hid-playstation.c 62.6 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *  HID driver for Sony DualSense(TM) controller.
 *
5
 *  Copyright (c) 2020-2022 Sony Interactive Entertainment
6 7 8
 */

#include <linux/bits.h>
9
#include <linux/crc32.h>
10 11
#include <linux/device.h>
#include <linux/hid.h>
12
#include <linux/idr.h>
13
#include <linux/input/mt.h>
14 15
#include <linux/leds.h>
#include <linux/led-class-multicolor.h>
16 17 18 19 20 21
#include <linux/module.h>

#include <asm/unaligned.h>

#include "hid-ids.h"

22 23 24 25
/* List of connected playstation devices. */
static DEFINE_MUTEX(ps_devices_lock);
static LIST_HEAD(ps_devices_list);

26 27
static DEFINE_IDA(ps_player_id_allocator);

28 29 30 31
#define HID_PLAYSTATION_VERSION_PATCH 0x8000

/* Base class for playstation devices. */
struct ps_device {
32
	struct list_head list;
33
	struct hid_device *hdev;
34 35
	spinlock_t lock;

36 37
	uint32_t player_id;

38 39 40 41 42
	struct power_supply_desc battery_desc;
	struct power_supply *battery;
	uint8_t battery_capacity;
	int battery_status;

43
	const char *input_dev_name; /* Name of primary input device. */
44
	uint8_t mac_address[6]; /* Note: stored in little endian order. */
45 46
	uint32_t hw_version;
	uint32_t fw_version;
47 48

	int (*parse_report)(struct ps_device *dev, struct hid_report *report, u8 *data, int size);
49
	void (*remove)(struct ps_device *dev);
50 51
};

52 53 54 55 56 57 58 59
/* Calibration data for playstation motion sensors. */
struct ps_calibration_data {
	int abs_code;
	short bias;
	int sens_numer;
	int sens_denom;
};

60 61 62 63 64 65 66
struct ps_led_info {
	const char *name;
	const char *color;
	enum led_brightness (*brightness_get)(struct led_classdev *cdev);
	int (*brightness_set)(struct led_classdev *cdev, enum led_brightness);
};

67 68
/* Seed values for DualShock4 / DualSense CRC32 for different report types. */
#define PS_INPUT_CRC32_SEED	0xA1
69
#define PS_OUTPUT_CRC32_SEED	0xA2
70 71
#define PS_FEATURE_CRC32_SEED	0xA3

72 73
#define DS_INPUT_REPORT_USB			0x01
#define DS_INPUT_REPORT_USB_SIZE		64
74 75
#define DS_INPUT_REPORT_BT			0x31
#define DS_INPUT_REPORT_BT_SIZE			78
76 77 78 79
#define DS_OUTPUT_REPORT_USB			0x02
#define DS_OUTPUT_REPORT_USB_SIZE		63
#define DS_OUTPUT_REPORT_BT			0x31
#define DS_OUTPUT_REPORT_BT_SIZE		78
80

81 82
#define DS_FEATURE_REPORT_CALIBRATION		0x05
#define DS_FEATURE_REPORT_CALIBRATION_SIZE	41
83 84
#define DS_FEATURE_REPORT_PAIRING_INFO		0x09
#define DS_FEATURE_REPORT_PAIRING_INFO_SIZE	20
85 86
#define DS_FEATURE_REPORT_FIRMWARE_INFO		0x20
#define DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE	64
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/* Button masks for DualSense input report. */
#define DS_BUTTONS0_HAT_SWITCH	GENMASK(3, 0)
#define DS_BUTTONS0_SQUARE	BIT(4)
#define DS_BUTTONS0_CROSS	BIT(5)
#define DS_BUTTONS0_CIRCLE	BIT(6)
#define DS_BUTTONS0_TRIANGLE	BIT(7)
#define DS_BUTTONS1_L1		BIT(0)
#define DS_BUTTONS1_R1		BIT(1)
#define DS_BUTTONS1_L2		BIT(2)
#define DS_BUTTONS1_R2		BIT(3)
#define DS_BUTTONS1_CREATE	BIT(4)
#define DS_BUTTONS1_OPTIONS	BIT(5)
#define DS_BUTTONS1_L3		BIT(6)
#define DS_BUTTONS1_R3		BIT(7)
#define DS_BUTTONS2_PS_HOME	BIT(0)
#define DS_BUTTONS2_TOUCHPAD	BIT(1)
104
#define DS_BUTTONS2_MIC_MUTE	BIT(2)
105

