + *idx;
208
		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
209

J
Jens Axboe 已提交
210
		/*
211 212 213
		 * Make this allocation restricted and don't dump info on
		 * allocation failures, since we'll fallback to the mempool
		 * in case of failure.
J
Jens Axboe 已提交
214
		 */
215
		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
L
Linus Torvalds 已提交
216

J
Jens Axboe 已提交
217
		/*
218
		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
219
		 * is set, retry with the 1-entry mempool
J
Jens Axboe 已提交
220
		 */
221
		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
222
		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
223
			*idx = BVEC_POOL_MAX;
224 225 226 227
			goto fallback;
		}
	}

228
	(*idx)++;
L
Linus Torvalds 已提交
229 230 231
	return bvl;
}

232
void bio_uninit(struct bio *bio)
L
Linus Torvalds 已提交
233
{
234
	bio_disassociate_blkg(bio);
K
Kent Overstreet 已提交
235
}
236
EXPORT_SYMBOL(bio_uninit);
237

K
Kent Overstreet 已提交
238 239 240 241 242
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

243
	bio_uninit(bio);
K
Kent Overstreet 已提交
244 245

	if (bs) {
246
		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
247 248 249 250 251

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
252 253
		p -= bs->front_pad;

254
		mempool_free(p, &bs->bio_pool);
K
Kent Overstreet 已提交
255 256 257 258
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
P
Peter Osterlund 已提交
259 260
}

261 262 263 264 265
/*
 * Users of this function have their own bio allocation. Subsequently,
 * they must remember to pair any call to bio_init() with bio_uninit()
 * when IO has completed, or when the bio is released.
 */
266 267
void bio_init(struct bio *bio, struct bio_vec *table,
	      unsigned short max_vecs)
L
Linus Torvalds 已提交
268
{
J
Jens Axboe 已提交
269
	memset(bio, 0, sizeof(*bio));
270
	atomic_set(&bio->__bi_remaining, 1);
271
	atomic_set(&bio->__bi_cnt, 1);
272 273 274

	bio->bi_io_vec = table;
	bio->bi_max_vecs = max_vecs;
L
Linus Torvalds 已提交
275
}
276
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
277

K
Kent Overstreet 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);

292
	bio_uninit(bio);
K
Kent Overstreet 已提交
293 294

	memset(bio, 0, BIO_RESET_BYTES);
295
	bio->bi_flags = flags;
296
	atomic_set(&bio->__bi_remaining, 1);
K
Kent Overstreet 已提交
297 298 299
}
EXPORT_SYMBOL(bio_reset);

300
static struct bio *__bio_chain_endio(struct bio *bio)
K
Kent Overstreet 已提交
301
{
302 303
	struct bio *parent = bio->bi_private;

304 305
	if (!parent->bi_status)
		parent->bi_status = bio->bi_status;
K
Kent Overstreet 已提交
306
	bio_put(bio);
307 308 309 310 311 312
	return parent;
}

static void bio_chain_endio(struct bio *bio)
{
	bio_endio(__bio_chain_endio(bio));
K
Kent Overstreet 已提交
313 314 315 316
}

/**
 * bio_chain - chain bio completions
317 318
 * @bio: the target bio
 * @parent: the @bio's parent bio
K
Kent Overstreet 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
332
	bio_inc_remaining(parent);
K
Kent Overstreet 已提交
333 334 335
}
EXPORT_SYMBOL(bio_chain);

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

		generic_make_request(bio);
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

358 359
	if (WARN_ON_ONCE(!bs->rescue_workqueue))
		return;
360 361 362 363 364 365 366 367 368 369 370 371 372 373
	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

374
	while ((bio = bio_list_pop(&current->bio_list[0])))
375
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
376
	current->bio_list[0] = nopunt;
377

378 379 380 381
	bio_list_init(&nopunt);
	while ((bio = bio_list_pop(&current->bio_list[1])))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
	current->bio_list[1] = nopunt;
382 383 384 385 386 387 388 389

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
390 391
/**
 * bio_alloc_bioset - allocate a bio for I/O
392
 * @gfp_mask:   the GFP_* mask given to the slab allocator
L
Linus Torvalds 已提交
393
 * @nr_iovecs:	number of iovecs to pre-allocate
394
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
395 396
 *
 * Description:
397 398 399
 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 *   backed by the @bs's mempool.
 *
400 401 402 403 404 405
 *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
 *   always be able to allocate a bio. This is due to the mempool guarantees.
 *   To make this work, callers must never allocate more than 1 bio at a time
 *   from this pool. Callers that need to allocate more than 1 bio must always
 *   submit the previously allocated bio for IO before attempting to allocate
 *   a new one. Failure to do so can cause deadlocks under memory pressure.
406
 *
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
 *   Note that when running under generic_make_request() (i.e. any block
 *   driver), bios are not submitted until after you return - see the code in
 *   generic_make_request() that converts recursion into iteration, to prevent
 *   stack overflows.
 *
 *   This would normally mean allocating multiple bios under
 *   generic_make_request() would be susceptible to deadlocks, but we have
 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 *   thread.
 *
 *   However, we do not guarantee forward progress for allocations from other
 *   mempools. Doing multiple allocations from the same mempool under
 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 *   for per bio allocations.
 *
422 423 424
 *   RETURNS:
 *   Pointer to new bio on success, NULL on failure.
 */
425 426
struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
			     struct bio_set *bs)
L
Linus Torvalds 已提交
427
{
428
	gfp_t saved_gfp = gfp_mask;
429 430
	unsigned front_pad;
	unsigned inline_vecs;
I
Ingo Molnar 已提交
431
	struct bio_vec *bvl = NULL;
T
Tejun Heo 已提交
432 433 434
	struct bio *bio;
	void *p;

435 436 437 438 439 440 441 442 443 444
	if (!bs) {
		if (nr_iovecs > UIO_MAXIOV)
			return NULL;

		p = kmalloc(sizeof(struct bio) +
			    nr_iovecs * sizeof(struct bio_vec),
			    gfp_mask);
		front_pad = 0;
		inline_vecs = nr_iovecs;
	} else {
J
Junichi Nomura 已提交
445
		/* should not use nobvec bioset for nr_iovecs > 0 */
446 447
		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
				 nr_iovecs > 0))
J
Junichi Nomura 已提交
448
			return NULL;
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
		/*
		 * generic_make_request() converts recursion to iteration; this
		 * means if we're running beneath it, any bios we allocate and
		 * submit will not be submitted (and thus freed) until after we
		 * return.
		 *
		 * This exposes us to a potential deadlock if we allocate
		 * multiple bios from the same bio_set() while running
		 * underneath generic_make_request(). If we were to allocate
		 * multiple bios (say a stacking block driver that was splitting
		 * bios), we would deadlock if we exhausted the mempool's
		 * reserve.
		 *
		 * We solve this, and guarantee forward progress, with a rescuer
		 * workqueue per bio_set. If we go to allocate and there are
		 * bios on current->bio_list, we first try the allocation
465 466 467
		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
		 * bios we would be blocking to the rescuer workqueue before
		 * we retry with the original gfp_flags.
468 469
		 */

470 471
		if (current->bio_list &&
		    (!bio_list_empty(&current->bio_list[0]) ||
472 473
		     !bio_list_empty(&current->bio_list[1])) &&
		    bs->rescue_workqueue)
474
			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475

