zoned.c 37.2 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0

3
#include <linux/bitops.h>
4 5
#include <linux/slab.h>
#include <linux/blkdev.h>
6
#include <linux/sched/mm.h>
7 8 9 10
#include "ctree.h"
#include "volumes.h"
#include "zoned.h"
#include "rcu-string.h"
11
#include "disk-io.h"
12
#include "block-group.h"
13
#include "transaction.h"
14
#include "dev-replace.h"
15
#include "space-info.h"
16 17 18

/* Maximum number of zones to report per blkdev_report_zones() call */
#define BTRFS_REPORT_NR_ZONES   4096
19 20 21 22
/* Invalid allocation pointer value for missing devices */
#define WP_MISSING_DEV ((u64)-1)
/* Pseudo write pointer value for conventional zone */
#define WP_CONVENTIONAL ((u64)-2)
23

24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Location of the first zone of superblock logging zone pairs.
 *
 * - primary superblock:    0B (zone 0)
 * - first copy:          512G (zone starting at that offset)
 * - second copy:           4T (zone starting at that offset)
 */
#define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
#define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
#define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)

#define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
#define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)

38 39 40
/* Number of superblock log zones */
#define BTRFS_NR_SB_LOG_ZONES 2

41 42 43 44 45 46 47
/*
 * Maximum supported zone size. Currently, SMR disks have a zone size of
 * 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. We do not
 * expect the zone size to become larger than 8GiB in the near future.
 */
#define BTRFS_MAX_ZONE_SIZE		SZ_8G

48 49 50 51 52 53 54 55 56
static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
{
	struct blk_zone *zones = data;

	memcpy(&zones[idx], zone, sizeof(*zone));

	return 0;
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
			    u64 *wp_ret)
{
	bool empty[BTRFS_NR_SB_LOG_ZONES];
	bool full[BTRFS_NR_SB_LOG_ZONES];
	sector_t sector;

	ASSERT(zones[0].type != BLK_ZONE_TYPE_CONVENTIONAL &&
	       zones[1].type != BLK_ZONE_TYPE_CONVENTIONAL);

	empty[0] = (zones[0].cond == BLK_ZONE_COND_EMPTY);
	empty[1] = (zones[1].cond == BLK_ZONE_COND_EMPTY);
	full[0] = (zones[0].cond == BLK_ZONE_COND_FULL);
	full[1] = (zones[1].cond == BLK_ZONE_COND_FULL);

	/*
	 * Possible states of log buffer zones
	 *
	 *           Empty[0]  In use[0]  Full[0]
	 * Empty[1]         *          x        0
	 * In use[1]        0          x        0
	 * Full[1]          1          1        C
	 *
	 * Log position:
	 *   *: Special case, no superblock is written
	 *   0: Use write pointer of zones[0]
	 *   1: Use write pointer of zones[1]
	 *   C: Compare super blcoks from zones[0] and zones[1], use the latest
	 *      one determined by generation
	 *   x: Invalid state
	 */

	if (empty[0] && empty[1]) {
		/* Special case to distinguish no superblock to read */
		*wp_ret = zones[0].start << SECTOR_SHIFT;
		return -ENOENT;
	} else if (full[0] && full[1]) {
		/* Compare two super blocks */
		struct address_space *mapping = bdev->bd_inode->i_mapping;
		struct page *page[BTRFS_NR_SB_LOG_ZONES];
		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
		int i;

		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
			u64 bytenr;

			bytenr = ((zones[i].start + zones[i].len)
				   << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;

			page[i] = read_cache_page_gfp(mapping,
					bytenr >> PAGE_SHIFT, GFP_NOFS);
			if (IS_ERR(page[i])) {
				if (i == 1)
					btrfs_release_disk_super(super[0]);
				return PTR_ERR(page[i]);
			}
			super[i] = page_address(page[i]);
		}

		if (super[0]->generation > super[1]->generation)
			sector = zones[1].start;
		else
			sector = zones[0].start;

		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
			btrfs_release_disk_super(super[i]);
	} else if (!full[0] && (empty[1] || full[1])) {
		sector = zones[0].wp;
	} else if (full[0]) {
		sector = zones[1].wp;
	} else {
		return -EUCLEAN;
	}
	*wp_ret = sector << SECTOR_SHIFT;
	return 0;
}

/*
135
 * Get the first zone number of the superblock mirror
136 137 138
 */
static inline u32 sb_zone_number(int shift, int mirror)
{
139
	u64 zone;
140

141
	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
142
	switch (mirror) {
143 144 145
	case 0: zone = 0; break;
	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
146 147
	}

