quirks.c 18.1 KB
Newer Older
1 2
#define pr_fmt(fmt) "efi: " fmt

3 4 5 6 7 8 9 10 11
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/types.h>
#include <linux/efi.h>
#include <linux/slab.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
12
#include <linux/acpi.h>
13
#include <linux/dmi.h>
14 15

#include <asm/e820/api.h>
16 17
#include <asm/efi.h>
#include <asm/uv/uv.h>
18
#include <asm/cpu_device_id.h>
19 20 21 22 23 24

#define EFI_MIN_RESERVE 5120

#define EFI_DUMMY_GUID \
	EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#define QUARK_CSH_SIGNATURE		0x5f435348	/* _CSH */
#define QUARK_SECURITY_HEADER_SIZE	0x400

/*
 * Header prepended to the standard EFI capsule on Quark systems the are based
 * on Intel firmware BSP.
 * @csh_signature:	Unique identifier to sanity check signed module
 * 			presence ("_CSH").
 * @version:		Current version of CSH used. Should be one for Quark A0.
 * @modulesize:		Size of the entire module including the module header
 * 			and payload.
 * @security_version_number_index: Index of SVN to use for validation of signed
 * 			module.
 * @security_version_number: Used to prevent against roll back of modules.
 * @rsvd_module_id:	Currently unused for Clanton (Quark).
 * @rsvd_module_vendor:	Vendor Identifier. For Intel products value is
 * 			0x00008086.
 * @rsvd_date:		BCD representation of build date as yyyymmdd, where
 * 			yyyy=4 digit year, mm=1-12, dd=1-31.
 * @headersize:		Total length of the header including including any
 * 			padding optionally added by the signing tool.
 * @hash_algo:		What Hash is used in the module signing.
 * @cryp_algo:		What Crypto is used in the module signing.
 * @keysize:		Total length of the key data including including any
 * 			padding optionally added by the signing tool.
 * @signaturesize:	Total length of the signature including including any
 * 			padding optionally added by the signing tool.
 * @rsvd_next_header:	32-bit pointer to the next Secure Boot Module in the
 * 			chain, if there is a next header.
 * @rsvd:		Reserved, padding structure to required size.
 *
 * See also QuartSecurityHeader_t in
 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
 */
struct quark_security_header {
	u32 csh_signature;
	u32 version;
	u32 modulesize;
	u32 security_version_number_index;
	u32 security_version_number;
	u32 rsvd_module_id;
	u32 rsvd_module_vendor;
	u32 rsvd_date;
	u32 headersize;
	u32 hash_algo;
	u32 cryp_algo;
	u32 keysize;
	u32 signaturesize;
	u32 rsvd_next_header;
	u32 rsvd[2];
};

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };

static bool efi_no_storage_paranoia;

/*
 * Some firmware implementations refuse to boot if there's insufficient
 * space in the variable store. The implementation of garbage collection
 * in some FW versions causes stale (deleted) variables to take up space
 * longer than intended and space is only freed once the store becomes
 * almost completely full.
 *
 * Enabling this option disables the space checks in
 * efi_query_variable_store() and forces garbage collection.
 *
 * Only enable this option if deleting EFI variables does not free up
 * space in your variable store, e.g. if despite deleting variables
 * you're unable to create new ones.
 */
static int __init setup_storage_paranoia(char *arg)
{
	efi_no_storage_paranoia = true;
	return 0;
}
early_param("efi_no_storage_paranoia", setup_storage_paranoia);