476
		p = mempool_alloc(&bs->bio_pool, gfp_mask);
477 478 479
		if (!p && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
480
			p = mempool_alloc(&bs->bio_pool, gfp_mask);
481 482
		}

483 484 485 486
		front_pad = bs->front_pad;
		inline_vecs = BIO_INLINE_VECS;
	}

T
Tejun Heo 已提交
487 488
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
489

490
	bio = p + front_pad;
491
	bio_init(bio, NULL, 0);
I
Ingo Molnar 已提交
492

493
	if (nr_iovecs > inline_vecs) {
494 495
		unsigned long idx = 0;

496
		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
497 498 499
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
500
			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
501 502
		}

I
Ingo Molnar 已提交
503 504
		if (unlikely(!bvl))
			goto err_free;
505

506
		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
507 508
	} else if (nr_iovecs) {
		bvl = bio->bi_inline_vecs;
L
Linus Torvalds 已提交
509
	}
510 511

	bio->bi_pool = bs;
I
Ingo Molnar 已提交
512 513
	bio->bi_max_vecs = nr_iovecs;
	bio->bi_io_vec = bvl;
L
Linus Torvalds 已提交
514
	return bio;
I
Ingo Molnar 已提交
515 516

err_free:
517
	mempool_free(p, &bs->bio_pool);
I
Ingo Molnar 已提交
518
	return NULL;
L
Linus Torvalds 已提交
519
}
520
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
521

522
void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
L
Linus Torvalds 已提交
523 524
{
	unsigned long flags;
525 526
	struct bio_vec bv;
	struct bvec_iter iter;
L
Linus Torvalds 已提交
527

528
	__bio_for_each_segment(bv, bio, iter, start) {
529 530 531
		char *data = bvec_kmap_irq(&bv, &flags);
		memset(data, 0, bv.bv_len);
		flush_dcache_page(bv.bv_page);
L
Linus Torvalds 已提交
532 533 534
		bvec_kunmap_irq(data, &flags);
	}
}
535
EXPORT_SYMBOL(zero_fill_bio_iter);
L
Linus Torvalds 已提交
536 537 538 539 540 541 542

/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
543
 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
L
Linus Torvalds 已提交
544 545 546
 **/
void bio_put(struct bio *bio)
{
547
	if (!bio_flagged(bio, BIO_REFFED))
K
Kent Overstreet 已提交
548
		bio_free(bio);
549 550 551 552 553 554 555 556 557
	else {
		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));

		/*
		 * last put frees it
		 */
		if (atomic_dec_and_test(&bio->__bi_cnt))
			bio_free(bio);
	}
L
Linus Torvalds 已提交
558
}
559
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
560

K
Kent Overstreet 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573
/**
 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 *
 * 	Caller must ensure that @bio_src is not freed before @bio.
 */
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
574
	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
575 576

	/*
577
	 * most users will be overriding ->bi_disk with a new target,
K
Kent Overstreet 已提交
578 579
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
580
	bio->bi_disk = bio_src->bi_disk;
581
	bio->bi_partno = bio_src->bi_partno;
582
	bio_set_flag(bio, BIO_CLONED);
S
Shaohua Li 已提交
583 584
	if (bio_flagged(bio_src, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
J
Jens Axboe 已提交
585
	bio->bi_opf = bio_src->bi_opf;
586
	bio->bi_ioprio = bio_src->bi_ioprio;
587
	bio->bi_write_hint = bio_src->bi_write_hint;
K
Kent Overstreet 已提交
588 589
	bio->bi_iter = bio_src->bi_iter;
	bio->bi_io_vec = bio_src->bi_io_vec;
590

591
	bio_clone_blkg_association(bio, bio_src);
592
	blkcg_bio_issue_init(bio);
K
Kent Overstreet 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
}
EXPORT_SYMBOL(__bio_clone_fast);

/**
 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *	@bs: bio_set to allocate from
 *
 * 	Like __bio_clone_fast, only also allocates the returned bio
 */
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
	struct bio *b;

	b = bio_alloc_bioset(gfp_mask, 0, bs);
	if (!b)
		return NULL;

	__bio_clone_fast(b, bio);

	if (bio_integrity(bio)) {
		int ret;

		ret = bio_integrity_clone(b, bio, gfp_mask);

		if (ret < 0) {
			bio_put(b);
			return NULL;
		}
	}

	return b;
}
EXPORT_SYMBOL(bio_clone_fast);

629 630 631 632 633 634 635 636 637 638 639 640
static inline bool page_is_mergeable(const struct bio_vec *bv,
		struct page *page, unsigned int len, unsigned int off,
		bool same_page)
{
	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
		bv->bv_offset + bv->bv_len - 1;
	phys_addr_t page_addr = page_to_phys(page);

	if (vec_end_addr + 1 != page_addr + off)
		return false;
	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
		return false;
641 642 643 644 645 646 647

	if ((vec_end_addr & PAGE_MASK) != page_addr) {
		if (same_page)
			return false;
		if (pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
			return false;
	}
648

649 650
	WARN_ON_ONCE(same_page && (len + off) > PAGE_SIZE);

651 652 653
	return true;
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
/*
 * Check if the @page can be added to the current segment(@bv), and make
 * sure to call it only if page_is_mergeable(@bv, @page) is true
 */
static bool can_add_page_to_seg(struct request_queue *q,
		struct bio_vec *bv, struct page *page, unsigned len,
		unsigned offset)
{
	unsigned long mask = queue_segment_boundary(q);
	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;

	if ((addr1 | mask) != (addr2 | mask))
		return false;

	if (bv->bv_len + len > queue_max_segment_size(q))
		return false;

	return true;
}

L
Linus Torvalds 已提交
675
/**
676
 *	__bio_add_pc_page	- attempt to add page to passthrough bio
K
Kent Overstreet 已提交
677 678 679 680 681
 *	@q: the target queue
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
682
 *	@put_same_page: put the page if it is same with last added page
L
Linus Torvalds 已提交
683
 *
K
Kent Overstreet 已提交
684 685 686 687 688
 *	Attempt to add a page to the bio_vec maplist. This can fail for a
 *	number of reasons, such as the bio being full or target block device
 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 *	so it is always possible to add a single page to an empty bio.
 *
M
Ming Lei 已提交
689
 *	This should only be used by passthrough bios.
L
Linus Torvalds 已提交
690
 */
691
static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
692 693
		struct page *page, unsigned int len, unsigned int offset,
		bool put_same_page)
L
Linus Torvalds 已提交
694 695 696 697 698 699 700 701 702
{
	struct bio_vec *bvec;

	/*
	 * cloned bio must not modify vec list
	 */
	if (unlikely(bio_flagged(bio, BIO_CLONED)))
		return 0;

K
Kent Overstreet 已提交
703
	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
L
Linus Torvalds 已提交
704 705
		return 0;

706
	if (bio->bi_vcnt > 0) {
M
Ming Lei 已提交
707
		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
708

M
Ming Lei 已提交
709 710
		if (page == bvec->bv_page &&
		    offset == bvec->bv_offset + bvec->bv_len) {
711 712
			if (put_same_page)
				put_page(page);
M
Ming Lei 已提交
713
			bvec->bv_len += len;
714 715
			goto done;
		}
716 717 718 719 720