148 149 150
	ASSERT(zone <= U32_MAX);

	return (u32)zone;
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/*
 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
 * device into static sized chunks and fake a conventional zone on each of
 * them.
 */
static int emulate_report_zones(struct btrfs_device *device, u64 pos,
				struct blk_zone *zones, unsigned int nr_zones)
{
	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
	sector_t bdev_size = bdev_nr_sectors(device->bdev);
	unsigned int i;

	pos >>= SECTOR_SHIFT;
	for (i = 0; i < nr_zones; i++) {
		zones[i].start = i * zone_sectors + pos;
		zones[i].len = zone_sectors;
		zones[i].capacity = zone_sectors;
		zones[i].wp = zones[i].start + zone_sectors;
		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
		zones[i].cond = BLK_ZONE_COND_NOT_WP;

		if (zones[i].wp >= bdev_size) {
			i++;
			break;
		}
	}

	return i;
}

183 184 185 186 187 188 189 190
static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
			       struct blk_zone *zones, unsigned int *nr_zones)
{
	int ret;

	if (!*nr_zones)
		return 0;

191 192 193 194 195 196
	if (!bdev_is_zoned(device->bdev)) {
		ret = emulate_report_zones(device, pos, zones, *nr_zones);
		*nr_zones = ret;
		return 0;
	}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
				  copy_zone_info_cb, zones);
	if (ret < 0) {
		btrfs_err_in_rcu(device->fs_info,
				 "zoned: failed to read zone %llu on %s (devid %llu)",
				 pos, rcu_str_deref(device->name),
				 device->devid);
		return ret;
	}
	*nr_zones = ret;
	if (!ret)
		return -EIO;

	return 0;
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
/* The emulated zone size is determined from the size of device extent */
static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
{
	struct btrfs_path *path;
	struct btrfs_root *root = fs_info->dev_root;
	struct btrfs_key key;
	struct extent_buffer *leaf;
	struct btrfs_dev_extent *dext;
	int ret = 0;

	key.objectid = 1;
	key.type = BTRFS_DEV_EXTENT_KEY;
	key.offset = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		/* No dev extents at all? Not good */
		if (ret > 0) {
			ret = -EUCLEAN;
			goto out;
		}
	}

	leaf = path->nodes[0];
	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
	ret = 0;

out:
	btrfs_free_path(path);

	return ret;
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
	int ret = 0;

	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
	if (!btrfs_fs_incompat(fs_info, ZONED))
		return 0;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		/* We can skip reading of zone info for missing devices */
		if (!device->bdev)
			continue;

		ret = btrfs_get_dev_zone_info(device);
		if (ret)
			break;
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	return ret;
}

282 283
int btrfs_get_dev_zone_info(struct btrfs_device *device)
{
284
	struct btrfs_fs_info *fs_info = device->fs_info;
285 286
	struct btrfs_zoned_device_info *zone_info = NULL;
	struct block_device *bdev = device->bdev;
287
	struct request_queue *queue = bdev_get_queue(bdev);
288 289 290 291
	sector_t nr_sectors;
	sector_t sector = 0;
	struct blk_zone *zones = NULL;
	unsigned int i, nreported = 0, nr_zones;
292
	sector_t zone_sectors;
293
	char *model, *emulated;
294 295
	int ret;

296 297 298 299 300
	/*
	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
	 * yet be set.
	 */
	if (!btrfs_fs_incompat(fs_info, ZONED))
301 302 303 304 305 306 307 308 309
		return 0;

	if (device->zone_info)
		return 0;

	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
	if (!zone_info)
		return -ENOMEM;

310 311 312 313 314 315 316 317 318 319 320 321 322
	if (!bdev_is_zoned(bdev)) {
		if (!fs_info->zone_size) {
			ret = calculate_emulated_zone_size(fs_info);
			if (ret)
				goto out;
		}

		ASSERT(fs_info->zone_size);
		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
	} else {
		zone_sectors = bdev_zone_sectors(bdev);
	}

323 324 325
	/* Check if it's power of 2 (see is_power_of_2) */
	ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
326 327 328 329 330 331 332 333 334 335 336 337

	/* We reject devices with a zone size larger than 8GB */
	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
		btrfs_err_in_rcu(fs_info,
		"zoned: %s: zone size %llu larger than supported maximum %llu",
				 rcu_str_deref(device->name),
				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
		ret = -EINVAL;
		goto out;
	}

	nr_sectors = bdev_nr_sectors(bdev);
338
	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
339 340
	zone_info->max_zone_append_size =
		(u64)queue_max_zone_append_sectors(queue) << SECTOR_SHIFT;
341 342 343 344
	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
	if (!IS_ALIGNED(nr_sectors, zone_sectors))
		zone_info->nr_zones++;

345 346 347 348 349 350 351
	if (bdev_is_zoned(bdev) && zone_info->max_zone_append_size == 0) {
		btrfs_err(fs_info, "zoned: device %pg does not support zone append",
			  bdev);
		ret = -EINVAL;
		goto out;
	}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
	if (!zone_info->seq_zones) {
		ret = -ENOMEM;
		goto out;
	}

	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
	if (!zone_info->empty_zones) {
		ret = -ENOMEM;
		goto out;
	}

	zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
	if (!zones) {
		ret = -ENOMEM;
		goto out;
	}