/*
 * Deleting the dummy variable which kicks off garbage collection
*/
void efi_delete_dummy_variable(void)
{
	efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
			 EFI_VARIABLE_NON_VOLATILE |
			 EFI_VARIABLE_BOOTSERVICE_ACCESS |
			 EFI_VARIABLE_RUNTIME_ACCESS,
			 0, NULL);
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
/*
 * In the nonblocking case we do not attempt to perform garbage
 * collection if we do not have enough free space. Rather, we do the
 * bare minimum check and give up immediately if the available space
 * is below EFI_MIN_RESERVE.
 *
 * This function is intended to be small and simple because it is
 * invoked from crash handler paths.
 */
static efi_status_t
query_variable_store_nonblocking(u32 attributes, unsigned long size)
{
	efi_status_t status;
	u64 storage_size, remaining_size, max_size;

	status = efi.query_variable_info_nonblocking(attributes, &storage_size,
						     &remaining_size,
						     &max_size);
	if (status != EFI_SUCCESS)
		return status;

	if (remaining_size - size < EFI_MIN_RESERVE)
		return EFI_OUT_OF_RESOURCES;

	return EFI_SUCCESS;
}

142 143 144 145 146 147 148
/*
 * Some firmware implementations refuse to boot if there's insufficient space
 * in the variable store. Ensure that we never use more than a safe limit.
 *
 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
 * store.
 */
149 150
efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
				      bool nonblocking)
151 152 153 154 155 156 157
{
	efi_status_t status;
	u64 storage_size, remaining_size, max_size;

	if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
		return 0;

158 159 160
	if (nonblocking)
		return query_variable_store_nonblocking(attributes, size);

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
	status = efi.query_variable_info(attributes, &storage_size,
					 &remaining_size, &max_size);
	if (status != EFI_SUCCESS)
		return status;

	/*
	 * We account for that by refusing the write if permitting it would
	 * reduce the available space to under 5KB. This figure was provided by
	 * Samsung, so should be safe.
	 */
	if ((remaining_size - size < EFI_MIN_RESERVE) &&
		!efi_no_storage_paranoia) {

		/*
		 * Triggering garbage collection may require that the firmware
		 * generate a real EFI_OUT_OF_RESOURCES error. We can force
		 * that by attempting to use more space than is available.
		 */
		unsigned long dummy_size = remaining_size + 1024;
180
		void *dummy = kzalloc(dummy_size, GFP_KERNEL);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

		if (!dummy)
			return EFI_OUT_OF_RESOURCES;

		status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
					  EFI_VARIABLE_NON_VOLATILE |
					  EFI_VARIABLE_BOOTSERVICE_ACCESS |
					  EFI_VARIABLE_RUNTIME_ACCESS,
					  dummy_size, dummy);

		if (status == EFI_SUCCESS) {
			/*
			 * This should have failed, so if it didn't make sure
			 * that we delete it...
			 */
			efi_delete_dummy_variable();
		}

		kfree(dummy);

		/*
		 * The runtime code may now have triggered a garbage collection
		 * run, so check the variable info again
		 */
		status = efi.query_variable_info(attributes, &storage_size,
						 &remaining_size, &max_size);

		if (status != EFI_SUCCESS)
			return status;

		/*
		 * There still isn't enough room, so return an error
		 */
		if (remaining_size - size < EFI_MIN_RESERVE)
			return EFI_OUT_OF_RESOURCES;
	}

	return EFI_SUCCESS;
}
EXPORT_SYMBOL_GPL(efi_query_variable_store);

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
/*
 * The UEFI specification makes it clear that the operating system is
 * free to do whatever it wants with boot services code after
 * ExitBootServices() has been called. Ignoring this recommendation a
 * significant bunch of EFI implementations continue calling into boot
 * services code (SetVirtualAddressMap). In order to work around such
 * buggy implementations we reserve boot services region during EFI
 * init and make sure it stays executable. Then, after
 * SetVirtualAddressMap(), it is discarded.
 *
 * However, some boot services regions contain data that is required
 * by drivers, so we need to track which memory ranges can never be
 * freed. This is done by tagging those regions with the
 * EFI_MEMORY_RUNTIME attribute.
 *
 * Any driver that wants to mark a region as reserved must use
 * efi_mem_reserve() which will insert a new EFI memory descriptor
 * into efi.memmap (splitting existing regions if necessary) and tag
 * it with EFI_MEMORY_RUNTIME.
 */
void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
{
	phys_addr_t new_phys, new_size;
	struct efi_mem_range mr;
	efi_memory_desc_t md;
	int num_entries;
	void *new;

	if (efi_mem_desc_lookup(addr, &md)) {
		pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
		return;
	}

	if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
		pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
		return;
	}