106 107 108 109 110
/* Status field of DualSense input report. */
#define DS_STATUS_BATTERY_CAPACITY	GENMASK(3, 0)
#define DS_STATUS_CHARGING		GENMASK(7, 4)
#define DS_STATUS_CHARGING_SHIFT	4

111 112 113
/* Feature version from DualSense Firmware Info report. */
#define DS_FEATURE_VERSION(major, minor) ((major & 0xff) << 8 | (minor & 0xff))

114 115 116 117 118 119 120
/*
 * Status of a DualSense touch point contact.
 * Contact IDs, with highest bit set are 'inactive'
 * and any associated data is then invalid.
 */
#define DS_TOUCH_POINT_INACTIVE BIT(7)

121 122 123 124 125
 /* Magic value required in tag field of Bluetooth output report. */
#define DS_OUTPUT_TAG 0x10
/* Flags for DualSense output report. */
#define DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION BIT(0)
#define DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT BIT(1)
126 127
#define DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE BIT(0)
#define DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE BIT(1)
128 129
#define DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE BIT(2)
#define DS_OUTPUT_VALID_FLAG1_RELEASE_LEDS BIT(3)
130
#define DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE BIT(4)
131
#define DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE BIT(1)
132
#define DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2 BIT(2)
133
#define DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE BIT(4)
134
#define DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT BIT(1)
135

136
/* DualSense hardware limits */
137 138 139 140
#define DS_ACC_RES_PER_G	8192
#define DS_ACC_RANGE		(4*DS_ACC_RES_PER_G)
#define DS_GYRO_RES_PER_DEG_S	1024
#define DS_GYRO_RANGE		(2048*DS_GYRO_RES_PER_DEG_S)
141 142 143
#define DS_TOUCHPAD_WIDTH	1920
#define DS_TOUCHPAD_HEIGHT	1080

144 145 146
struct dualsense {
	struct ps_device base;
	struct input_dev *gamepad;
147
	struct input_dev *sensors;
148
	struct input_dev *touchpad;
149

150 151 152
	/* Update version is used as a feature/capability version. */
	uint16_t update_version;

153 154 155 156 157 158 159 160
	/* Calibration data for accelerometer and gyroscope. */
	struct ps_calibration_data accel_calib_data[3];
	struct ps_calibration_data gyro_calib_data[3];

	/* Timestamp for sensor data */
	bool sensor_timestamp_initialized;
	uint32_t prev_sensor_timestamp;
	uint32_t sensor_timestamp_us;
161 162

	/* Compatible rumble state */
163
	bool use_vibration_v2;
164 165 166 167
	bool update_rumble;
	uint8_t motor_left;
	uint8_t motor_right;

168
	/* RGB lightbar */
169
	struct led_classdev_mc lightbar;
170 171 172 173 174
	bool update_lightbar;
	uint8_t lightbar_red;
	uint8_t lightbar_green;
	uint8_t lightbar_blue;

175 176 177 178 179
	/* Microphone */
	bool update_mic_mute;
	bool mic_muted;
	bool last_btn_mic_state;

180 181 182 183 184
	/* Player leds */
	bool update_player_leds;
	uint8_t player_leds_state;
	struct led_classdev player_leds[5];

185
	struct work_struct output_worker;
186
	bool output_worker_initialized;
187 188
	void *output_report_dmabuf;
	uint8_t output_seq; /* Sequence number for output report. */
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
};

struct dualsense_touch_point {
	uint8_t contact;
	uint8_t x_lo;
	uint8_t x_hi:4, y_lo:4;
	uint8_t y_hi;
} __packed;
static_assert(sizeof(struct dualsense_touch_point) == 4);