	/* Get zones type */
	while (sector < nr_sectors) {
		nr_zones = BTRFS_REPORT_NR_ZONES;
		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
					  &nr_zones);
		if (ret)
			goto out;

		for (i = 0; i < nr_zones; i++) {
			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
				__set_bit(nreported, zone_info->seq_zones);
			if (zones[i].cond == BLK_ZONE_COND_EMPTY)
				__set_bit(nreported, zone_info->empty_zones);
			nreported++;
		}
		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
	}

	if (nreported != zone_info->nr_zones) {
		btrfs_err_in_rcu(device->fs_info,
				 "inconsistent number of zones on %s (%u/%u)",
				 rcu_str_deref(device->name), nreported,
				 zone_info->nr_zones);
		ret = -EIO;
		goto out;
	}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	/* Validate superblock log */
	nr_zones = BTRFS_NR_SB_LOG_ZONES;
	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		u32 sb_zone;
		u64 sb_wp;
		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;

		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
		if (sb_zone + 1 >= zone_info->nr_zones)
			continue;

		sector = sb_zone << (zone_info->zone_size_shift - SECTOR_SHIFT);
		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT,
					  &zone_info->sb_zones[sb_pos],
					  &nr_zones);
		if (ret)
			goto out;

		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
			btrfs_err_in_rcu(device->fs_info,
	"zoned: failed to read super block log zone info at devid %llu zone %u",
					 device->devid, sb_zone);
			ret = -EUCLEAN;
			goto out;
		}

		/*
		 * If zones[0] is conventional, always use the beggining of the
		 * zone to record superblock. No need to validate in that case.
		 */
		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
		    BLK_ZONE_TYPE_CONVENTIONAL)
			continue;

		ret = sb_write_pointer(device->bdev,
				       &zone_info->sb_zones[sb_pos], &sb_wp);
		if (ret != -ENOENT && ret) {
			btrfs_err_in_rcu(device->fs_info,
			"zoned: super block log zone corrupted devid %llu zone %u",
					 device->devid, sb_zone);
			ret = -EUCLEAN;
			goto out;
		}
	}


443 444 445 446
	kfree(zones);

	device->zone_info = zone_info;

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	switch (bdev_zoned_model(bdev)) {
	case BLK_ZONED_HM:
		model = "host-managed zoned";
		emulated = "";
		break;
	case BLK_ZONED_HA:
		model = "host-aware zoned";
		emulated = "";
		break;
	case BLK_ZONED_NONE:
		model = "regular";
		emulated = "emulated ";
		break;
	default:
		/* Just in case */
		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
				 bdev_zoned_model(bdev),
				 rcu_str_deref(device->name));
		ret = -EOPNOTSUPP;
		goto out_free_zone_info;
	}

	btrfs_info_in_rcu(fs_info,
		"%s block device %s, %u %szones of %llu bytes",
		model, rcu_str_deref(device->name), zone_info->nr_zones,
		emulated, zone_info->zone_size);
473 474 475 476 477

	return 0;

out:
	kfree(zones);
478
out_free_zone_info:
479 480 481
	bitmap_free(zone_info->empty_zones);
	bitmap_free(zone_info->seq_zones);
	kfree(zone_info);
482
	device->zone_info = NULL;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

	return ret;
}

void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
{
	struct btrfs_zoned_device_info *zone_info = device->zone_info;

	if (!zone_info)
		return;

	bitmap_free(zone_info->seq_zones);
	bitmap_free(zone_info->empty_zones);
	kfree(zone_info);
	device->zone_info = NULL;
}

int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
		       struct blk_zone *zone)
{
	unsigned int nr_zones = 1;
	int ret;

	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
	if (ret != 0 || !nr_zones)
		return ret ? ret : -EIO;

	return 0;
}
N
Naohiro Aota 已提交
512 513 514 515 516 517 518 519

int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
	u64 zoned_devices = 0;
	u64 nr_devices = 0;
	u64 zone_size = 0;
520
	u64 max_zone_append_size = 0;
521
	const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
N
Naohiro Aota 已提交
522 523 524 525 526 527 528 529 530 531
	int ret = 0;

	/* Count zoned devices */
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		enum blk_zoned_model model;

		if (!device->bdev)
			continue;

		model = bdev_zoned_model(device->bdev);
532 533 534 535 536 537
		/*
		 * A Host-Managed zoned device must be used as a zoned device.
		 * A Host-Aware zoned device and a non-zoned devices can be
		 * treated as a zoned device, if ZONED flag is enabled in the
		 * superblock.
		 */
N
Naohiro Aota 已提交
538
		if (model == BLK_ZONED_HM ||
539 540 541 542
		    (model == BLK_ZONED_HA && incompat_zoned) ||
		    (model == BLK_ZONED_NONE && incompat_zoned)) {
			struct btrfs_zoned_device_info *zone_info =
				device->zone_info;
543 544