		/*
		 * If the queue doesn't support SG gaps and adding this
		 * offset would create a gap, disallow it.
		 */
M
Ming Lei 已提交
721
		if (bvec_gap_to_prev(q, bvec, offset))
722
			return 0;
723 724

		if (page_is_mergeable(bvec, page, len, offset, false) &&
725 726 727 728
		    can_add_page_to_seg(q, bvec, page, len, offset)) {
			bvec->bv_len += len;
			goto done;
		}
729 730
	}

731
	if (bio_full(bio))
L
Linus Torvalds 已提交
732 733
		return 0;

734
	if (bio->bi_vcnt >= queue_max_segments(q))
735 736
		return 0;

737 738 739 740 741
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;
	bio->bi_vcnt++;
742
 done:
743
	bio->bi_iter.bi_size += len;
L
Linus Torvalds 已提交
744 745
	return len;
}
746 747 748 749 750 751

int bio_add_pc_page(struct request_queue *q, struct bio *bio,
		struct page *page, unsigned int len, unsigned int offset)
{
	return __bio_add_pc_page(q, bio, page, len, offset, false);
}
752
EXPORT_SYMBOL(bio_add_pc_page);
753

L
Linus Torvalds 已提交
754
/**
755 756
 * __bio_try_merge_page - try appending data to an existing bvec.
 * @bio: destination bio
757
 * @page: start page to add
758
 * @len: length of the data to add
759
 * @off: offset of the data relative to @page
M
Ming Lei 已提交
760 761
 * @same_page: if %true only merge if the new data is in the same physical
 *		page as the last segment of the bio.
L
Linus Torvalds 已提交
762
 *
763 764 765 766
 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
 * a useful optimisation for file systems with a block size smaller than the
 * page size.
 *
767 768
 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 *
769
 * Return %true on success or %false on failure.
L
Linus Torvalds 已提交
770
 */
771
bool __bio_try_merge_page(struct bio *bio, struct page *page,
M
Ming Lei 已提交
772
		unsigned int len, unsigned int off, bool same_page)
L
Linus Torvalds 已提交
773
{
K
Kent Overstreet 已提交
774
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
775
		return false;
776

K
Kent Overstreet 已提交
777
	if (bio->bi_vcnt > 0) {
778
		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
779 780 781 782 783 784

		if (page_is_mergeable(bv, page, len, off, same_page)) {
			bv->bv_len += len;
			bio->bi_iter.bi_size += len;
			return true;
		}
K
Kent Overstreet 已提交
785
	}
786 787 788
	return false;
}
EXPORT_SYMBOL_GPL(__bio_try_merge_page);
K
Kent Overstreet 已提交
789

790
/**
791
 * __bio_add_page - add page(s) to a bio in a new segment
792
 * @bio: destination bio
793 794 795
 * @page: start page to add
 * @len: length of the data to add, may cross pages
 * @off: offset of the data relative to @page, may cross pages
796 797 798 799 800 801 802 803
 *
 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 * that @bio has space for another bvec.
 */
void __bio_add_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off)
{
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
K
Kent Overstreet 已提交
804

805 806 807 808 809 810
	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
	WARN_ON_ONCE(bio_full(bio));

	bv->bv_page = page;
	bv->bv_offset = off;
	bv->bv_len = len;
K
Kent Overstreet 已提交
811 812

	bio->bi_iter.bi_size += len;
813 814 815 816 817
	bio->bi_vcnt++;
}
EXPORT_SYMBOL_GPL(__bio_add_page);

/**
818
 *	bio_add_page	-	attempt to add page(s) to bio
819
 *	@bio: destination bio
820 821 822
 *	@page: start page to add
 *	@len: vec entry length, may cross pages
 *	@offset: vec entry offset relative to @page, may cross pages
823
 *
824
 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
825 826 827 828 829
 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 */
int bio_add_page(struct bio *bio, struct page *page,
		 unsigned int len, unsigned int offset)
{
M
Ming Lei 已提交
830
	if (!__bio_try_merge_page(bio, page, len, offset, false)) {
831 832 833 834
		if (bio_full(bio))
			return 0;
		__bio_add_page(bio, page, len, offset);
	}
K
Kent Overstreet 已提交
835
	return len;
L
Linus Torvalds 已提交
836
}
837
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
838

839 840 841 842 843
static void bio_get_pages(struct bio *bio)
{
	struct bvec_iter_all iter_all;
	struct bio_vec *bvec;

844
	bio_for_each_segment_all(bvec, bio, iter_all)
845 846 847
		get_page(bvec->bv_page);
}

848
void bio_release_pages(struct bio *bio, bool mark_dirty)
849 850 851 852
{
	struct bvec_iter_all iter_all;
	struct bio_vec *bvec;

853 854 855
	if (bio_flagged(bio, BIO_NO_PAGE_REF))
		return;

856 857 858
	bio_for_each_segment_all(bvec, bio, iter_all) {
		if (mark_dirty && !PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
859
		put_page(bvec->bv_page);
860
	}
861 862
}

863 864 865 866 867 868 869 870 871 872 873 874
static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
{
	const struct bio_vec *bv = iter->bvec;
	unsigned int len;
	size_t size;

	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
		return -EINVAL;

	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
	size = bio_add_page(bio, bv->bv_page, len,
				bv->bv_offset + iter->iov_offset);
875 876 877 878
	if (unlikely(size != len))
		return -EINVAL;
	iov_iter_advance(iter, size);
	return 0;
879 880
}

881 882
#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))

883
/**
884
 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
885 886 887
 * @bio: bio to add pages to
 * @iter: iov iterator describing the region to be mapped
 *
888
 * Pins pages from *iter and appends them to @bio's bvec array. The
889
 * pages will have to be released using put_page() when done.
890 891
 * For multi-segment *iter, this function only adds pages from the
 * the next non-empty segment of the iov iterator.
892
 */
893
static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
894
{
895 896
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
897 898
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
899 900
	ssize_t size, left;
	unsigned len, i;
901
	size_t offset;
902 903 904 905 906 907 908 909

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	*/
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
910 911 912 913 914

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

915 916
	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
917

918 919 920 921
		len = min_t(size_t, PAGE_SIZE - offset, left);
		if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
			return -EINVAL;
		offset = 0;
922 923 924 925 926
	}

	iov_iter_advance(iter, size);
	return 0;
}
927 928

/**
929
 * bio_iov_iter_get_pages - add user or kernel pages to a bio
930
 * @bio: bio to add pages to
931 932 933 934 935
 * @iter: iov iterator describing the region to be added
 *
 * This takes either an iterator pointing to user memory, or one pointing to
 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
 * map them into the kernel. On IO completion, the caller should put those
J
Jens Axboe 已提交
936 937 938 939 940 941
 * pages. If we're adding kernel pages, and the caller told us it's safe to
 * do so, we just have to add the pages to the bio directly. We don't grab an
 * extra reference to those pages (the user should already have that), and we
 * don't put the page on IO completion. The caller needs to check if the bio is
 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
 * released.
942 943
 *
 * The function tries, but does not guarantee, to pin as many pages as
944 945 946
 * fit into the bio, or are requested in *iter, whatever is smaller. If
 * MM encounters an error pinning the requested pages, it stops. Error
 * is returned only if 0 pages could be pinned.
947 948 949
 */
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
{
950
	const bool is_bvec = iov_iter_is_bvec(iter);
951 952 953 954
	int ret;

	if (WARN_ON_ONCE(bio->bi_vcnt))
		return -EINVAL;
955 956

	do {
957 958 959 960
		if (is_bvec)
			ret = __bio_iov_bvec_add_pages(bio, iter);
		else
			ret = __bio_iov_iter_get_pages(bio, iter);
961
	} while (!ret && iov_iter_count(iter) && !bio_full(bio));
962

