mount.c 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * fs/kernfs/mount.c - kernfs mount implementation
 *
 * Copyright (c) 2001-3 Patrick Mochel
 * Copyright (c) 2007 SUSE Linux Products GmbH
 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 */
10 11 12 13 14 15 16

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/init.h>
#include <linux/magic.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
A
Aditya Kali 已提交
17
#include <linux/namei.h>
18
#include <linux/seq_file.h>
19 20 21

#include "kernfs-internal.h"

22
struct kmem_cache *kernfs_node_cache;
23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
{
	struct kernfs_root *root = kernfs_info(sb)->root;
	struct kernfs_syscall_ops *scops = root->syscall_ops;

	if (scops && scops->remount_fs)
		return scops->remount_fs(root, flags, data);
	return 0;
}

static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
{
	struct kernfs_root *root = kernfs_root(dentry->d_fsdata);
	struct kernfs_syscall_ops *scops = root->syscall_ops;

	if (scops && scops->show_options)
		return scops->show_options(sf, root);
	return 0;
}

44 45 46 47 48 49 50 51 52
static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
{
	struct kernfs_node *node = dentry->d_fsdata;
	struct kernfs_root *root = kernfs_root(node);
	struct kernfs_syscall_ops *scops = root->syscall_ops;

	if (scops && scops->show_path)
		return scops->show_path(sf, node, root);

53 54
	seq_dentry(sf, dentry, " \t\n\\");
	return 0;
55 56
}

L
Li Zefan 已提交
57
const struct super_operations kernfs_sops = {
58 59
	.statfs		= simple_statfs,
	.drop_inode	= generic_delete_inode,
60
	.evict_inode	= kernfs_evict_inode,
61 62 63

	.remount_fs	= kernfs_sop_remount_fs,
	.show_options	= kernfs_sop_show_options,
64
	.show_path	= kernfs_sop_show_path,
65 66
};

67 68 69 70 71 72 73 74 75 76 77 78 79 80
/**
 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
 * @sb: the super_block in question
 *
 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
 * %NULL is returned.
 */
struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
{
	if (sb->s_op == &kernfs_sops)
		return kernfs_info(sb)->root;
	return NULL;
}

A
Aditya Kali 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*
 * find the next ancestor in the path down to @child, where @parent was the
 * ancestor whose descendant we want to find.
 *
 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
 * node.  If @parent is b, then we return the node for c.
 * Passing in d as @parent is not ok.
 */
static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
					      struct kernfs_node *parent)
{
	if (child == parent) {
		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
		return NULL;
	}

	while (child->parent != parent) {
		if (!child->parent)
			return NULL;
		child = child->parent;
	}

	return child;
}

/**
 * kernfs_node_dentry - get a dentry for the given kernfs_node
 * @kn: kernfs_node for which a dentry is needed
 * @sb: the kernfs super_block
 */
struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
				  struct super_block *sb)
{
	struct dentry *dentry;
	struct kernfs_node *knparent = NULL;

	BUG_ON(sb->s_op != &kernfs_sops);

	dentry = dget(sb->s_root);

	/* Check if this is the root kernfs_node */
	if (!kn->parent)
		return dentry;

	knparent = find_next_ancestor(kn, NULL);
	if (WARN_ON(!knparent))
		return ERR_PTR(-EINVAL);

	do {
		struct dentry *dtmp;
		struct kernfs_node *kntmp;

		if (kn == knparent)
			return dentry;
		kntmp = find_next_ancestor(kn, knparent);
		if (WARN_ON(!kntmp))
			return ERR_PTR(-EINVAL);
		mutex_lock(&d_inode(dentry)->i_mutex);
		dtmp = lookup_one_len(kntmp->name, dentry, strlen(kntmp->name));
		mutex_unlock(&d_inode(dentry)->i_mutex);
		dput(dentry);
		if (IS_ERR(dtmp))
			return dtmp;
		knparent = kntmp;
		dentry = dtmp;
	} while (true);
}

149
static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
150
{
151
	struct kernfs_super_info *info = kernfs_info(sb);
152 153 154
	struct inode *inode;
	struct dentry *root;

155
	info->sb = sb;
156 157
	sb->s_blocksize = PAGE_SIZE;
	sb->s_blocksize_bits = PAGE_SHIFT;
158
	sb->s_magic = magic;
159
	sb->s_op = &kernfs_sops;
160 161 162
	sb->s_time_gran = 1;

	/* get root inode, initialize and unlock it */
163
	mutex_lock(&kernfs_mutex);
164
	inode = kernfs_get_inode(sb, info->root->kn);
165
	mutex_unlock(&kernfs_mutex);
166
	if (!inode) {
167
		pr_debug("kernfs: could not get root inode\n");
168 169 170 171 172 173 174 175 176
		return -ENOMEM;
	}

	/* instantiate and link root dentry */
	root = d_make_root(inode);
	if (!root) {
		pr_debug("%s: could not get root dentry!\n", __func__);
		return -ENOMEM;
	}
177 178
	kernfs_get(info->root->kn);
	root->d_fsdata = info->root->kn;
179
	sb->s_root = root;
180
	sb->s_d_op = &kernfs_dops;
181 182 183
	return 0;
}