			zone_info = device->zone_info;
N
Naohiro Aota 已提交
545 546
			zoned_devices++;
			if (!zone_size) {
547 548
				zone_size = zone_info->zone_size;
			} else if (zone_info->zone_size != zone_size) {
N
Naohiro Aota 已提交
549 550 551 552 553 554 555
				btrfs_err(fs_info,
		"zoned: unequal block device zone sizes: have %llu found %llu",
					  device->zone_info->zone_size,
					  zone_size);
				ret = -EINVAL;
				goto out;
			}
556 557 558 559 560
			if (!max_zone_append_size ||
			    (zone_info->max_zone_append_size &&
			     zone_info->max_zone_append_size < max_zone_append_size))
				max_zone_append_size =
					zone_info->max_zone_append_size;
N
Naohiro Aota 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
		}
		nr_devices++;
	}

	if (!zoned_devices && !incompat_zoned)
		goto out;

	if (!zoned_devices && incompat_zoned) {
		/* No zoned block device found on ZONED filesystem */
		btrfs_err(fs_info,
			  "zoned: no zoned devices found on a zoned filesystem");
		ret = -EINVAL;
		goto out;
	}

	if (zoned_devices && !incompat_zoned) {
		btrfs_err(fs_info,
			  "zoned: mode not enabled but zoned device found");
		ret = -EINVAL;
		goto out;
	}

	if (zoned_devices != nr_devices) {
		btrfs_err(fs_info,
			  "zoned: cannot mix zoned and regular devices");
		ret = -EINVAL;
		goto out;
	}

	/*
	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
	 * __btrfs_alloc_chunk(). Since we want stripe_len == zone_size,
	 * check the alignment here.
	 */
	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
		btrfs_err(fs_info,
			  "zoned: zone size %llu not aligned to stripe %u",
			  zone_size, BTRFS_STRIPE_LEN);
		ret = -EINVAL;
		goto out;
	}

603 604 605 606 607 608
	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
		btrfs_err(fs_info, "zoned: mixed block groups not supported");
		ret = -EINVAL;
		goto out;
	}

N
Naohiro Aota 已提交
609
	fs_info->zone_size = zone_size;
610
	fs_info->max_zone_append_size = max_zone_append_size;
611
	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
N
Naohiro Aota 已提交
612

613 614 615 616 617 618 619 620
	/*
	 * Check mount options here, because we might change fs_info->zoned
	 * from fs_info->zone_size.
	 */
	ret = btrfs_check_mountopts_zoned(fs_info);
	if (ret)
		goto out;

N
Naohiro Aota 已提交
621 622 623 624
	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
out:
	return ret;
}
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
{
	if (!btrfs_is_zoned(info))
		return 0;

	/*
	 * Space cache writing is not COWed. Disable that to avoid write errors
	 * in sequential zones.
	 */
	if (btrfs_test_opt(info, SPACE_CACHE)) {
		btrfs_err(info, "zoned: space cache v1 is not supported");
		return -EINVAL;
	}

640 641 642 643 644
	if (btrfs_test_opt(info, NODATACOW)) {
		btrfs_err(info, "zoned: NODATACOW not supported");
		return -EINVAL;
	}

645 646
	return 0;
}
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
			   int rw, u64 *bytenr_ret)
{
	u64 wp;
	int ret;

	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
		return 0;
	}

	ret = sb_write_pointer(bdev, zones, &wp);
	if (ret != -ENOENT && ret < 0)
		return ret;

	if (rw == WRITE) {
		struct blk_zone *reset = NULL;

		if (wp == zones[0].start << SECTOR_SHIFT)
			reset = &zones[0];
		else if (wp == zones[1].start << SECTOR_SHIFT)
			reset = &zones[1];

		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
			ASSERT(reset->cond == BLK_ZONE_COND_FULL);

			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
					       reset->start, reset->len,
					       GFP_NOFS);
			if (ret)
				return ret;

			reset->cond = BLK_ZONE_COND_EMPTY;
			reset->wp = reset->start;
		}
	} else if (ret != -ENOENT) {
		/* For READ, we want the precious one */
		if (wp == zones[0].start << SECTOR_SHIFT)
			wp = (zones[1].start + zones[1].len) << SECTOR_SHIFT;
		wp -= BTRFS_SUPER_INFO_SIZE;
	}

	*bytenr_ret = wp;
	return 0;

}

int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
			       u64 *bytenr_ret)
{
	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
699
	sector_t zone_sectors;
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	u32 sb_zone;
	int ret;
	u8 zone_sectors_shift;
	sector_t nr_sectors;
	u32 nr_zones;

	if (!bdev_is_zoned(bdev)) {
		*bytenr_ret = btrfs_sb_offset(mirror);
		return 0;
	}