963 964
	if (iov_iter_bvec_no_ref(iter))
		bio_set_flag(bio, BIO_NO_PAGE_REF);
965
	else if (is_bvec)
966 967
		bio_get_pages(bio);

968
	return bio->bi_vcnt ? 0 : ret;
969
}
970

971
static void submit_bio_wait_endio(struct bio *bio)
972
{
973
	complete(bio->bi_private);
974 975 976 977 978 979 980 981
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
982 983 984 985
 *
 * WARNING: Unlike to how submit_bio() is usually used, this function does not
 * result in bio reference to be consumed. The caller must drop the reference
 * on his own.
986
 */
987
int submit_bio_wait(struct bio *bio)
988
{
989
	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
990

991
	bio->bi_private = &done;
992
	bio->bi_end_io = submit_bio_wait_endio;
J
Jens Axboe 已提交
993
	bio->bi_opf |= REQ_SYNC;
994
	submit_bio(bio);
995
	wait_for_completion_io(&done);
996

997
	return blk_status_to_errno(bio->bi_status);
998 999 1000
}
EXPORT_SYMBOL(submit_bio_wait);

K
Kent Overstreet 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

K
Kent Overstreet 已提交
1017
	bio_advance_iter(bio, &bio->bi_iter, bytes);
K
Kent Overstreet 已提交
1018 1019 1020
}
EXPORT_SYMBOL(bio_advance);

1021 1022
void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
			struct bio *src, struct bvec_iter *src_iter)
K
Kent Overstreet 已提交
1023
{
1024
	struct bio_vec src_bv, dst_bv;
K
Kent Overstreet 已提交
1025
	void *src_p, *dst_p;
1026
	unsigned bytes;
K
Kent Overstreet 已提交
1027

1028 1029 1030
	while (src_iter->bi_size && dst_iter->bi_size) {
		src_bv = bio_iter_iovec(src, *src_iter);
		dst_bv = bio_iter_iovec(dst, *dst_iter);
1031 1032

		bytes = min(src_bv.bv_len, dst_bv.bv_len);
K
Kent Overstreet 已提交
1033

1034 1035
		src_p = kmap_atomic(src_bv.bv_page);
		dst_p = kmap_atomic(dst_bv.bv_page);
K
Kent Overstreet 已提交
1036

1037 1038
		memcpy(dst_p + dst_bv.bv_offset,
		       src_p + src_bv.bv_offset,
K
Kent Overstreet 已提交
1039 1040 1041 1042 1043
		       bytes);

		kunmap_atomic(dst_p);
		kunmap_atomic(src_p);

1044 1045
		flush_dcache_page(dst_bv.bv_page);

1046 1047
		bio_advance_iter(src, src_iter, bytes);
		bio_advance_iter(dst, dst_iter, bytes);
K
Kent Overstreet 已提交
1048 1049
	}
}
1050 1051 1052
EXPORT_SYMBOL(bio_copy_data_iter);

/**
1053 1054 1055
 * bio_copy_data - copy contents of data buffers from one bio to another
 * @src: source bio
 * @dst: destination bio
1056 1057 1058 1059 1060 1061
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
1062 1063 1064 1065
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1066
}
K
Kent Overstreet 已提交
1067 1068
EXPORT_SYMBOL(bio_copy_data);

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
/**
 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
 * another
 * @src: source bio list
 * @dst: destination bio list
 *
 * Stops when it reaches the end of either the @src list or @dst list - that is,
 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
 * bios).
 */
void bio_list_copy_data(struct bio *dst, struct bio *src)
{
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	while (1) {
		if (!src_iter.bi_size) {
			src = src->bi_next;
			if (!src)
				break;

			src_iter = src->bi_iter;
		}

		if (!dst_iter.bi_size) {
			dst = dst->bi_next;
			if (!dst)
				break;

			dst_iter = dst->bi_iter;
		}

		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
	}
}
EXPORT_SYMBOL(bio_list_copy_data);

L
Linus Torvalds 已提交
1106
struct bio_map_data {
1107
	int is_our_pages;
1108 1109
	struct iov_iter iter;
	struct iovec iov[];
L
Linus Torvalds 已提交
1110 1111
};

1112
static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1113
					       gfp_t gfp_mask)
L
Linus Torvalds 已提交
1114
{
1115 1116
	struct bio_map_data *bmd;
	if (data->nr_segs > UIO_MAXIOV)
1117
		return NULL;
L
Linus Torvalds 已提交
1118

1119
	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1120 1121 1122 1123 1124 1125
	if (!bmd)
		return NULL;
	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
	bmd->iter = *data;
	bmd->iter.iov = bmd->iov;
	return bmd;
L
Linus Torvalds 已提交
1126 1127
}

1128 1129 1130 1131 1132 1133 1134 1135
/**
 * bio_copy_from_iter - copy all pages from iov_iter to bio
 * @bio: The &struct bio which describes the I/O as destination
 * @iter: iov_iter as source
 *
 * Copy all pages from iov_iter to bio.
 * Returns 0 on success, or error on failure.
 */
1136
static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1137 1138
{
	struct bio_vec *bvec;
1139
	struct bvec_iter_all iter_all;
1140

1141
	bio_for_each_segment_all(bvec, bio, iter_all) {
1142
		ssize_t ret;
1143

1144 1145 1146
		ret = copy_page_from_iter(bvec->bv_page,
					  bvec->bv_offset,
					  bvec->bv_len,
1147
					  iter);
1148

1149
		if (!iov_iter_count(iter))
1150 1151 1152 1153
			break;

		if (ret < bvec->bv_len)
			return -EFAULT;
1154 1155
	}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	return 0;
}

/**
 * bio_copy_to_iter - copy all pages from bio to iov_iter
 * @bio: The &struct bio which describes the I/O as source
 * @iter: iov_iter as destination
 *
 * Copy all pages from bio to iov_iter.
 * Returns 0 on success, or error on failure.
 */
static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
{
	struct bio_vec *bvec;
1170
	struct bvec_iter_all iter_all;
1171

1172
	bio_for_each_segment_all(bvec, bio, iter_all) {
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		ssize_t ret;

		ret = copy_page_to_iter(bvec->bv_page,
					bvec->bv_offset,
					bvec->bv_len,
					&iter);

		if (!iov_iter_count(&iter))
			break;

		if (ret < bvec->bv_len)
			return -EFAULT;
	}

	return 0;
1188 1189
}

1190
void bio_free_pages(struct bio *bio)
1191 1192
{
	struct bio_vec *bvec;
1193
	struct bvec_iter_all iter_all;
1194

1195
	bio_for_each_segment_all(bvec, bio, iter_all)
1196 1197
		__free_page(bvec->bv_page);
}
1198
EXPORT_SYMBOL(bio_free_pages);
1199

L
Linus Torvalds 已提交
1200 1201 1202 1203
/**
 *	bio_uncopy_user	-	finish previously mapped bio
 *	@bio: bio being terminated
 *
1204
 *	Free pages allocated from bio_copy_user_iov() and write back data
L
Linus Torvalds 已提交
1205 1206 1207 1208 1209
 *	to user space in case of a read.
 */
int bio_uncopy_user(struct bio *bio)
{
	struct bio_map_data *bmd = bio->bi_private;
1210
	int ret = 0;
L
Linus Torvalds 已提交
1211