260 261 262 263
	/* No need to reserve regions that will never be freed. */
	if (md.attribute & EFI_MEMORY_RUNTIME)
		return;

264 265 266 267
	size += addr % EFI_PAGE_SIZE;
	size = round_up(size, EFI_PAGE_SIZE);
	addr = round_down(addr, EFI_PAGE_SIZE);

268
	mr.range.start = addr;
269
	mr.range.end = addr + size - 1;
270 271 272 273 274 275 276
	mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;

	num_entries = efi_memmap_split_count(&md, &mr.range);
	num_entries += efi.memmap.nr_map;

	new_size = efi.memmap.desc_size * num_entries;

277
	new_phys = efi_memmap_alloc(num_entries);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	if (!new_phys) {
		pr_err("Could not allocate boot services memmap\n");
		return;
	}

	new = early_memremap(new_phys, new_size);
	if (!new) {
		pr_err("Failed to map new boot services memmap\n");
		return;
	}

	efi_memmap_insert(&efi.memmap, new, &mr);
	early_memunmap(new, new_size);

	efi_memmap_install(new_phys, num_entries);
}

295 296 297 298 299 300 301 302
/*
 * Helper function for efi_reserve_boot_services() to figure out if we
 * can free regions in efi_free_boot_services().
 *
 * Use this function to ensure we do not free regions owned by somebody
 * else. We must only reserve (and then free) regions:
 *
 * - Not within any part of the kernel
303
 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
304 305 306 307 308 309
 */
static bool can_free_region(u64 start, u64 size)
{
	if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
		return false;

310
	if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
311 312 313 314 315
		return false;

	return true;
}

316 317
void __init efi_reserve_boot_services(void)
{
318
	efi_memory_desc_t *md;
319

320
	for_each_efi_memory_desc(md) {
321 322
		u64 start = md->phys_addr;
		u64 size = md->num_pages << EFI_PAGE_SHIFT;
323
		bool already_reserved;
324 325 326 327

		if (md->type != EFI_BOOT_SERVICES_CODE &&
		    md->type != EFI_BOOT_SERVICES_DATA)
			continue;
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

		already_reserved = memblock_is_region_reserved(start, size);

		/*
		 * Because the following memblock_reserve() is paired
		 * with free_bootmem_late() for this region in
		 * efi_free_boot_services(), we must be extremely
		 * careful not to reserve, and subsequently free,
		 * critical regions of memory (like the kernel image) or
		 * those regions that somebody else has already
		 * reserved.
		 *
		 * A good example of a critical region that must not be
		 * freed is page zero (first 4Kb of memory), which may
		 * contain boot services code/data but is marked
343
		 * E820_TYPE_RESERVED by trim_bios_range().
344 345
		 */
		if (!already_reserved) {
346
			memblock_reserve(start, size);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

			/*
			 * If we are the first to reserve the region, no
			 * one else cares about it. We own it and can
			 * free it later.
			 */
			if (can_free_region(start, size))
				continue;
		}

		/*
		 * We don't own the region. We must not free it.
		 *
		 * Setting this bit for a boot services region really
		 * doesn't make sense as far as the firmware is
		 * concerned, but it does provide us with a way to tag
		 * those regions that must not be paired with
		 * free_bootmem_late().
		 */
		md->attribute |= EFI_MEMORY_RUNTIME;
367 368 369 370 371
	}
}

void __init efi_free_boot_services(void)
{
372
	phys_addr_t new_phys, new_size;
373
	efi_memory_desc_t *md;
374 375
	int num_entries = 0;
	void *new, *new_md;
376

377
	for_each_efi_memory_desc(md) {
378 379
		unsigned long long start = md->phys_addr;
		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
380
		size_t rm_size;
381 382

		if (md->type != EFI_BOOT_SERVICES_CODE &&
383 384
		    md->type != EFI_BOOT_SERVICES_DATA) {
			num_entries++;
385
			continue;
386
		}
387