	ASSERT(rw == READ || rw == WRITE);

	zone_sectors = bdev_zone_sectors(bdev);
	if (!is_power_of_2(zone_sectors))
		return -EINVAL;
	zone_sectors_shift = ilog2(zone_sectors);
717
	nr_sectors = bdev_nr_sectors(bdev);
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	nr_zones = nr_sectors >> zone_sectors_shift;

	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
	if (sb_zone + 1 >= nr_zones)
		return -ENOENT;

	ret = blkdev_report_zones(bdev, sb_zone << zone_sectors_shift,
				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
				  zones);
	if (ret < 0)
		return ret;
	if (ret != BTRFS_NR_SB_LOG_ZONES)
		return -EIO;

	return sb_log_location(bdev, zones, rw, bytenr_ret);
}

int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
			  u64 *bytenr_ret)
{
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	u32 zone_num;

741 742 743 744 745 746 747
	/*
	 * For a zoned filesystem on a non-zoned block device, use the same
	 * super block locations as regular filesystem. Doing so, the super
	 * block can always be retrieved and the zoned flag of the volume
	 * detected from the super block information.
	 */
	if (!bdev_is_zoned(device->bdev)) {
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
		*bytenr_ret = btrfs_sb_offset(mirror);
		return 0;
	}

	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
	if (zone_num + 1 >= zinfo->nr_zones)
		return -ENOENT;

	return sb_log_location(device->bdev,
			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
			       rw, bytenr_ret);
}

static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
				  int mirror)
{
	u32 zone_num;

	if (!zinfo)
		return false;

	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
	if (zone_num + 1 >= zinfo->nr_zones)
		return false;

	if (!test_bit(zone_num, zinfo->seq_zones))
		return false;

	return true;
}

void btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
{
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	struct blk_zone *zone;

	if (!is_sb_log_zone(zinfo, mirror))
		return;

	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
	if (zone->cond != BLK_ZONE_COND_FULL) {
		if (zone->cond == BLK_ZONE_COND_EMPTY)
			zone->cond = BLK_ZONE_COND_IMP_OPEN;

		zone->wp += (BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT);

		if (zone->wp == zone->start + zone->len)
			zone->cond = BLK_ZONE_COND_FULL;

		return;
	}

	zone++;
	ASSERT(zone->cond != BLK_ZONE_COND_FULL);
	if (zone->cond == BLK_ZONE_COND_EMPTY)
		zone->cond = BLK_ZONE_COND_IMP_OPEN;

	zone->wp += (BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT);

	if (zone->wp == zone->start + zone->len)
		zone->cond = BLK_ZONE_COND_FULL;
}

int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
{
	sector_t zone_sectors;
	sector_t nr_sectors;
	u8 zone_sectors_shift;
	u32 sb_zone;
	u32 nr_zones;

	zone_sectors = bdev_zone_sectors(bdev);
	zone_sectors_shift = ilog2(zone_sectors);
821
	nr_sectors = bdev_nr_sectors(bdev);
822 823 824 825 826 827 828 829 830 831
	nr_zones = nr_sectors >> zone_sectors_shift;

	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
	if (sb_zone + 1 >= nr_zones)
		return -ENOENT;

	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
				sb_zone << zone_sectors_shift,
				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
}
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969

/**
 * btrfs_find_allocatable_zones - find allocatable zones within a given region
 *
 * @device:	the device to allocate a region on
 * @hole_start: the position of the hole to allocate the region
 * @num_bytes:	size of wanted region
 * @hole_end:	the end of the hole
 * @return:	position of allocatable zones
 *
 * Allocatable region should not contain any superblock locations.
 */
u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
				 u64 hole_end, u64 num_bytes)
{
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	const u8 shift = zinfo->zone_size_shift;
	u64 nzones = num_bytes >> shift;
	u64 pos = hole_start;
	u64 begin, end;
	bool have_sb;
	int i;

	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));

	while (pos < hole_end) {
		begin = pos >> shift;
		end = begin + nzones;

		if (end > zinfo->nr_zones)
			return hole_end;

		/* Check if zones in the region are all empty */
		if (btrfs_dev_is_sequential(device, pos) &&
		    find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
			pos += zinfo->zone_size;
			continue;
		}

		have_sb = false;
		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
			u32 sb_zone;
			u64 sb_pos;

			sb_zone = sb_zone_number(shift, i);
			if (!(end <= sb_zone ||
			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
				have_sb = true;
				pos = ((u64)sb_zone + BTRFS_NR_SB_LOG_ZONES) << shift;
				break;
			}

			/* We also need to exclude regular superblock positions */
			sb_pos = btrfs_sb_offset(i);
			if (!(pos + num_bytes <= sb_pos ||
			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
				have_sb = true;
				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
					    zinfo->zone_size);
				break;
			}
		}
		if (!have_sb)
			break;
	}

	return pos;
}

int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
			    u64 length, u64 *bytes)
{
	int ret;

	*bytes = 0;
	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
			       GFP_NOFS);
	if (ret)
		return ret;

