dump_pagetables.c 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Debug helper to dump the current kernel pagetables of the system
 * so that we can see what the various memory ranges are set to.
 *
 * (C) Copyright 2008 Intel Corporation
 *
 * Author: Arjan van de Ven <arjan@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

15
#include <linux/debugfs.h>
16
#include <linux/kasan.h>
17
#include <linux/mm.h>
18
#include <linux/init.h>
19
#include <linux/sched.h>
20 21 22 23 24 25 26 27 28 29 30 31
#include <linux/seq_file.h>

#include <asm/pgtable.h>

/*
 * The dumper groups pagetable entries of the same type into one, and for
 * that it needs to keep some state when walking, and flush this state
 * when a "break" in the continuity is found.
 */
struct pg_state {
	int level;
	pgprot_t current_prot;
32
	pgprotval_t effective_prot;
33 34
	unsigned long start_address;
	unsigned long current_address;
35
	const struct addr_marker *marker;
36
	unsigned long lines;
37
	bool to_dmesg;
S
Stephen Smalley 已提交
38 39
	bool check_wx;
	unsigned long wx_pages;
40 41
};

42 43 44
struct addr_marker {
	unsigned long start_address;
	const char *name;
45
	unsigned long max_lines;
46 47
};

48 49 50 51
/* Address space markers hints */

#ifdef CONFIG_X86_64

52 53 54 55
enum address_markers_idx {
	USER_SPACE_NR = 0,
	KERNEL_SPACE_NR,
	LOW_KERNEL_NR,
56 57 58
#if defined(CONFIG_MODIFY_LDT_SYSCALL) && defined(CONFIG_X86_5LEVEL)
	LDT_NR,
#endif
59 60
	VMALLOC_START_NR,
	VMEMMAP_START_NR,
61 62 63
#ifdef CONFIG_KASAN
	KASAN_SHADOW_START_NR,
	KASAN_SHADOW_END_NR,
64
#endif
65
	CPU_ENTRY_AREA_NR,
66 67
#if defined(CONFIG_MODIFY_LDT_SYSCALL) && !defined(CONFIG_X86_5LEVEL)
	LDT_NR,
68
#endif
69
#ifdef CONFIG_X86_ESPFIX64
70
	ESPFIX_START_NR,
71 72 73 74
#endif
#ifdef CONFIG_EFI
	EFI_END_NR,
#endif
75 76 77
	HIGH_KERNEL_NR,
	MODULES_VADDR_NR,
	MODULES_END_NR,
78 79 80 81 82 83 84 85 86 87 88
	FIXADDR_START_NR,
	END_OF_SPACE_NR,
};

static struct addr_marker address_markers[] = {
	[USER_SPACE_NR]		= { 0,			"User Space" },
	[KERNEL_SPACE_NR]	= { (1UL << 63),	"Kernel Space" },
	[LOW_KERNEL_NR]		= { 0UL,		"Low Kernel Mapping" },
	[VMALLOC_START_NR]	= { 0UL,		"vmalloc() Area" },
	[VMEMMAP_START_NR]	= { 0UL,		"Vmemmap" },
#ifdef CONFIG_KASAN
89 90 91 92 93 94
	/*
	 * These fields get initialized with the (dynamic)
	 * KASAN_SHADOW_{START,END} values in pt_dump_init().
	 */
	[KASAN_SHADOW_START_NR]	= { 0UL,		"KASAN shadow" },
	[KASAN_SHADOW_END_NR]	= { 0UL,		"KASAN shadow end" },
95 96
#endif
#ifdef CONFIG_MODIFY_LDT_SYSCALL
97
	[LDT_NR]		= { 0UL,		"LDT remap" },
98
#endif
99
	[CPU_ENTRY_AREA_NR]	= { CPU_ENTRY_AREA_BASE,"CPU entry Area" },
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_X86_ESPFIX64
	[ESPFIX_START_NR]	= { ESPFIX_BASE_ADDR,	"ESPfix Area", 16 },
#endif
#ifdef CONFIG_EFI
	[EFI_END_NR]		= { EFI_VA_END,		"EFI Runtime Services" },
#endif
	[HIGH_KERNEL_NR]	= { __START_KERNEL_map,	"High Kernel Mapping" },
	[MODULES_VADDR_NR]	= { MODULES_VADDR,	"Modules" },
	[MODULES_END_NR]	= { MODULES_END,	"End Modules" },
	[FIXADDR_START_NR]	= { FIXADDR_START,	"Fixmap Area" },
	[END_OF_SPACE_NR]	= { -1,			NULL }
};