388
		/* Do not free, someone else owns it: */
389 390
		if (md->attribute & EFI_MEMORY_RUNTIME) {
			num_entries++;
391
			continue;
392
		}
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
		/*
		 * Nasty quirk: if all sub-1MB memory is used for boot
		 * services, we can get here without having allocated the
		 * real mode trampoline.  It's too late to hand boot services
		 * memory back to the memblock allocator, so instead
		 * try to manually allocate the trampoline if needed.
		 *
		 * I've seen this on a Dell XPS 13 9350 with firmware
		 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
		 * grub2-efi on a hard disk.  (And no, I don't know why
		 * this happened, but Linux should still try to boot rather
		 * panicing early.)
		 */
		rm_size = real_mode_size_needed();
		if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
			set_real_mode_mem(start, rm_size);
			start += rm_size;
			size -= rm_size;
		}

414 415
		free_bootmem_late(start, size);
	}
416

417 418 419
	if (!num_entries)
		return;

420
	new_size = efi.memmap.desc_size * num_entries;
421
	new_phys = efi_memmap_alloc(num_entries);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
	if (!new_phys) {
		pr_err("Failed to allocate new EFI memmap\n");
		return;
	}

	new = memremap(new_phys, new_size, MEMREMAP_WB);
	if (!new) {
		pr_err("Failed to map new EFI memmap\n");
		return;
	}

	/*
	 * Build a new EFI memmap that excludes any boot services
	 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
	 * regions have now been freed.
	 */
	new_md = new;
	for_each_efi_memory_desc(md) {
		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
		    (md->type == EFI_BOOT_SERVICES_CODE ||
		     md->type == EFI_BOOT_SERVICES_DATA))
			continue;

		memcpy(new_md, md, efi.memmap.desc_size);
		new_md += efi.memmap.desc_size;
	}

	memunmap(new);

	if (efi_memmap_install(new_phys, num_entries)) {
		pr_err("Could not install new EFI memmap\n");
		return;
	}
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
}

/*
 * A number of config table entries get remapped to virtual addresses
 * after entering EFI virtual mode. However, the kexec kernel requires
 * their physical addresses therefore we pass them via setup_data and
 * correct those entries to their respective physical addresses here.
 *
 * Currently only handles smbios which is necessary for some firmware
 * implementation.
 */
int __init efi_reuse_config(u64 tables, int nr_tables)
{
	int i, sz, ret = 0;
	void *p, *tablep;
	struct efi_setup_data *data;

	if (!efi_setup)
		return 0;

	if (!efi_enabled(EFI_64BIT))
		return 0;

	data = early_memremap(efi_setup, sizeof(*data));
	if (!data) {
		ret = -ENOMEM;
		goto out;
	}

	if (!data->smbios)
		goto out_memremap;

	sz = sizeof(efi_config_table_64_t);

	p = tablep = early_memremap(tables, nr_tables * sz);
	if (!p) {
		pr_err("Could not map Configuration table!\n");
		ret = -ENOMEM;
		goto out_memremap;
	}

	for (i = 0; i < efi.systab->nr_tables; i++) {
		efi_guid_t guid;

		guid = ((efi_config_table_64_t *)p)->guid;

		if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
			((efi_config_table_64_t *)p)->table = data->smbios;
		p += sz;
	}
505
	early_memunmap(tablep, nr_tables * sz);
506 507

out_memremap:
508
	early_memunmap(data, sizeof(*data));
509 510 511 512
out:
	return ret;
}

513 514 515 516 517 518 519 520 521 522
static const struct dmi_system_id sgi_uv1_dmi[] = {
	{ NULL, "SGI UV1",
		{	DMI_MATCH(DMI_PRODUCT_NAME,	"Stoutland Platform"),
			DMI_MATCH(DMI_PRODUCT_VERSION,	"1.0"),
			DMI_MATCH(DMI_BIOS_VENDOR,	"SGI.COM"),
		}
	},
	{ } /* NULL entry stops DMI scanning */
};