	*bytes = length;
	while (length) {
		btrfs_dev_set_zone_empty(device, physical);
		physical += device->zone_info->zone_size;
		length -= device->zone_info->zone_size;
	}

	return 0;
}

int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
{
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	const u8 shift = zinfo->zone_size_shift;
	unsigned long begin = start >> shift;
	unsigned long end = (start + size) >> shift;
	u64 pos;
	int ret;

	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
	ASSERT(IS_ALIGNED(size, zinfo->zone_size));

	if (end > zinfo->nr_zones)
		return -ERANGE;

	/* All the zones are conventional */
	if (find_next_bit(zinfo->seq_zones, begin, end) == end)
		return 0;

	/* All the zones are sequential and empty */
	if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
	    find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
		return 0;

	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
		u64 reset_bytes;

		if (!btrfs_dev_is_sequential(device, pos) ||
		    btrfs_dev_is_empty_zone(device, pos))
			continue;

		/* Free regions should be empty */
		btrfs_warn_in_rcu(
			device->fs_info,
		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
			rcu_str_deref(device->name), device->devid, pos >> shift);
		WARN_ON_ONCE(1);

		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
					      &reset_bytes);
		if (ret)
			return ret;
	}

	return 0;
}
970

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
/*
 * Calculate an allocation pointer from the extent allocation information
 * for a block group consist of conventional zones. It is pointed to the
 * end of the highest addressed extent in the block group as an allocation
 * offset.
 */
static int calculate_alloc_pointer(struct btrfs_block_group *cache,
				   u64 *offset_ret)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	u64 length;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = cache->start + cache->length;
	key.type = 0;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	/* We should not find the exact match */
	if (!ret)
		ret = -EUCLEAN;
	if (ret < 0)
		goto out;

	ret = btrfs_previous_extent_item(root, path, cache->start);
	if (ret) {
		if (ret == 1) {
			ret = 0;
			*offset_ret = 0;
		}
		goto out;
	}

	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);

	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
		length = found_key.offset;
	else
		length = fs_info->nodesize;

	if (!(found_key.objectid >= cache->start &&
	       found_key.objectid + length <= cache->start + cache->length)) {
		ret = -EUCLEAN;
		goto out;
	}
	*offset_ret = found_key.objectid + length - cache->start;
	ret = 0;

out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
	struct extent_map *em;
	struct map_lookup *map;
	struct btrfs_device *device;
	u64 logical = cache->start;
	u64 length = cache->length;
	u64 physical = 0;
	int ret;
	int i;
	unsigned int nofs_flag;
	u64 *alloc_offsets = NULL;
1046
	u64 last_alloc = 0;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	u32 num_sequential = 0, num_conventional = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	/* Sanity check */
	if (!IS_ALIGNED(length, fs_info->zone_size)) {
		btrfs_err(fs_info,
		"zoned: block group %llu len %llu unaligned to zone size %llu",
			  logical, length, fs_info->zone_size);
		return -EIO;
	}

	/* Get the chunk mapping */
	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, length);
	read_unlock(&em_tree->lock);

	if (!em)
		return -EINVAL;

	map = em->map_lookup;

	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
	if (!alloc_offsets) {
		free_extent_map(em);
		return -ENOMEM;
	}

	for (i = 0; i < map->num_stripes; i++) {
		bool is_sequential;
		struct blk_zone zone;
1079 1080
		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
		int dev_replace_is_ongoing = 0;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

		device = map->stripes[i].dev;
		physical = map->stripes[i].physical;

		if (device->bdev == NULL) {
			alloc_offsets[i] = WP_MISSING_DEV;
			continue;
		}

		is_sequential = btrfs_dev_is_sequential(device, physical);
		if (is_sequential)
			num_sequential++;
		else
			num_conventional++;

		if (!is_sequential) {
			alloc_offsets[i] = WP_CONVENTIONAL;
			continue;
		}

		/*
		 * This zone will be used for allocation, so mark this zone
		 * non-empty.
		 */
		btrfs_dev_clear_zone_empty(device, physical);

1107 1108 1109 1110 1111 1112
		down_read(&dev_replace->rwsem);
		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical);
		up_read(&dev_replace->rwsem);

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		/*
		 * The group is mapped to a sequential zone. Get the zone write
		 * pointer to determine the allocation offset within the zone.
		 */
		WARN_ON(!IS_ALIGNED(physical, fs_info->zone_size));
		nofs_flag = memalloc_nofs_save();
		ret = btrfs_get_dev_zone(device, physical, &zone);
		memalloc_nofs_restore(nofs_flag);
		if (ret == -EIO || ret == -EOPNOTSUPP) {
			ret = 0;
			alloc_offsets[i] = WP_MISSING_DEV;
			continue;
		} else if (ret) {
			goto out;
		}