#else /* CONFIG_X86_64 */

enum address_markers_idx {
	USER_SPACE_NR = 0,
117 118 119
	KERNEL_SPACE_NR,
	VMALLOC_START_NR,
	VMALLOC_END_NR,
120
#ifdef CONFIG_HIGHMEM
121 122
	PKMAP_BASE_NR,
#endif
123
	CPU_ENTRY_AREA_NR,
124 125
	FIXADDR_START_NR,
	END_OF_SPACE_NR,
126 127
};

128
static struct addr_marker address_markers[] = {
129 130 131 132 133 134
	[USER_SPACE_NR]		= { 0,			"User Space" },
	[KERNEL_SPACE_NR]	= { PAGE_OFFSET,	"Kernel Mapping" },
	[VMALLOC_START_NR]	= { 0UL,		"vmalloc() Area" },
	[VMALLOC_END_NR]	= { 0UL,		"vmalloc() End" },
#ifdef CONFIG_HIGHMEM
	[PKMAP_BASE_NR]		= { 0UL,		"Persistent kmap() Area" },
135
#endif
136
	[CPU_ENTRY_AREA_NR]	= { 0UL,		"CPU entry area" },
137 138
	[FIXADDR_START_NR]	= { 0UL,		"Fixmap area" },
	[END_OF_SPACE_NR]	= { -1,			NULL }
139
};
140

141 142
#endif /* !CONFIG_X86_64 */

143 144 145 146
/* Multipliers for offsets within the PTEs */
#define PTE_LEVEL_MULT (PAGE_SIZE)
#define PMD_LEVEL_MULT (PTRS_PER_PTE * PTE_LEVEL_MULT)
#define PUD_LEVEL_MULT (PTRS_PER_PMD * PMD_LEVEL_MULT)
147
#define P4D_LEVEL_MULT (PTRS_PER_PUD * PUD_LEVEL_MULT)
148
#define PGD_LEVEL_MULT (PTRS_PER_P4D * P4D_LEVEL_MULT)
149

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
#define pt_dump_seq_printf(m, to_dmesg, fmt, args...)		\
({								\
	if (to_dmesg)					\
		printk(KERN_INFO fmt, ##args);			\
	else							\
		if (m)						\
			seq_printf(m, fmt, ##args);		\
})

#define pt_dump_cont_printf(m, to_dmesg, fmt, args...)		\
({								\
	if (to_dmesg)					\
		printk(KERN_CONT fmt, ##args);			\
	else							\
		if (m)						\
			seq_printf(m, fmt, ##args);		\
})

168 169 170
/*
 * Print a readable form of a pgprot_t to the seq_file
 */
171
static void printk_prot(struct seq_file *m, pgprot_t prot, int level, bool dmsg)
172
{
173 174
	pgprotval_t pr = pgprot_val(prot);
	static const char * const level_name[] =
175
		{ "cr3", "pgd", "p4d", "pud", "pmd", "pte" };
176

177
	if (!(pr & _PAGE_PRESENT)) {
178
		/* Not present */
179
		pt_dump_cont_printf(m, dmsg, "                              ");
180 181
	} else {
		if (pr & _PAGE_USER)
182
			pt_dump_cont_printf(m, dmsg, "USR ");
183
		else
184
			pt_dump_cont_printf(m, dmsg, "    ");
185
		if (pr & _PAGE_RW)
186
			pt_dump_cont_printf(m, dmsg, "RW ");
187
		else
188
			pt_dump_cont_printf(m, dmsg, "ro ");
189
		if (pr & _PAGE_PWT)
190
			pt_dump_cont_printf(m, dmsg, "PWT ");
191
		else
192
			pt_dump_cont_printf(m, dmsg, "    ");
193
		if (pr & _PAGE_PCD)
194
			pt_dump_cont_printf(m, dmsg, "PCD ");
195
		else
196
			pt_dump_cont_printf(m, dmsg, "    ");
197