1212 1213 1214
	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
		/*
		 * if we're in a workqueue, the request is orphaned, so
1215 1216
		 * don't copy into a random user address space, just free
		 * and return -EINTR so user space doesn't expect any data.
1217
		 */
1218 1219 1220
		if (!current->mm)
			ret = -EINTR;
		else if (bio_data_dir(bio) == READ)
1221
			ret = bio_copy_to_iter(bio, bmd->iter);
1222 1223
		if (bmd->is_our_pages)
			bio_free_pages(bio);
1224
	}
1225
	kfree(bmd);
L
Linus Torvalds 已提交
1226 1227 1228 1229 1230
	bio_put(bio);
	return ret;
}

/**
1231
 *	bio_copy_user_iov	-	copy user data to bio
1232 1233 1234 1235
 *	@q:		destination block queue
 *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
 *	@iter:		iovec iterator
 *	@gfp_mask:	memory allocation flags
L
Linus Torvalds 已提交
1236 1237 1238 1239 1240
 *
 *	Prepares and returns a bio for indirect user io, bouncing data
 *	to/from kernel pages as necessary. Must be paired with
 *	call bio_uncopy_user() on io completion.
 */
1241 1242
struct bio *bio_copy_user_iov(struct request_queue *q,
			      struct rq_map_data *map_data,
1243
			      struct iov_iter *iter,
1244
			      gfp_t gfp_mask)
L
Linus Torvalds 已提交
1245 1246 1247 1248
{
	struct bio_map_data *bmd;
	struct page *page;
	struct bio *bio;
1249 1250
	int i = 0, ret;
	int nr_pages;
1251
	unsigned int len = iter->count;
G
Geliang Tang 已提交
1252
	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
L
Linus Torvalds 已提交
1253

1254
	bmd = bio_alloc_map_data(iter, gfp_mask);
L
Linus Torvalds 已提交
1255 1256 1257
	if (!bmd)
		return ERR_PTR(-ENOMEM);

1258 1259 1260 1261 1262 1263 1264
	/*
	 * We need to do a deep copy of the iov_iter including the iovecs.
	 * The caller provided iov might point to an on-stack or otherwise
	 * shortlived one.
	 */
	bmd->is_our_pages = map_data ? 0 : 1;

1265 1266 1267
	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
	if (nr_pages > BIO_MAX_PAGES)
		nr_pages = BIO_MAX_PAGES;
1268

L
Linus Torvalds 已提交
1269
	ret = -ENOMEM;
1270
	bio = bio_kmalloc(gfp_mask, nr_pages);
L
Linus Torvalds 已提交
1271 1272 1273 1274
	if (!bio)
		goto out_bmd;

	ret = 0;
1275 1276

	if (map_data) {
1277
		nr_pages = 1 << map_data->page_order;
1278 1279
		i = map_data->offset / PAGE_SIZE;
	}
L
Linus Torvalds 已提交
1280
	while (len) {
1281
		unsigned int bytes = PAGE_SIZE;
L
Linus Torvalds 已提交
1282

1283 1284
		bytes -= offset;

L
Linus Torvalds 已提交
1285 1286 1287
		if (bytes > len)
			bytes = len;

1288
		if (map_data) {
1289
			if (i == map_data->nr_entries * nr_pages) {
1290 1291 1292
				ret = -ENOMEM;
				break;
			}
1293 1294 1295 1296 1297 1298

			page = map_data->pages[i / nr_pages];
			page += (i % nr_pages);

			i++;
		} else {
1299
			page = alloc_page(q->bounce_gfp | gfp_mask);
1300 1301 1302 1303
			if (!page) {
				ret = -ENOMEM;
				break;
			}
L
Linus Torvalds 已提交
1304 1305
		}

1306 1307 1308
		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
			if (!map_data)
				__free_page(page);
L
Linus Torvalds 已提交
1309
			break;
1310
		}
L
Linus Torvalds 已提交
1311 1312

		len -= bytes;
1313
		offset = 0;
L
Linus Torvalds 已提交
1314 1315 1316 1317 1318
	}

	if (ret)
		goto cleanup;

1319 1320 1321
	if (map_data)
		map_data->offset += bio->bi_iter.bi_size;

L
Linus Torvalds 已提交
1322 1323 1324
	/*
	 * success
	 */
D
David Howells 已提交
1325
	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1326
	    (map_data && map_data->from_user)) {
1327
		ret = bio_copy_from_iter(bio, iter);
1328 1329
		if (ret)
			goto cleanup;
1330
	} else {
K
Keith Busch 已提交
1331 1332
		if (bmd->is_our_pages)
			zero_fill_bio(bio);
1333
		iov_iter_advance(iter, bio->bi_iter.bi_size);
L
Linus Torvalds 已提交
1334 1335
	}

1336
	bio->bi_private = bmd;
1337 1338
	if (map_data && map_data->null_mapped)
		bio_set_flag(bio, BIO_NULL_MAPPED);
L
Linus Torvalds 已提交
1339 1340
	return bio;
cleanup:
1341
	if (!map_data)
1342
		bio_free_pages(bio);
L
Linus Torvalds 已提交
1343 1344
	bio_put(bio);
out_bmd:
1345
	kfree(bmd);
L
Linus Torvalds 已提交
1346 1347 1348
	return ERR_PTR(ret);
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
/**
 *	bio_map_user_iov - map user iovec into bio
 *	@q:		the struct request_queue for the bio
 *	@iter:		iovec iterator
 *	@gfp_mask:	memory allocation flags
 *
 *	Map the user space address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_map_user_iov(struct request_queue *q,
1359
			     struct iov_iter *iter,
1360
			     gfp_t gfp_mask)
L
Linus Torvalds 已提交
1361
{
1362
	int j;
L
Linus Torvalds 已提交
1363
	struct bio *bio;
1364
	int ret;
A
Al Viro 已提交
1365
	struct bio_vec *bvec;
1366
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1367

1368
	if (!iov_iter_count(iter))
L
Linus Torvalds 已提交
1369 1370
		return ERR_PTR(-EINVAL);

1371
	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
L
Linus Torvalds 已提交
1372 1373 1374
	if (!bio)
		return ERR_PTR(-ENOMEM);

1375
	while (iov_iter_count(iter)) {
1376
		struct page **pages;
1377 1378 1379
		ssize_t bytes;
		size_t offs, added = 0;
		int npages;
L
Linus Torvalds 已提交
1380

1381
		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1382 1383
		if (unlikely(bytes <= 0)) {
			ret = bytes ? bytes : -EFAULT;
1384
			goto out_unmap;
1385
		}
1386

1387
		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1388

1389 1390 1391 1392 1393 1394 1395
		if (unlikely(offs & queue_dma_alignment(q))) {
			ret = -EINVAL;
			j = 0;
		} else {
			for (j = 0; j < npages; j++) {
				struct page *page = pages[j];
				unsigned int n = PAGE_SIZE - offs;
1396

1397 1398
				if (n > bytes)
					n = bytes;
1399

1400 1401
				if (!__bio_add_pc_page(q, bio, page, n, offs,
							true))
1402
					break;
L
Linus Torvalds 已提交
1403