1129 1130 1131 1132 1133
		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
			ret = -EIO;
			goto out;
		}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		switch (zone.cond) {
		case BLK_ZONE_COND_OFFLINE:
		case BLK_ZONE_COND_READONLY:
			btrfs_err(fs_info,
		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
				  physical >> device->zone_info->zone_size_shift,
				  rcu_str_deref(device->name), device->devid);
			alloc_offsets[i] = WP_MISSING_DEV;
			break;
		case BLK_ZONE_COND_EMPTY:
			alloc_offsets[i] = 0;
			break;
		case BLK_ZONE_COND_FULL:
			alloc_offsets[i] = fs_info->zone_size;
			break;
		default:
			/* Partially used zone */
			alloc_offsets[i] =
					((zone.wp - zone.start) << SECTOR_SHIFT);
			break;
		}
	}

1157 1158 1159
	if (num_sequential > 0)
		cache->seq_zone = true;

1160 1161
	if (num_conventional > 0) {
		/*
1162 1163 1164 1165 1166 1167 1168 1169 1170
		 * Avoid calling calculate_alloc_pointer() for new BG. It
		 * is no use for new BG. It must be always 0.
		 *
		 * Also, we have a lock chain of extent buffer lock ->
		 * chunk mutex.  For new BG, this function is called from
		 * btrfs_make_block_group() which is already taking the
		 * chunk mutex. Thus, we cannot call
		 * calculate_alloc_pointer() which takes extent buffer
		 * locks to avoid deadlock.
1171
		 */
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
		if (new) {
			cache->alloc_offset = 0;
			goto out;
		}
		ret = calculate_alloc_pointer(cache, &last_alloc);
		if (ret || map->num_stripes == num_conventional) {
			if (!ret)
				cache->alloc_offset = last_alloc;
			else
				btrfs_err(fs_info,
			"zoned: failed to determine allocation offset of bg %llu",
					  cache->start);
			goto out;
		}
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	}

	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
	case 0: /* single */
		cache->alloc_offset = alloc_offsets[0];
		break;
	case BTRFS_BLOCK_GROUP_DUP:
	case BTRFS_BLOCK_GROUP_RAID1:
	case BTRFS_BLOCK_GROUP_RAID0:
	case BTRFS_BLOCK_GROUP_RAID10:
	case BTRFS_BLOCK_GROUP_RAID5:
	case BTRFS_BLOCK_GROUP_RAID6:
		/* non-single profiles are not supported yet */
	default:
		btrfs_err(fs_info, "zoned: profile %s not yet supported",
			  btrfs_bg_type_to_raid_name(map->type));
		ret = -EINVAL;
		goto out;
	}

out:
1207 1208 1209 1210 1211 1212 1213 1214
	/* An extent is allocated after the write pointer */
	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
		btrfs_err(fs_info,
			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
			  logical, last_alloc, cache->alloc_offset);
		ret = -EIO;
	}

1215 1216 1217
	if (!ret)
		cache->meta_write_pointer = cache->alloc_offset + cache->start;

1218 1219 1220 1221 1222
	kfree(alloc_offsets);
	free_extent_map(em);

	return ret;
}
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
{
	u64 unusable, free;

	if (!btrfs_is_zoned(cache->fs_info))
		return;

	WARN_ON(cache->bytes_super != 0);
	unusable = cache->alloc_offset - cache->used;
	free = cache->length - cache->alloc_offset;

	/* We only need ->free_space in ALLOC_SEQ block groups */
	cache->last_byte_to_unpin = (u64)-1;
	cache->cached = BTRFS_CACHE_FINISHED;
	cache->free_space_ctl->free_space = free;
	cache->zone_unusable = unusable;

	/* Should not have any excluded extents. Just in case, though */
	btrfs_free_excluded_extents(cache);
}
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

void btrfs_redirty_list_add(struct btrfs_transaction *trans,
			    struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

	if (!btrfs_is_zoned(fs_info) ||
	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
	    !list_empty(&eb->release_list))
		return;

	set_extent_buffer_dirty(eb);
	set_extent_bits_nowait(&trans->dirty_pages, eb->start,
			       eb->start + eb->len - 1, EXTENT_DIRTY);
	memzero_extent_buffer(eb, 0, eb->len);
	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);

	spin_lock(&trans->releasing_ebs_lock);
	list_add_tail(&eb->release_list, &trans->releasing_ebs);
	spin_unlock(&trans->releasing_ebs_lock);
	atomic_inc(&eb->refs);
}

void btrfs_free_redirty_list(struct btrfs_transaction *trans)
{
	spin_lock(&trans->releasing_ebs_lock);
	while (!list_empty(&trans->releasing_ebs)) {
		struct extent_buffer *eb;

		eb = list_first_entry(&trans->releasing_ebs,
				      struct extent_buffer, release_list);
		list_del_init(&eb->release_list);
		free_extent_buffer(eb);
	}
	spin_unlock(&trans->releasing_ebs_lock);
}
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

bool btrfs_use_zone_append(struct btrfs_inode *inode, struct extent_map *em)
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_block_group *cache;
	bool ret = false;

	if (!btrfs_is_zoned(fs_info))
		return false;

	if (!fs_info->max_zone_append_size)
		return false;

	if (!is_data_inode(&inode->vfs_inode))
		return false;

	cache = btrfs_lookup_block_group(fs_info, em->block_start);
	ASSERT(cache);
	if (!cache)
		return false;

	ret = cache->seq_zone;
	btrfs_put_block_group(cache);

	return ret;
}
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
				 struct bio *bio)
{
	struct btrfs_ordered_extent *ordered;
	const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;

	if (bio_op(bio) != REQ_OP_ZONE_APPEND)
		return;