/* Main DualSense input report excluding any BT/USB specific headers. */
struct dualsense_input_report {
	uint8_t x, y;
	uint8_t rx, ry;
	uint8_t z, rz;
	uint8_t seq_number;
	uint8_t buttons[4];
	uint8_t reserved[4];

	/* Motion sensors */
	__le16 gyro[3]; /* x, y, z */
	__le16 accel[3]; /* x, y, z */
	__le32 sensor_timestamp;
	uint8_t reserved2;

	/* Touchpad */
	struct dualsense_touch_point points[2];

	uint8_t reserved3[12];
	uint8_t status;
	uint8_t reserved4[10];
} __packed;
/* Common input report size shared equals the size of the USB report minus 1 byte for ReportID. */
static_assert(sizeof(struct dualsense_input_report) == DS_INPUT_REPORT_USB_SIZE - 1);

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Common data between DualSense BT/USB main output report. */
struct dualsense_output_report_common {
	uint8_t valid_flag0;
	uint8_t valid_flag1;

	/* For DualShock 4 compatibility mode. */
	uint8_t motor_right;
	uint8_t motor_left;

	/* Audio controls */
	uint8_t reserved[4];
	uint8_t mute_button_led;

	uint8_t power_save_control;
	uint8_t reserved2[28];

	/* LEDs and lightbar */
	uint8_t valid_flag2;
	uint8_t reserved3[2];
	uint8_t lightbar_setup;
	uint8_t led_brightness;
	uint8_t player_leds;
	uint8_t lightbar_red;
	uint8_t lightbar_green;
	uint8_t lightbar_blue;
} __packed;
static_assert(sizeof(struct dualsense_output_report_common) == 47);

struct dualsense_output_report_bt {
	uint8_t report_id; /* 0x31 */
	uint8_t seq_tag;
	uint8_t tag;
	struct dualsense_output_report_common common;
	uint8_t reserved[24];
	__le32 crc32;
} __packed;
static_assert(sizeof(struct dualsense_output_report_bt) == DS_OUTPUT_REPORT_BT_SIZE);

struct dualsense_output_report_usb {
	uint8_t report_id; /* 0x02 */
	struct dualsense_output_report_common common;
	uint8_t reserved[15];
} __packed;
static_assert(sizeof(struct dualsense_output_report_usb) == DS_OUTPUT_REPORT_USB_SIZE);

/*
 * The DualSense has a main output report used to control most features. It is
 * largely the same between Bluetooth and USB except for different headers and CRC.
 * This structure hide the differences between the two to simplify sending output reports.
 */
struct dualsense_output_report {
	uint8_t *data; /* Start of data */
	uint8_t len; /* Size of output report */

	/* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */
	struct dualsense_output_report_bt *bt;
	/* Points to USB data payload in case for a USB report else NULL. */
	struct dualsense_output_report_usb *usb;
	/* Points to common section of report, so past any headers. */
	struct dualsense_output_report_common *common;
};

286 287 288
#define DS4_INPUT_REPORT_USB			0x01
#define DS4_INPUT_REPORT_USB_SIZE		64

289 290
#define DS4_FEATURE_REPORT_CALIBRATION		0x02
#define DS4_FEATURE_REPORT_CALIBRATION_SIZE	37
291 292
#define DS4_FEATURE_REPORT_FIRMWARE_INFO	0xa3
#define DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE	49
293 294 295
#define DS4_FEATURE_REPORT_PAIRING_INFO		0x12
#define DS4_FEATURE_REPORT_PAIRING_INFO_SIZE	16

296 297 298 299 300 301 302
/*
 * Status of a DualShock4 touch point contact.
 * Contact IDs, with highest bit set are 'inactive'
 * and any associated data is then invalid.
 */
#define DS4_TOUCH_POINT_INACTIVE BIT(7)

303 304 305 306 307 308
/* Status field of DualShock4 input report. */
#define DS4_STATUS0_BATTERY_CAPACITY	GENMASK(3, 0)
#define DS4_STATUS0_CABLE_STATE		BIT(4)
/* Battery status within batery_status field. */
#define DS4_BATTERY_STATUS_FULL		11