1404 1405 1406 1407
				added += n;
				bytes -= n;
				offs = 0;
			}
1408
			iov_iter_advance(iter, added);
1409
		}
L
Linus Torvalds 已提交
1410
		/*
1411
		 * release the pages we didn't map into the bio, if any
L
Linus Torvalds 已提交
1412
		 */
1413
		while (j < npages)
1414
			put_page(pages[j++]);
1415
		kvfree(pages);
1416 1417 1418
		/* couldn't stuff something into bio? */
		if (bytes)
			break;
L
Linus Torvalds 已提交
1419 1420
	}

1421
	bio_set_flag(bio, BIO_USER_MAPPED);
1422 1423

	/*
1424
	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1425 1426 1427 1428 1429
	 * it would normally disappear when its bi_end_io is run.
	 * however, we need it for the unmap, so grab an extra
	 * reference to it
	 */
	bio_get(bio);
L
Linus Torvalds 已提交
1430
	return bio;
1431 1432

 out_unmap:
1433
	bio_for_each_segment_all(bvec, bio, iter_all) {
A
Al Viro 已提交
1434
		put_page(bvec->bv_page);
1435
	}
L
Linus Torvalds 已提交
1436 1437 1438 1439 1440 1441 1442 1443
	bio_put(bio);
	return ERR_PTR(ret);
}

/**
 *	bio_unmap_user	-	unmap a bio
 *	@bio:		the bio being unmapped
 *
1444 1445
 *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
 *	process context.
L
Linus Torvalds 已提交
1446 1447 1448 1449 1450
 *
 *	bio_unmap_user() may sleep.
 */
void bio_unmap_user(struct bio *bio)
{
1451 1452
	bio_release_pages(bio, bio_data_dir(bio) == READ);
	bio_put(bio);
L
Linus Torvalds 已提交
1453 1454 1455
	bio_put(bio);
}

1456
static void bio_map_kern_endio(struct bio *bio)
1457 1458 1459 1460
{
	bio_put(bio);
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
/**
 *	bio_map_kern	-	map kernel address into bio
 *	@q: the struct request_queue for the bio
 *	@data: pointer to buffer to map
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio allocation
 *
 *	Map the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
			 gfp_t gfp_mask)
M
Mike Christie 已提交
1473 1474 1475 1476 1477 1478 1479 1480
{
	unsigned long kaddr = (unsigned long)data;
	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	unsigned long start = kaddr >> PAGE_SHIFT;
	const int nr_pages = end - start;
	int offset, i;
	struct bio *bio;

1481
	bio = bio_kmalloc(gfp_mask, nr_pages);
M
Mike Christie 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	if (!bio)
		return ERR_PTR(-ENOMEM);

	offset = offset_in_page(kaddr);
	for (i = 0; i < nr_pages; i++) {
		unsigned int bytes = PAGE_SIZE - offset;

		if (len <= 0)
			break;

		if (bytes > len)
			bytes = len;

1495
		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1496 1497 1498 1499 1500
				    offset) < bytes) {
			/* we don't support partial mappings */
			bio_put(bio);
			return ERR_PTR(-EINVAL);
		}
M
Mike Christie 已提交
1501 1502 1503 1504 1505 1506

		data += bytes;
		len -= bytes;
		offset = 0;
	}

1507
	bio->bi_end_io = bio_map_kern_endio;
M
Mike Christie 已提交
1508 1509
	return bio;
}
1510
EXPORT_SYMBOL(bio_map_kern);
M
Mike Christie 已提交
1511

1512
static void bio_copy_kern_endio(struct bio *bio)
1513
{
1514 1515 1516 1517
	bio_free_pages(bio);
	bio_put(bio);
}

1518
static void bio_copy_kern_endio_read(struct bio *bio)
1519
{
C
Christoph Hellwig 已提交
1520
	char *p = bio->bi_private;
1521
	struct bio_vec *bvec;
1522
	struct bvec_iter_all iter_all;
1523

1524
	bio_for_each_segment_all(bvec, bio, iter_all) {
1525
		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1526
		p += bvec->bv_len;
1527 1528
	}

1529
	bio_copy_kern_endio(bio);
1530 1531 1532 1533 1534 1535 1536 1537
}

/**
 *	bio_copy_kern	-	copy kernel address into bio
 *	@q: the struct request_queue for the bio
 *	@data: pointer to buffer to copy
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio and page allocation
1538
 *	@reading: data direction is READ
1539 1540 1541 1542 1543 1544 1545
 *
 *	copy the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
			  gfp_t gfp_mask, int reading)
{
C
Christoph Hellwig 已提交
1546 1547 1548 1549 1550
	unsigned long kaddr = (unsigned long)data;
	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	unsigned long start = kaddr >> PAGE_SHIFT;
	struct bio *bio;
	void *p = data;
1551
	int nr_pages = 0;
1552

C
Christoph Hellwig 已提交
1553 1554 1555 1556 1557
	/*
	 * Overflow, abort
	 */
	if (end < start)
		return ERR_PTR(-EINVAL);
1558

C
Christoph Hellwig 已提交
1559 1560 1561 1562
	nr_pages = end - start;
	bio = bio_kmalloc(gfp_mask, nr_pages);
	if (!bio)
		return ERR_PTR(-ENOMEM);
1563

C
Christoph Hellwig 已提交
1564 1565 1566
	while (len) {
		struct page *page;
		unsigned int bytes = PAGE_SIZE;
1567

C
Christoph Hellwig 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		if (bytes > len)
			bytes = len;

		page = alloc_page(q->bounce_gfp | gfp_mask);
		if (!page)
			goto cleanup;

		if (!reading)
			memcpy(page_address(page), p, bytes);

		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
			break;

		len -= bytes;
		p += bytes;
1583 1584
	}

1585 1586 1587 1588 1589 1590
	if (reading) {
		bio->bi_end_io = bio_copy_kern_endio_read;
		bio->bi_private = data;
	} else {
		bio->bi_end_io = bio_copy_kern_endio;
	}
1591

1592
	return bio;
C
Christoph Hellwig 已提交
1593 1594

cleanup:
1595
	bio_free_pages(bio);
C
Christoph Hellwig 已提交
1596 1597
	bio_put(bio);
	return ERR_PTR(-ENOMEM);
1598 1599
}

L
Linus Torvalds 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1619
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
1631
	struct bio_vec *bvec;
1632
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1633

1634
	bio_for_each_segment_all(bvec, bio, iter_all) {
1635 1636
		if (!PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
L
Linus Torvalds 已提交
1637 1638 1639 1640 1641 1642 1643
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
1644
 * the BIO and re-dirty the pages in process context.
L
Linus Torvalds 已提交
1645 1646
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1647 1648
 * here on.  It will run one put_page() against each page and will run one
 * bio_put() against the BIO.
L
Linus Torvalds 已提交
1649 1650
 */

1651
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1652

1653
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658 1659
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1660
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1661
{
1662
	struct bio *bio, *next;
L
Linus Torvalds 已提交
1663

1664 1665
	spin_lock_irq(&bio_dirty_lock);
	next = bio_dirty_list;
L
Linus Torvalds 已提交
1666
	bio_dirty_list = NULL;
1667
	spin_unlock_irq(&bio_dirty_lock);
L
Linus Torvalds 已提交
1668

1669 1670
	while ((bio = next) != NULL) {
		next = bio->bi_private;
L
Linus Torvalds 已提交
1671