	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
	if (WARN_ON(!ordered))
		return;

	ordered->physical = physical;
1321 1322
	ordered->disk = bio->bi_bdev->bd_disk;
	ordered->partno = bio->bi_bdev->bd_partno;
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

	btrfs_put_ordered_extent(ordered);
}

void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
{
	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct btrfs_ordered_sum *sum;
	struct block_device *bdev;
	u64 orig_logical = ordered->disk_bytenr;
	u64 *logical = NULL;
	int nr, stripe_len;

	/* Zoned devices should not have partitions. So, we can assume it is 0 */
	ASSERT(ordered->partno == 0);
	bdev = bdgrab(ordered->disk->part0);
	if (WARN_ON(!bdev))
		return;

	if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, bdev,
				     ordered->physical, &logical, &nr,
				     &stripe_len)))
		goto out;

	WARN_ON(nr != 1);

	if (orig_logical == *logical)
		goto out;

	ordered->disk_bytenr = *logical;

	em_tree = &inode->extent_tree;
	write_lock(&em_tree->lock);
	em = search_extent_mapping(em_tree, ordered->file_offset,
				   ordered->num_bytes);
	em->block_start = *logical;
	free_extent_map(em);
	write_unlock(&em_tree->lock);

	list_for_each_entry(sum, &ordered->list, list) {
		if (*logical < orig_logical)
			sum->bytenr -= orig_logical - *logical;
		else
			sum->bytenr += *logical - orig_logical;
	}

out:
	kfree(logical);
	bdput(bdev);
}
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb,
				    struct btrfs_block_group **cache_ret)
{
	struct btrfs_block_group *cache;
	bool ret = true;

	if (!btrfs_is_zoned(fs_info))
		return true;

	cache = *cache_ret;

	if (cache && (eb->start < cache->start ||
		      cache->start + cache->length <= eb->start)) {
		btrfs_put_block_group(cache);
		cache = NULL;
		*cache_ret = NULL;
	}

	if (!cache)
		cache = btrfs_lookup_block_group(fs_info, eb->start);

	if (cache) {
		if (cache->meta_write_pointer != eb->start) {
			btrfs_put_block_group(cache);
			cache = NULL;
			ret = false;
		} else {
			cache->meta_write_pointer = eb->start + eb->len;
		}

		*cache_ret = cache;
	}

	return ret;
}

void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
				     struct extent_buffer *eb)
{
	if (!btrfs_is_zoned(eb->fs_info) || !cache)
		return;

	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
	cache->meta_write_pointer = eb->start;
}
1423 1424 1425 1426 1427 1428 1429 1430 1431

int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
{
	if (!btrfs_dev_is_sequential(device, physical))
		return -EOPNOTSUPP;

	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
}
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
			  struct blk_zone *zone)
{
	struct btrfs_bio *bbio = NULL;
	u64 mapped_length = PAGE_SIZE;
	unsigned int nofs_flag;
	int nmirrors;
	int i, ret;

	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
			       &mapped_length, &bbio);
	if (ret || !bbio || mapped_length < PAGE_SIZE) {
		btrfs_put_bbio(bbio);
		return -EIO;
	}

	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
		return -EINVAL;

	nofs_flag = memalloc_nofs_save();
	nmirrors = (int)bbio->num_stripes;
	for (i = 0; i < nmirrors; i++) {
		u64 physical = bbio->stripes[i].physical;
		struct btrfs_device *dev = bbio->stripes[i].dev;

		/* Missing device */
		if (!dev->bdev)
			continue;

		ret = btrfs_get_dev_zone(dev, physical, zone);
		/* Failing device */
		if (ret == -EIO || ret == -EOPNOTSUPP)
			continue;
		break;
	}
	memalloc_nofs_restore(nofs_flag);

	return ret;
}

/*
 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
 * filling zeros between @physical_pos to a write pointer of dev-replace
 * source device.
 */
int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
				    u64 physical_start, u64 physical_pos)
{
	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
	struct blk_zone zone;
	u64 length;
	u64 wp;
	int ret;

	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
		return 0;

	ret = read_zone_info(fs_info, logical, &zone);
	if (ret)
		return ret;

	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);

	if (physical_pos == wp)
		return 0;

	if (physical_pos > wp)
		return -EUCLEAN;

	length = wp - physical_pos;
	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
}