309
/* DualShock4 hardware limits */
310 311 312 313
#define DS4_ACC_RES_PER_G	8192
#define DS4_ACC_RANGE		(4*DS_ACC_RES_PER_G)
#define DS4_GYRO_RES_PER_DEG_S	1024
#define DS4_GYRO_RANGE		(2048*DS_GYRO_RES_PER_DEG_S)
314 315 316
#define DS4_TOUCHPAD_WIDTH	1920
#define DS4_TOUCHPAD_HEIGHT	942

317 318 319
struct dualshock4 {
	struct ps_device base;
	struct input_dev *gamepad;
320
	struct input_dev *sensors;
321
	struct input_dev *touchpad;
322 323 324 325 326 327 328 329 330

	/* Calibration data for accelerometer and gyroscope. */
	struct ps_calibration_data accel_calib_data[3];
	struct ps_calibration_data gyro_calib_data[3];

	/* Timestamp for sensor data */
	bool sensor_timestamp_initialized;
	uint32_t prev_sensor_timestamp;
	uint32_t sensor_timestamp_us;
331 332
};

333 334 335 336 337 338 339 340 341 342 343 344 345 346
struct dualshock4_touch_point {
	uint8_t contact;
	uint8_t x_lo;
	uint8_t x_hi:4, y_lo:4;
	uint8_t y_hi;
} __packed;
static_assert(sizeof(struct dualshock4_touch_point) == 4);

struct dualshock4_touch_report {
	uint8_t timestamp;
	struct dualshock4_touch_point points[2];
} __packed;
static_assert(sizeof(struct dualshock4_touch_report) == 9);

347 348 349 350 351 352
/* Main DualShock4 input report excluding any BT/USB specific headers. */
struct dualshock4_input_report_common {
	uint8_t x, y;
	uint8_t rx, ry;
	uint8_t buttons[3];
	uint8_t z, rz;
353 354 355 356 357 358 359 360

	/* Motion sensors */
	__le16 sensor_timestamp;
	uint8_t sensor_temperature;
	__le16 gyro[3]; /* x, y, z */
	__le16 accel[3]; /* x, y, z */
	uint8_t reserved2[5];

361
	uint8_t status[2];
362
	uint8_t reserved3;
363
} __packed;
364
static_assert(sizeof(struct dualshock4_input_report_common) == 32);
365 366 367 368

struct dualshock4_input_report_usb {
	uint8_t report_id; /* 0x01 */
	struct dualshock4_input_report_common common;
369 370 371
	uint8_t num_touch_reports;
	struct dualshock4_touch_report touch_reports[3];
	uint8_t reserved[3];
372 373 374
} __packed;
static_assert(sizeof(struct dualshock4_input_report_usb) == DS4_INPUT_REPORT_USB_SIZE);

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/*
 * Common gamepad buttons across DualShock 3 / 4 and DualSense.
 * Note: for device with a touchpad, touchpad button is not included
 *        as it will be part of the touchpad device.
 */
static const int ps_gamepad_buttons[] = {
	BTN_WEST, /* Square */
	BTN_NORTH, /* Triangle */
	BTN_EAST, /* Circle */
	BTN_SOUTH, /* Cross */
	BTN_TL, /* L1 */
	BTN_TR, /* R1 */
	BTN_TL2, /* L2 */
	BTN_TR2, /* R2 */
	BTN_SELECT, /* Create (PS5) / Share (PS4) */
	BTN_START, /* Option */
	BTN_THUMBL, /* L3 */
	BTN_THUMBR, /* R3 */
	BTN_MODE, /* PS Home */
};

static const struct {int x; int y; } ps_gamepad_hat_mapping[] = {
	{0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1},
	{0, 0},
};

401
static inline void dualsense_schedule_work(struct dualsense *ds);
402 403
static void dualsense_set_lightbar(struct dualsense *ds, uint8_t red, uint8_t green, uint8_t blue);