184
static int kernfs_test_super(struct super_block *sb, void *data)
185
{
186 187
	struct kernfs_super_info *sb_info = kernfs_info(sb);
	struct kernfs_super_info *info = data;
188 189 190 191

	return sb_info->root == info->root && sb_info->ns == info->ns;
}

192
static int kernfs_set_super(struct super_block *sb, void *data)
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
{
	int error;
	error = set_anon_super(sb, data);
	if (!error)
		sb->s_fs_info = data;
	return error;
}

/**
 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
 * @sb: super_block of interest
 *
 * Return the namespace tag associated with kernfs super_block @sb.
 */
const void *kernfs_super_ns(struct super_block *sb)
{
209
	struct kernfs_super_info *info = kernfs_info(sb);
210 211 212 213 214 215 216 217 218

	return info->ns;
}

/**
 * kernfs_mount_ns - kernfs mount helper
 * @fs_type: file_system_type of the fs being mounted
 * @flags: mount flags specified for the mount
 * @root: kernfs_root of the hierarchy being mounted
219
 * @magic: file system specific magic number
L
Li Zefan 已提交
220
 * @new_sb_created: tell the caller if we allocated a new superblock
221 222 223 224 225 226 227 228 229 230
 * @ns: optional namespace tag of the mount
 *
 * This is to be called from each kernfs user's file_system_type->mount()
 * implementation, which should pass through the specified @fs_type and
 * @flags, and specify the hierarchy and namespace tag to mount via @root
 * and @ns, respectively.
 *
 * The return value can be passed to the vfs layer verbatim.
 */
struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
231 232
				struct kernfs_root *root, unsigned long magic,
				bool *new_sb_created, const void *ns)
233 234
{
	struct super_block *sb;
235
	struct kernfs_super_info *info;
236 237 238 239 240 241 242 243 244
	int error;

	info = kzalloc(sizeof(*info), GFP_KERNEL);
	if (!info)
		return ERR_PTR(-ENOMEM);

	info->root = root;
	info->ns = ns;

245
	sb = sget(fs_type, kernfs_test_super, kernfs_set_super, flags, info);
246 247 248 249
	if (IS_ERR(sb) || sb->s_fs_info != info)
		kfree(info);
	if (IS_ERR(sb))
		return ERR_CAST(sb);
L
Li Zefan 已提交
250 251 252 253

	if (new_sb_created)
		*new_sb_created = !sb->s_root;

254
	if (!sb->s_root) {
255 256
		struct kernfs_super_info *info = kernfs_info(sb);

257
		error = kernfs_fill_super(sb, magic);
258 259 260 261 262
		if (error) {
			deactivate_locked_super(sb);
			return ERR_PTR(error);
		}
		sb->s_flags |= MS_ACTIVE;
263 264 265 266

		mutex_lock(&kernfs_mutex);
		list_add(&info->node, &root->supers);
		mutex_unlock(&kernfs_mutex);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	}

	return dget(sb->s_root);
}

/**
 * kernfs_kill_sb - kill_sb for kernfs
 * @sb: super_block being killed
 *
 * This can be used directly for file_system_type->kill_sb().  If a kernfs
 * user needs extra cleanup, it can implement its own kill_sb() and call
 * this function at the end.
 */
void kernfs_kill_sb(struct super_block *sb)
{
282
	struct kernfs_super_info *info = kernfs_info(sb);
283
	struct kernfs_node *root_kn = sb->s_root->d_fsdata;
284

285 286 287 288
	mutex_lock(&kernfs_mutex);
	list_del(&info->node);
	mutex_unlock(&kernfs_mutex);

289 290
	/*
	 * Remove the superblock from fs_supers/s_instances
291
	 * so we can't find it, before freeing kernfs_super_info.
292 293 294
	 */
	kill_anon_super(sb);
	kfree(info);
295
	kernfs_put(root_kn);
296 297
}

L
Li Zefan 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/**
 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
 * @kernfs_root: the kernfs_root in question
 * @ns: the namespace tag
 *
 * Pin the superblock so the superblock won't be destroyed in subsequent
 * operations.  This can be used to block ->kill_sb() which may be useful
 * for kernfs users which dynamically manage superblocks.
 *
 * Returns NULL if there's no superblock associated to this kernfs_root, or
 * -EINVAL if the superblock is being freed.
 */
struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
{
	struct kernfs_super_info *info;
	struct super_block *sb = NULL;

	mutex_lock(&kernfs_mutex);
	list_for_each_entry(info, &root->supers, node) {
		if (info->ns == ns) {
			sb = info->sb;
			if (!atomic_inc_not_zero(&info->sb->s_active))
				sb = ERR_PTR(-EINVAL);
			break;
		}
	}
	mutex_unlock(&kernfs_mutex);
	return sb;
}

328 329
void __init kernfs_init(void)
{
330
	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
331
					      sizeof(struct kernfs_node),
332 333
					      0, SLAB_PANIC, NULL);
}