198
		/* Bit 7 has a different meaning on level 3 vs 4 */
199
		if (level <= 4 && pr & _PAGE_PSE)
200 201 202
			pt_dump_cont_printf(m, dmsg, "PSE ");
		else
			pt_dump_cont_printf(m, dmsg, "    ");
203 204
		if ((level == 5 && pr & _PAGE_PAT) ||
		    ((level == 4 || level == 3) && pr & _PAGE_PAT_LARGE))
205
			pt_dump_cont_printf(m, dmsg, "PAT ");
206 207
		else
			pt_dump_cont_printf(m, dmsg, "    ");
208
		if (pr & _PAGE_GLOBAL)
209
			pt_dump_cont_printf(m, dmsg, "GLB ");
210
		else
211
			pt_dump_cont_printf(m, dmsg, "    ");
212
		if (pr & _PAGE_NX)
213
			pt_dump_cont_printf(m, dmsg, "NX ");
214
		else
215
			pt_dump_cont_printf(m, dmsg, "x  ");
216
	}
217
	pt_dump_cont_printf(m, dmsg, "%s\n", level_name[level]);
218 219 220
}

/*
221
 * On 64 bits, sign-extend the 48 bit address to 64 bit
222
 */
223
static unsigned long normalize_addr(unsigned long u)
224
{
225 226 227 228 229 230
	int shift;
	if (!IS_ENABLED(CONFIG_X86_64))
		return u;

	shift = 64 - (__VIRTUAL_MASK_SHIFT + 1);
	return (signed long)(u << shift) >> shift;
231 232 233 234 235 236 237 238
}

/*
 * This function gets called on a break in a continuous series
 * of PTE entries; the next one is different so we need to
 * print what we collected so far.
 */
static void note_page(struct seq_file *m, struct pg_state *st,
239
		      pgprot_t new_prot, pgprotval_t new_eff, int level)
240
{
241
	pgprotval_t prot, cur, eff;
242
	static const char units[] = "BKMGTPE";
243 244 245

	/*
	 * If we have a "break" in the series, we need to flush the state that
246 247
	 * we have now. "break" is either changing perms, levels or
	 * address space marker.
248
	 */
249 250
	prot = pgprot_val(new_prot);
	cur = pgprot_val(st->current_prot);
251
	eff = st->effective_prot;
252

253 254 255
	if (!st->level) {
		/* First entry */
		st->current_prot = new_prot;
256
		st->effective_prot = new_eff;
257 258
		st->level = level;
		st->marker = address_markers;
259
		st->lines = 0;
260 261
		pt_dump_seq_printf(m, st->to_dmesg, "---[ %s ]---\n",
				   st->marker->name);
262
	} else if (prot != cur || new_eff != eff || level != st->level ||
263 264
		   st->current_address >= st->marker[1].start_address) {
		const char *unit = units;
265
		unsigned long delta;
266
		int width = sizeof(unsigned long) * 2;
S
Stephen Smalley 已提交
267

268
		if (st->check_wx && (eff & _PAGE_RW) && !(eff & _PAGE_NX)) {
S
Stephen Smalley 已提交
269 270 271 272 273 274 275
			WARN_ONCE(1,
				  "x86/mm: Found insecure W+X mapping at address %p/%pS\n",
				  (void *)st->start_address,
				  (void *)st->start_address);
			st->wx_pages += (st->current_address -
					 st->start_address) / PAGE_SIZE;
		}
276 277 278 279

		/*
		 * Now print the actual finished series
		 */
280 281 282 283 284 285
		if (!st->marker->max_lines ||
		    st->lines < st->marker->max_lines) {
			pt_dump_seq_printf(m, st->to_dmesg,
					   "0x%0*lx-0x%0*lx   ",
					   width, st->start_address,
					   width, st->current_address);
286

287 288 289 290 291 292 293 294 295
			delta = st->current_address - st->start_address;
			while (!(delta & 1023) && unit[1]) {
				delta >>= 10;
				unit++;
			}
			pt_dump_cont_printf(m, st->to_dmesg, "%9lu%c ",
					    delta, *unit);
			printk_prot(m, st->current_prot, st->level,
				    st->to_dmesg);
296
		}
297
		st->lines++;
298 299 300 301 302 303 304

		/*
		 * We print markers for special areas of address space,
		 * such as the start of vmalloc space etc.
		 * This helps in the interpretation.
		 */
		if (st->current_address >= st->marker[1].start_address) {
305 306 307 308 309 310 311 312 313
			if (st->marker->max_lines &&
			    st->lines > st->marker->max_lines) {
				unsigned long nskip =
					st->lines - st->marker->max_lines;
				pt_dump_seq_printf(m, st->to_dmesg,
						   "... %lu entr%s skipped ... \n",
						   nskip,
						   nskip == 1 ? "y" : "ies");
			}
314
			st->marker++;
315
			st->lines = 0;
316 317
			pt_dump_seq_printf(m, st->to_dmesg, "---[ %s ]---\n",
					   st->marker->name);
318
		}
319