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
/*
 * Add a new ps_device to ps_devices if it doesn't exist.
 * Return error on duplicate device, which can happen if the same
 * device is connected using both Bluetooth and USB.
 */
static int ps_devices_list_add(struct ps_device *dev)
{
	struct ps_device *entry;

	mutex_lock(&ps_devices_lock);
	list_for_each_entry(entry, &ps_devices_list, list) {
		if (!memcmp(entry->mac_address, dev->mac_address, sizeof(dev->mac_address))) {
			hid_err(dev->hdev, "Duplicate device found for MAC address %pMR.\n",
					dev->mac_address);
			mutex_unlock(&ps_devices_lock);
			return -EEXIST;
		}
	}

	list_add_tail(&dev->list, &ps_devices_list);
	mutex_unlock(&ps_devices_lock);
	return 0;
}

static int ps_devices_list_remove(struct ps_device *dev)
{
	mutex_lock(&ps_devices_lock);
	list_del(&dev->list);
	mutex_unlock(&ps_devices_lock);
	return 0;
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static int ps_device_set_player_id(struct ps_device *dev)
{
	int ret = ida_alloc(&ps_player_id_allocator, GFP_KERNEL);

	if (ret < 0)
		return ret;

	dev->player_id = ret;
	return 0;
}

static void ps_device_release_player_id(struct ps_device *dev)
{
	ida_free(&ps_player_id_allocator, dev->player_id);

	dev->player_id = U32_MAX;
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
static struct input_dev *ps_allocate_input_dev(struct hid_device *hdev, const char *name_suffix)
{
	struct input_dev *input_dev;

	input_dev = devm_input_allocate_device(&hdev->dev);
	if (!input_dev)
		return ERR_PTR(-ENOMEM);

	input_dev->id.bustype = hdev->bus;
	input_dev->id.vendor = hdev->vendor;
	input_dev->id.product = hdev->product;
	input_dev->id.version = hdev->version;
	input_dev->uniq = hdev->uniq;

	if (name_suffix) {
		input_dev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s %s", hdev->name,
				name_suffix);
		if (!input_dev->name)
			return ERR_PTR(-ENOMEM);
	} else {
		input_dev->name = hdev->name;
	}

	input_set_drvdata(input_dev, hdev);

	return input_dev;
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static enum power_supply_property ps_power_supply_props[] = {
	POWER_SUPPLY_PROP_STATUS,
	POWER_SUPPLY_PROP_PRESENT,
	POWER_SUPPLY_PROP_CAPACITY,
	POWER_SUPPLY_PROP_SCOPE,
};

static int ps_battery_get_property(struct power_supply *psy,
		enum power_supply_property psp,
		union power_supply_propval *val)
{
	struct ps_device *dev = power_supply_get_drvdata(psy);
	uint8_t battery_capacity;
	int battery_status;
	unsigned long flags;
497
	int ret = 0;
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

	spin_lock_irqsave(&dev->lock, flags);
	battery_capacity = dev->battery_capacity;
	battery_status = dev->battery_status;
	spin_unlock_irqrestore(&dev->lock, flags);

	switch (psp) {
	case POWER_SUPPLY_PROP_STATUS:
		val->intval = battery_status;
		break;
	case POWER_SUPPLY_PROP_PRESENT:
		val->intval = 1;
		break;
	case POWER_SUPPLY_PROP_CAPACITY:
		val->intval = battery_capacity;
		break;
	case POWER_SUPPLY_PROP_SCOPE:
		val->intval = POWER_SUPPLY_SCOPE_DEVICE;
		break;
	default:
		ret = -EINVAL;
		break;
	}

522
	return ret;
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
}

static int ps_device_register_battery(struct ps_device *dev)
{
	struct power_supply *battery;
	struct power_supply_config battery_cfg = { .drv_data = dev };
	int ret;

	dev->battery_desc.type = POWER_SUPPLY_TYPE_BATTERY;
	dev->battery_desc.properties = ps_power_supply_props;
	dev->battery_desc.num_properties = ARRAY_SIZE(ps_power_supply_props);
	dev->battery_desc.get_property = ps_battery_get_property;
	dev->battery_desc.name = devm_kasprintf(&dev->hdev->dev, GFP_KERNEL,
			"ps-controller-battery-%pMR", dev->mac_address);
	if (!dev->battery_desc.name)
		return -ENOMEM;