1672
		bio_release_pages(bio, true);
L
Linus Torvalds 已提交
1673 1674 1675 1676 1677 1678
		bio_put(bio);
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
1679
	struct bio_vec *bvec;
1680
	unsigned long flags;
1681
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1682

1683
	bio_for_each_segment_all(bvec, bio, iter_all) {
1684 1685
		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
			goto defer;
L
Linus Torvalds 已提交
1686 1687
	}

1688
	bio_release_pages(bio, false);
1689 1690 1691 1692 1693 1694 1695 1696
	bio_put(bio);
	return;
defer:
	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio->bi_private = bio_dirty_list;
	bio_dirty_list = bio;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);
	schedule_work(&bio_dirty_work);
L
Linus Torvalds 已提交
1697 1698
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
void update_io_ticks(struct hd_struct *part, unsigned long now)
{
	unsigned long stamp;
again:
	stamp = READ_ONCE(part->stamp);
	if (unlikely(stamp != now)) {
		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
			__part_stat_add(part, io_ticks, 1);
		}
	}
	if (part->partno) {
		part = &part_to_disk(part)->part0;
		goto again;
	}
}
L
Linus Torvalds 已提交
1714

1715
void generic_start_io_acct(struct request_queue *q, int op,
1716
			   unsigned long sectors, struct hd_struct *part)
1717
{
1718
	const int sgrp = op_stat_group(op);
1719

1720 1721
	part_stat_lock();

1722
	update_io_ticks(part, jiffies);
1723 1724
	part_stat_inc(part, ios[sgrp]);
	part_stat_add(part, sectors[sgrp], sectors);
1725
	part_inc_in_flight(q, part, op_is_write(op));
1726 1727 1728 1729 1730

	part_stat_unlock();
}
EXPORT_SYMBOL(generic_start_io_acct);

1731
void generic_end_io_acct(struct request_queue *q, int req_op,
1732
			 struct hd_struct *part, unsigned long start_time)
1733
{
1734 1735
	unsigned long now = jiffies;
	unsigned long duration = now - start_time;
1736
	const int sgrp = op_stat_group(req_op);
1737

1738 1739
	part_stat_lock();

1740
	update_io_ticks(part, now);
1741
	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1742
	part_stat_add(part, time_in_queue, duration);
1743
	part_dec_in_flight(q, part, op_is_write(req_op));
1744 1745 1746 1747 1748

	part_stat_unlock();
}
EXPORT_SYMBOL(generic_end_io_acct);

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
static inline bool bio_remaining_done(struct bio *bio)
{
	/*
	 * If we're not chaining, then ->__bi_remaining is always 1 and
	 * we always end io on the first invocation.
	 */
	if (!bio_flagged(bio, BIO_CHAIN))
		return true;

	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);

1760
	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1761
		bio_clear_flag(bio, BIO_CHAIN);
1762
		return true;
1763
	}
1764 1765 1766 1767

	return false;
}

L
Linus Torvalds 已提交
1768 1769 1770 1771 1772
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 *
 * Description:
1773 1774 1775
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
 *   bio unless they own it and thus know that it has an end_io function.
N
NeilBrown 已提交
1776 1777 1778 1779 1780
 *
 *   bio_endio() can be called several times on a bio that has been chained
 *   using bio_chain().  The ->bi_end_io() function will only be called the
 *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
 *   generated if BIO_TRACE_COMPLETION is set.
L
Linus Torvalds 已提交
1781
 **/
1782
void bio_endio(struct bio *bio)
L
Linus Torvalds 已提交
1783
{
C
Christoph Hellwig 已提交
1784
again:
1785
	if (!bio_remaining_done(bio))
C
Christoph Hellwig 已提交
1786
		return;
1787 1788
	if (!bio_integrity_endio(bio))
		return;
L
Linus Torvalds 已提交
1789

J
Josef Bacik 已提交
1790 1791 1792
	if (bio->bi_disk)
		rq_qos_done_bio(bio->bi_disk->queue, bio);

C
Christoph Hellwig 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	/*
	 * Need to have a real endio function for chained bios, otherwise
	 * various corner cases will break (like stacking block devices that
	 * save/restore bi_end_io) - however, we want to avoid unbounded
	 * recursion and blowing the stack. Tail call optimization would
	 * handle this, but compiling with frame pointers also disables
	 * gcc's sibling call optimization.
	 */
	if (bio->bi_end_io == bio_chain_endio) {
		bio = __bio_chain_endio(bio);
		goto again;
K
Kent Overstreet 已提交
1804
	}
C
Christoph Hellwig 已提交
1805

1806 1807
	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
		trace_block_bio_complete(bio->bi_disk->queue, bio,
1808
					 blk_status_to_errno(bio->bi_status));
N
NeilBrown 已提交
1809 1810 1811
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
	}

1812
	blk_throtl_bio_endio(bio);
S
Shaohua Li 已提交
1813 1814
	/* release cgroup info */
	bio_uninit(bio);
C
Christoph Hellwig 已提交
1815 1816
	if (bio->bi_end_io)
		bio->bi_end_io(bio);
L
Linus Torvalds 已提交
1817
}
1818
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1819

K
Kent Overstreet 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
1830 1831 1832
 * Unless this is a discard request the newly allocated bio will point
 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
 * @bio is not freed before the split.
K
Kent Overstreet 已提交
1833 1834 1835 1836
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
1837
	struct bio *split;
K
Kent Overstreet 已提交
1838 1839 1840 1841

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

1842
	split = bio_clone_fast(bio, gfp, bs);
K
Kent Overstreet 已提交
1843 1844 1845 1846 1847 1848
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
1849
		bio_integrity_trim(split);
K
Kent Overstreet 已提交
1850 1851 1852

	bio_advance(bio, split->bi_iter.bi_size);

N
NeilBrown 已提交
1853
	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1854
		bio_set_flag(split, BIO_TRACE_COMPLETION);
N
NeilBrown 已提交
1855

K
Kent Overstreet 已提交
1856 1857 1858 1859
	return split;
}
EXPORT_SYMBOL(bio_split);

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
 */
void bio_trim(struct bio *bio, int offset, int size)
{
	/* 'bio' is a cloned bio which we need to trim to match
	 * the given offset and size.
	 */

	size <<= 9;
1873
	if (offset == 0 && size == bio->bi_iter.bi_size)
1874 1875 1876
		return;

	bio_advance(bio, offset << 9);
1877
	bio->bi_iter.bi_size = size;
1878 1879

	if (bio_integrity(bio))
1880
		bio_integrity_trim(bio);
1881

1882 1883 1884
}
EXPORT_SYMBOL_GPL(bio_trim);

L
Linus Torvalds 已提交
1885 1886 1887 1888
/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1889
int biovec_init_pool(mempool_t *pool, int pool_entries)
L
Linus Torvalds 已提交
1890
{
1891
	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
L
Linus Torvalds 已提交
1892

1893
	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
L
Linus Torvalds 已提交
1894 1895
}

1896 1897 1898 1899 1900 1901 1902
/*
 * bioset_exit - exit a bioset initialized with bioset_init()
 *
 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
 * kzalloc()).
 */
void bioset_exit(struct bio_set *bs)
L
Linus Torvalds 已提交
1903
{
1904 1905
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);
1906
	bs->rescue_workqueue = NULL;
1907