320 321
		st->start_address = st->current_address;
		st->current_prot = new_prot;
322
		st->effective_prot = new_eff;
323
		st->level = level;
324
	}
325 326
}

327 328 329 330 331 332 333 334
static inline pgprotval_t effective_prot(pgprotval_t prot1, pgprotval_t prot2)
{
	return (prot1 & prot2 & (_PAGE_USER | _PAGE_RW)) |
	       ((prot1 | prot2) & _PAGE_NX);
}

static void walk_pte_level(struct seq_file *m, struct pg_state *st, pmd_t addr,
			   pgprotval_t eff_in, unsigned long P)
335 336 337
{
	int i;
	pte_t *start;
338
	pgprotval_t prot, eff;
339

340
	start = (pte_t *)pmd_page_vaddr(addr);
341
	for (i = 0; i < PTRS_PER_PTE; i++) {
342
		prot = pte_flags(*start);
343
		eff = effective_prot(eff_in, prot);
344
		st->current_address = normalize_addr(P + i * PTE_LEVEL_MULT);
345
		note_page(m, st, __pgprot(prot), eff, 5);
346 347 348
		start++;
	}
}
349 350 351 352 353 354 355 356 357 358 359 360 361
#ifdef CONFIG_KASAN

/*
 * This is an optimization for KASAN=y case. Since all kasan page tables
 * eventually point to the kasan_zero_page we could call note_page()
 * right away without walking through lower level page tables. This saves
 * us dozens of seconds (minutes for 5-level config) while checking for
 * W+X mapping or reading kernel_page_tables debugfs file.
 */
static inline bool kasan_page_table(struct seq_file *m, struct pg_state *st,
				void *pt)
{
	if (__pa(pt) == __pa(kasan_zero_pmd) ||
362
	    (pgtable_l5_enabled && __pa(pt) == __pa(kasan_zero_p4d)) ||
363 364
	    __pa(pt) == __pa(kasan_zero_pud)) {
		pgprotval_t prot = pte_flags(kasan_zero_pte[0]);
365
		note_page(m, st, __pgprot(prot), 0, 5);
366 367 368 369 370 371 372 373 374 375 376
		return true;
	}
	return false;
}
#else
static inline bool kasan_page_table(struct seq_file *m, struct pg_state *st,
				void *pt)
{
	return false;
}
#endif
377

378
#if PTRS_PER_PMD > 1
379

380 381
static void walk_pmd_level(struct seq_file *m, struct pg_state *st, pud_t addr,
			   pgprotval_t eff_in, unsigned long P)
382 383
{
	int i;
384
	pmd_t *start, *pmd_start;
385
	pgprotval_t prot, eff;
386

387
	pmd_start = start = (pmd_t *)pud_page_vaddr(addr);
388
	for (i = 0; i < PTRS_PER_PMD; i++) {
389
		st->current_address = normalize_addr(P + i * PMD_LEVEL_MULT);
390
		if (!pmd_none(*start)) {
391 392
			prot = pmd_flags(*start);
			eff = effective_prot(eff_in, prot);
393
			if (pmd_large(*start) || !pmd_present(*start)) {
394
				note_page(m, st, __pgprot(prot), eff, 4);
395
			} else if (!kasan_page_table(m, st, pmd_start)) {
396
				walk_pte_level(m, st, *start, eff,
397
					       P + i * PMD_LEVEL_MULT);
398
			}
399
		} else
400
			note_page(m, st, __pgprot(0), 0, 4);
401 402 403 404
		start++;
	}
}

405
#else
406
#define walk_pmd_level(m,s,a,e,p) walk_pte_level(m,s,__pmd(pud_val(a)),e,p)
407 408 409
#define pud_large(a) pmd_large(__pmd(pud_val(a)))
#define pud_none(a)  pmd_none(__pmd(pud_val(a)))
#endif
410