	battery = devm_power_supply_register(&dev->hdev->dev, &dev->battery_desc, &battery_cfg);
	if (IS_ERR(battery)) {
		ret = PTR_ERR(battery);
		hid_err(dev->hdev, "Unable to register battery device: %d\n", ret);
		return ret;
	}
	dev->battery = battery;

	ret = power_supply_powers(dev->battery, &dev->hdev->dev);
	if (ret) {
		hid_err(dev->hdev, "Unable to activate battery device: %d\n", ret);
		return ret;
	}

	return 0;
}

557 558 559 560 561 562 563 564 565 566 567
/* Compute crc32 of HID data and compare against expected CRC. */
static bool ps_check_crc32(uint8_t seed, uint8_t *data, size_t len, uint32_t report_crc)
{
	uint32_t crc;

	crc = crc32_le(0xFFFFFFFF, &seed, 1);
	crc = ~crc32_le(crc, data, len);

	return crc == report_crc;
}

568 569
static struct input_dev *ps_gamepad_create(struct hid_device *hdev,
		int (*play_effect)(struct input_dev *, void *, struct ff_effect *))
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
{
	struct input_dev *gamepad;
	unsigned int i;
	int ret;

	gamepad = ps_allocate_input_dev(hdev, NULL);
	if (IS_ERR(gamepad))
		return ERR_CAST(gamepad);

	input_set_abs_params(gamepad, ABS_X, 0, 255, 0, 0);
	input_set_abs_params(gamepad, ABS_Y, 0, 255, 0, 0);
	input_set_abs_params(gamepad, ABS_Z, 0, 255, 0, 0);
	input_set_abs_params(gamepad, ABS_RX, 0, 255, 0, 0);
	input_set_abs_params(gamepad, ABS_RY, 0, 255, 0, 0);
	input_set_abs_params(gamepad, ABS_RZ, 0, 255, 0, 0);

	input_set_abs_params(gamepad, ABS_HAT0X, -1, 1, 0, 0);
	input_set_abs_params(gamepad, ABS_HAT0Y, -1, 1, 0, 0);

	for (i = 0; i < ARRAY_SIZE(ps_gamepad_buttons); i++)
		input_set_capability(gamepad, EV_KEY, ps_gamepad_buttons[i]);

592 593 594 595 596 597 598
#if IS_ENABLED(CONFIG_PLAYSTATION_FF)
	if (play_effect) {
		input_set_capability(gamepad, EV_FF, FF_RUMBLE);
		input_ff_create_memless(gamepad, NULL, play_effect);
	}
#endif

599 600 601 602 603 604 605
	ret = input_register_device(gamepad);
	if (ret)
		return ERR_PTR(ret);

	return gamepad;
}

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
static int ps_get_report(struct hid_device *hdev, uint8_t report_id, uint8_t *buf, size_t size)
{
	int ret;

	ret = hid_hw_raw_request(hdev, report_id, buf, size, HID_FEATURE_REPORT,
				 HID_REQ_GET_REPORT);
	if (ret < 0) {
		hid_err(hdev, "Failed to retrieve feature with reportID %d: %d\n", report_id, ret);
		return ret;
	}

	if (ret != size) {
		hid_err(hdev, "Invalid byte count transferred, expected %zu got %d\n", size, ret);
		return -EINVAL;
	}

	if (buf[0] != report_id) {
		hid_err(hdev, "Invalid reportID received, expected %d got %d\n", report_id, buf[0]);
		return -EINVAL;
	}

627 628 629 630 631 632 633 634 635 636 637
	if (hdev->bus == BUS_BLUETOOTH) {
		/* Last 4 bytes contains crc32. */
		uint8_t crc_offset = size - 4;
		uint32_t report_crc = get_unaligned_le32(&buf[crc_offset]);

		if (!ps_check_crc32(PS_FEATURE_CRC32_SEED, buf, crc_offset, report_crc)) {
			hid_err(hdev, "CRC check failed for reportID=%d\n", report_id);
			return -EILSEQ;
		}
	}