523 524 525 526 527 528 529 530
void __init efi_apply_memmap_quirks(void)
{
	/*
	 * Once setup is done earlier, unmap the EFI memory map on mismatched
	 * firmware/kernel architectures since there is no support for runtime
	 * services.
	 */
	if (!efi_runtime_supported()) {
531
		pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
532
		efi_memmap_unmap();
533 534
	}

535 536
	/* UV2+ BIOS has a fix for this issue.  UV1 still needs the quirk. */
	if (dmi_check_system(sgi_uv1_dmi))
537 538
		set_bit(EFI_OLD_MEMMAP, &efi.flags);
}
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558

/*
 * For most modern platforms the preferred method of powering off is via
 * ACPI. However, there are some that are known to require the use of
 * EFI runtime services and for which ACPI does not work at all.
 *
 * Using EFI is a last resort, to be used only if no other option
 * exists.
 */
bool efi_reboot_required(void)
{
	if (!acpi_gbl_reduced_hardware)
		return false;

	efi_reboot_quirk_mode = EFI_RESET_WARM;
	return true;
}

bool efi_poweroff_required(void)
{
559
	return acpi_gbl_reduced_hardware || acpi_no_s5;
560
}
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

#ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH

static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff,
				  size_t hdr_bytes)
{
	struct quark_security_header *csh = *pkbuff;

	/* Only process data block that is larger than the security header */
	if (hdr_bytes < sizeof(struct quark_security_header))
		return 0;

	if (csh->csh_signature != QUARK_CSH_SIGNATURE ||
	    csh->headersize != QUARK_SECURITY_HEADER_SIZE)
		return 1;

	/* Only process data block if EFI header is included */
	if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE +
			sizeof(efi_capsule_header_t))
		return 0;

	pr_debug("Quark security header detected\n");

	if (csh->rsvd_next_header != 0) {
		pr_err("multiple Quark security headers not supported\n");
		return -EINVAL;
	}

	*pkbuff += csh->headersize;
	cap_info->total_size = csh->headersize;

	/*
	 * Update the first page pointer to skip over the CSH header.
	 */
595 596 597 598 599 600 601 602 603 604 605 606
	cap_info->phys[0] += csh->headersize;

	/*
	 * cap_info->capsule should point at a virtual mapping of the entire
	 * capsule, starting at the capsule header. Our image has the Quark
	 * security header prepended, so we cannot rely on the default vmap()
	 * mapping created by the generic capsule code.
	 * Given that the Quark firmware does not appear to care about the
	 * virtual mapping, let's just point cap_info->capsule at our copy
	 * of the capsule header.
	 */
	cap_info->capsule = &cap_info->header;
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

	return 1;
}

#define ICPU(family, model, quirk_handler) \
	{ X86_VENDOR_INTEL, family, model, X86_FEATURE_ANY, \
	  (unsigned long)&quirk_handler }

static const struct x86_cpu_id efi_capsule_quirk_ids[] = {
	ICPU(5, 9, qrk_capsule_setup_info),	/* Intel Quark X1000 */
	{ }
};

int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff,
			   size_t hdr_bytes)
{
	int (*quirk_handler)(struct capsule_info *, void **, size_t);
	const struct x86_cpu_id *id;
	int ret;

	if (hdr_bytes < sizeof(efi_capsule_header_t))
		return 0;

	cap_info->total_size = 0;

	id = x86_match_cpu(efi_capsule_quirk_ids);
	if (id) {
		/*
		 * The quirk handler is supposed to return
		 *  - a value > 0 if the setup should continue, after advancing
		 *    kbuff as needed
		 *  - 0 if not enough hdr_bytes are available yet
		 *  - a negative error code otherwise
		 */
		quirk_handler = (typeof(quirk_handler))id->driver_data;
		ret = quirk_handler(cap_info, &kbuff, hdr_bytes);
		if (ret <= 0)
			return ret;
	}

	memcpy(&cap_info->header, kbuff, sizeof(cap_info->header));

	cap_info->total_size += cap_info->header.imagesize;

	return __efi_capsule_setup_info(cap_info);
}

#endif