411 412
#if PTRS_PER_PUD > 1

413 414
static void walk_pud_level(struct seq_file *m, struct pg_state *st, p4d_t addr,
			   pgprotval_t eff_in, unsigned long P)
415 416
{
	int i;
417
	pud_t *start, *pud_start;
418
	pgprotval_t prot, eff;
419
	pud_t *prev_pud = NULL;
420

421
	pud_start = start = (pud_t *)p4d_page_vaddr(addr);
422 423

	for (i = 0; i < PTRS_PER_PUD; i++) {
424
		st->current_address = normalize_addr(P + i * PUD_LEVEL_MULT);
425
		if (!pud_none(*start)) {
426 427
			prot = pud_flags(*start);
			eff = effective_prot(eff_in, prot);
428
			if (pud_large(*start) || !pud_present(*start)) {
429
				note_page(m, st, __pgprot(prot), eff, 3);
430
			} else if (!kasan_page_table(m, st, pud_start)) {
431
				walk_pmd_level(m, st, *start, eff,
432
					       P + i * PUD_LEVEL_MULT);
433
			}
434
		} else
435
			note_page(m, st, __pgprot(0), 0, 3);
436

437
		prev_pud = start;
438 439 440 441
		start++;
	}
}

442
#else
443
#define walk_pud_level(m,s,a,e,p) walk_pmd_level(m,s,__pud(p4d_val(a)),e,p)
444 445 446 447
#define p4d_large(a) pud_large(__pud(p4d_val(a)))
#define p4d_none(a)  pud_none(__pud(p4d_val(a)))
#endif

448 449
static void walk_p4d_level(struct seq_file *m, struct pg_state *st, pgd_t addr,
			   pgprotval_t eff_in, unsigned long P)
450 451
{
	int i;
452
	p4d_t *start, *p4d_start;
453
	pgprotval_t prot, eff;
454

455
	if (PTRS_PER_P4D == 1)
456
		return walk_pud_level(m, st, __p4d(pgd_val(addr)), eff_in, P);
457

458
	p4d_start = start = (p4d_t *)pgd_page_vaddr(addr);
459 460 461 462

	for (i = 0; i < PTRS_PER_P4D; i++) {
		st->current_address = normalize_addr(P + i * P4D_LEVEL_MULT);
		if (!p4d_none(*start)) {
463 464
			prot = p4d_flags(*start);
			eff = effective_prot(eff_in, prot);
465
			if (p4d_large(*start) || !p4d_present(*start)) {
466
				note_page(m, st, __pgprot(prot), eff, 2);
467
			} else if (!kasan_page_table(m, st, p4d_start)) {
468
				walk_pud_level(m, st, *start, eff,
469 470 471
					       P + i * P4D_LEVEL_MULT);
			}
		} else
472
			note_page(m, st, __pgprot(0), 0, 2);
473 474 475 476 477

		start++;
	}
}

478 479
#define pgd_large(a) (pgtable_l5_enabled ? pgd_large(a) : p4d_large(__p4d(pgd_val(a))))
#define pgd_none(a)  (pgtable_l5_enabled ? pgd_none(a) : p4d_none(__p4d(pgd_val(a))))
480

481 482
static inline bool is_hypervisor_range(int idx)
{
483
#ifdef CONFIG_X86_64
484 485 486 487
	/*
	 * ffff800000000000 - ffff87ffffffffff is reserved for
	 * the hypervisor.
	 */
488 489
	return	(idx >= pgd_index(__PAGE_OFFSET) - 16) &&
		(idx <  pgd_index(__PAGE_OFFSET));
490
#else
491
	return false;
492
#endif
493
}
494

S
Stephen Smalley 已提交
495
static void ptdump_walk_pgd_level_core(struct seq_file *m, pgd_t *pgd,
496
				       bool checkwx, bool dmesg)
497
{
498
#ifdef CONFIG_X86_64
499
	pgd_t *start = (pgd_t *) &init_top_pgt;
500 501 502
#else
	pgd_t *start = swapper_pg_dir;
#endif
503
	pgprotval_t prot, eff;
504
	int i;
505
	struct pg_state st = {};
506

507 508
	if (pgd) {
		start = pgd;
509
		st.to_dmesg = dmesg;
510
	}
511

S
Stephen Smalley 已提交
512 513 514 515
	st.check_wx = checkwx;
	if (checkwx)
		st.wx_pages = 0;