1908 1909
	mempool_exit(&bs->bio_pool);
	mempool_exit(&bs->bvec_pool);
1910

1911
	bioset_integrity_free(bs);
1912 1913 1914 1915 1916
	if (bs->bio_slab)
		bio_put_slab(bs);
	bs->bio_slab = NULL;
}
EXPORT_SYMBOL(bioset_exit);
L
Linus Torvalds 已提交
1917

1918 1919
/**
 * bioset_init - Initialize a bio_set
K
Kent Overstreet 已提交
1920
 * @bs:		pool to initialize
1921 1922 1923 1924 1925
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
 *              and %BIOSET_NEED_RESCUER
 *
K
Kent Overstreet 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
 *    dispatch queued requests when the mempool runs out of space.
 *
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
 */
int bioset_init(struct bio_set *bs,
		unsigned int pool_size,
		unsigned int front_pad,
		int flags)
{
	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);

	bs->front_pad = front_pad;

	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
	if (!bs->bio_slab)
		return -ENOMEM;

	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
		goto bad;

	if ((flags & BIOSET_NEED_BVECS) &&
	    biovec_init_pool(&bs->bvec_pool, pool_size))
		goto bad;

	if (!(flags & BIOSET_NEED_RESCUER))
		return 0;

	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
	if (!bs->rescue_workqueue)
		goto bad;

	return 0;
bad:
	bioset_exit(bs);
	return -ENOMEM;
}
EXPORT_SYMBOL(bioset_init);

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
/*
 * Initialize and setup a new bio_set, based on the settings from
 * another bio_set.
 */
int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
{
	int flags;

	flags = 0;
	if (src->bvec_pool.min_nr)
		flags |= BIOSET_NEED_BVECS;
	if (src->rescue_workqueue)
		flags |= BIOSET_NEED_RESCUER;

	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
}
EXPORT_SYMBOL(bioset_init_from_src);

1995
#ifdef CONFIG_BLK_CGROUP
1996

1997
/**
1998
 * bio_disassociate_blkg - puts back the blkg reference if associated
1999 2000
 * @bio: target bio
 *
2001
 * Helper to disassociate the blkg from @bio if a blkg is associated.
2002
 */
2003
void bio_disassociate_blkg(struct bio *bio)
2004
{
2005 2006 2007 2008
	if (bio->bi_blkg) {
		blkg_put(bio->bi_blkg);
		bio->bi_blkg = NULL;
	}
2009
}
2010
EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2011

2012
/**
2013
 * __bio_associate_blkg - associate a bio with the a blkg
2014
 * @bio: target bio
D
Dennis Zhou 已提交
2015 2016
 * @blkg: the blkg to associate
 *
2017 2018 2019 2020 2021
 * This tries to associate @bio with the specified @blkg.  Association failure
 * is handled by walking up the blkg tree.  Therefore, the blkg associated can
 * be anything between @blkg and the root_blkg.  This situation only happens
 * when a cgroup is dying and then the remaining bios will spill to the closest
 * alive blkg.
2022
 *
2023 2024
 * A reference will be taken on the @blkg and will be released when @bio is
 * freed.
2025
 */
2026
static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2027
{
2028 2029
	bio_disassociate_blkg(bio);

2030
	bio->bi_blkg = blkg_tryget_closest(blkg);
2031 2032
}

2033
/**
2034
 * bio_associate_blkg_from_css - associate a bio with a specified css
2035
 * @bio: target bio
2036
 * @css: target css
2037
 *
2038
 * Associate @bio with the blkg found by combining the css's blkg and the
2039 2040
 * request_queue of the @bio.  This falls back to the queue's root_blkg if
 * the association fails with the css.
2041
 */
2042 2043
void bio_associate_blkg_from_css(struct bio *bio,
				 struct cgroup_subsys_state *css)
2044
{
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	struct request_queue *q = bio->bi_disk->queue;
	struct blkcg_gq *blkg;

	rcu_read_lock();

	if (!css || !css->parent)
		blkg = q->root_blkg;
	else
		blkg = blkg_lookup_create(css_to_blkcg(css), q);

	__bio_associate_blkg(bio, blkg);

	rcu_read_unlock();
2058
}
2059
EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2060

2061
#ifdef CONFIG_MEMCG
2062
/**
2063
 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2064
 * @bio: target bio
2065 2066 2067
 * @page: the page to lookup the blkcg from
 *
 * Associate @bio with the blkg from @page's owning memcg and the respective
2068 2069
 * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
 * root_blkg.
2070
 */
2071
void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2072
{
2073 2074 2075 2076 2077
	struct cgroup_subsys_state *css;

	if (!page->mem_cgroup)
		return;

2078 2079 2080 2081 2082 2083
	rcu_read_lock();

	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
	bio_associate_blkg_from_css(bio, css);

	rcu_read_unlock();
2084 2085 2086
}
#endif /* CONFIG_MEMCG */

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
/**
 * bio_associate_blkg - associate a bio with a blkg
 * @bio: target bio
 *
 * Associate @bio with the blkg found from the bio's css and request_queue.
 * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
 * already associated, the css is reused and association redone as the
 * request_queue may have changed.
 */
void bio_associate_blkg(struct bio *bio)
{
2098
	struct cgroup_subsys_state *css;
2099 2100 2101

	rcu_read_lock();

2102
	if (bio->bi_blkg)
2103
		css = &bio_blkcg(bio)->css;
2104
	else
2105
		css = blkcg_css();
2106

2107
	bio_associate_blkg_from_css(bio, css);
2108 2109

	rcu_read_unlock();
2110
}
2111
EXPORT_SYMBOL_GPL(bio_associate_blkg);
2112

2113
/**
2114
 * bio_clone_blkg_association - clone blkg association from src to dst bio
2115 2116 2117
 * @dst: destination bio
 * @src: source bio
 */
2118
void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2119
{
2120 2121
	rcu_read_lock();

2122
	if (src->bi_blkg)
2123
		__bio_associate_blkg(dst, src->bi_blkg);
2124 2125

	rcu_read_unlock();
2126
}
2127
EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2128 2129
#endif /* CONFIG_BLK_CGROUP */

L
Linus Torvalds 已提交
2130 2131 2132 2133
static void __init biovec_init_slabs(void)
{
	int i;

2134
	for (i = 0; i < BVEC_POOL_NR; i++) {
L
Linus Torvalds 已提交
2135 2136 2137
		int size;
		struct biovec_slab *bvs = bvec_slabs + i;

2138 2139 2140 2141 2142
		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
			bvs->slab = NULL;
			continue;
		}

L
Linus Torvalds 已提交
2143 2144
		size = bvs->nr_vecs * sizeof(struct bio_vec);
		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2145
                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
2146 2147 2148 2149 2150
	}
}

static int __init init_bio(void)
{
2151 2152
	bio_slab_max = 2;
	bio_slab_nr = 0;
K
Kees Cook 已提交
2153 2154
	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
			    GFP_KERNEL);
2155 2156 2157

	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);

2158 2159
	if (!bio_slabs)
		panic("bio: can't allocate bios\n");
L
Linus Torvalds 已提交
2160

2161
	bio_integrity_init();
L
Linus Torvalds 已提交
2162 2163
	biovec_init_slabs();

2164
	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
L
Linus Torvalds 已提交
2165 2166
		panic("bio: can't allocate bios\n");

2167
	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2168 2169
		panic("bio: can't create integrity pool\n");

L
Linus Torvalds 已提交
2170 2171 2172
	return 0;
}
subsys_initcall(init_bio);