516
	for (i = 0; i < PTRS_PER_PGD; i++) {
517
		st.current_address = normalize_addr(i * PGD_LEVEL_MULT);
518
		if (!pgd_none(*start) && !is_hypervisor_range(i)) {
519 520 521 522 523 524
			prot = pgd_flags(*start);
#ifdef CONFIG_X86_PAE
			eff = _PAGE_USER | _PAGE_RW;
#else
			eff = prot;
#endif
525
			if (pgd_large(*start) || !pgd_present(*start)) {
526
				note_page(m, &st, __pgprot(prot), eff, 1);
527
			} else {
528
				walk_p4d_level(m, &st, *start, eff,
529
					       i * PGD_LEVEL_MULT);
530
			}
531
		} else
532
			note_page(m, &st, __pgprot(0), 0, 1);
533

534
		cond_resched();
535 536
		start++;
	}
537 538 539

	/* Flush out the last page */
	st.current_address = normalize_addr(PTRS_PER_PGD*PGD_LEVEL_MULT);
540
	note_page(m, &st, __pgprot(0), 0, 0);
S
Stephen Smalley 已提交
541 542 543 544 545 546 547 548 549 550 551
	if (!checkwx)
		return;
	if (st.wx_pages)
		pr_info("x86/mm: Checked W+X mappings: FAILED, %lu W+X pages found.\n",
			st.wx_pages);
	else
		pr_info("x86/mm: Checked W+X mappings: passed, no W+X pages found.\n");
}

void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd)
{
552 553 554
	ptdump_walk_pgd_level_core(m, pgd, false, true);
}

555
void ptdump_walk_pgd_level_debugfs(struct seq_file *m, pgd_t *pgd, bool user)
556
{
557 558 559 560
#ifdef CONFIG_PAGE_TABLE_ISOLATION
	if (user && static_cpu_has(X86_FEATURE_PTI))
		pgd = kernel_to_user_pgdp(pgd);
#endif
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	ptdump_walk_pgd_level_core(m, pgd, false, false);
}
EXPORT_SYMBOL_GPL(ptdump_walk_pgd_level_debugfs);

static void ptdump_walk_user_pgd_level_checkwx(void)
{
#ifdef CONFIG_PAGE_TABLE_ISOLATION
	pgd_t *pgd = (pgd_t *) &init_top_pgt;

	if (!static_cpu_has(X86_FEATURE_PTI))
		return;

	pr_info("x86/mm: Checking user space page tables\n");
	pgd = kernel_to_user_pgdp(pgd);
	ptdump_walk_pgd_level_core(NULL, pgd, true, false);
#endif
577 578
}

S
Stephen Smalley 已提交
579 580
void ptdump_walk_pgd_level_checkwx(void)
{
581 582
	ptdump_walk_pgd_level_core(NULL, NULL, true, false);
	ptdump_walk_user_pgd_level_checkwx();
S
Stephen Smalley 已提交
583 584
}

585
static int __init pt_dump_init(void)
586
{
587 588 589 590 591 592 593 594
	/*
	 * Various markers are not compile-time constants, so assign them
	 * here.
	 */
#ifdef CONFIG_X86_64
	address_markers[LOW_KERNEL_NR].start_address = PAGE_OFFSET;
	address_markers[VMALLOC_START_NR].start_address = VMALLOC_START;
	address_markers[VMEMMAP_START_NR].start_address = VMEMMAP_START;
595 596 597
#ifdef CONFIG_MODIFY_LDT_SYSCALL
	address_markers[LDT_NR].start_address = LDT_BASE_ADDR;
#endif
598 599 600 601
#ifdef CONFIG_KASAN
	address_markers[KASAN_SHADOW_START_NR].start_address = KASAN_SHADOW_START;
	address_markers[KASAN_SHADOW_END_NR].start_address = KASAN_SHADOW_END;
#endif
602
#endif
603
#ifdef CONFIG_X86_32
604 605
	address_markers[VMALLOC_START_NR].start_address = VMALLOC_START;
	address_markers[VMALLOC_END_NR].start_address = VMALLOC_END;
606
# ifdef CONFIG_HIGHMEM
607
	address_markers[PKMAP_BASE_NR].start_address = PKMAP_BASE;
608
# endif
609
	address_markers[FIXADDR_START_NR].start_address = FIXADDR_START;
610
	address_markers[CPU_ENTRY_AREA_NR].start_address = CPU_ENTRY_AREA_BASE;
611
#endif
612 613 614
	return 0;
}
__initcall(pt_dump_init);