638 639 640
	return 0;
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
static int ps_led_register(struct ps_device *ps_dev, struct led_classdev *led,
		const struct ps_led_info *led_info)
{
	int ret;

	led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL,
			"%s:%s:%s", ps_dev->input_dev_name, led_info->color, led_info->name);

	if (!led->name)
		return -ENOMEM;

	led->brightness = 0;
	led->max_brightness = 1;
	led->flags = LED_CORE_SUSPENDRESUME;
	led->brightness_get = led_info->brightness_get;
	led->brightness_set_blocking = led_info->brightness_set;

	ret = devm_led_classdev_register(&ps_dev->hdev->dev, led);
	if (ret) {
		hid_err(ps_dev->hdev, "Failed to register LED %s: %d\n", led_info->name, ret);
		return ret;
	}

	return 0;
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
/* Register a DualSense/DualShock4 RGB lightbar represented by a multicolor LED. */
static int ps_lightbar_register(struct ps_device *ps_dev, struct led_classdev_mc *lightbar_mc_dev,
	int (*brightness_set)(struct led_classdev *, enum led_brightness))
{
	struct hid_device *hdev = ps_dev->hdev;
	struct mc_subled *mc_led_info;
	struct led_classdev *led_cdev;
	int ret;

	mc_led_info = devm_kmalloc_array(&hdev->dev, 3, sizeof(*mc_led_info),
					 GFP_KERNEL | __GFP_ZERO);
	if (!mc_led_info)
		return -ENOMEM;

	mc_led_info[0].color_index = LED_COLOR_ID_RED;
	mc_led_info[1].color_index = LED_COLOR_ID_GREEN;
	mc_led_info[2].color_index = LED_COLOR_ID_BLUE;

	lightbar_mc_dev->subled_info = mc_led_info;
	lightbar_mc_dev->num_colors = 3;

	led_cdev = &lightbar_mc_dev->led_cdev;
	led_cdev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s:rgb:indicator",
			ps_dev->input_dev_name);
	if (!led_cdev->name)
		return -ENOMEM;
	led_cdev->brightness = 255;
	led_cdev->max_brightness = 255;
	led_cdev->brightness_set_blocking = brightness_set;

	ret = devm_led_classdev_multicolor_register(&hdev->dev, lightbar_mc_dev);
	if (ret < 0) {
		hid_err(hdev, "Cannot register multicolor LED device\n");
		return ret;
	}

	return 0;
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static struct input_dev *ps_sensors_create(struct hid_device *hdev, int accel_range, int accel_res,
		int gyro_range, int gyro_res)
{
	struct input_dev *sensors;
	int ret;

	sensors = ps_allocate_input_dev(hdev, "Motion Sensors");
	if (IS_ERR(sensors))
		return ERR_CAST(sensors);

	__set_bit(INPUT_PROP_ACCELEROMETER, sensors->propbit);
	__set_bit(EV_MSC, sensors->evbit);
	__set_bit(MSC_TIMESTAMP, sensors->mscbit);

	/* Accelerometer */
	input_set_abs_params(sensors, ABS_X, -accel_range, accel_range, 16, 0);
	input_set_abs_params(sensors, ABS_Y, -accel_range, accel_range, 16, 0);
	input_set_abs_params(sensors, ABS_Z, -accel_range, accel_range, 16, 0);
	input_abs_set_res(sensors, ABS_X, accel_res);
	input_abs_set_res(sensors, ABS_Y, accel_res);
	input_abs_set_res(sensors, ABS_Z, accel_res);

	/* Gyroscope */
	input_set_abs_params(sensors, ABS_RX, -gyro_range, gyro_range, 16, 0);
	input_set_abs_params(sensors, ABS_RY, -gyro_range, gyro_range, 16, 0);
	input_set_abs_params(sensors, ABS_RZ, -gyro_range, gyro_range, 16, 0);
	input_abs_set_res(sensors, ABS_RX, gyro_res);
	input_abs_set_res(sensors, ABS_RY, gyro_res);
	input_abs_set_res(sensors, ABS_RZ, gyro_res);

	ret = input_register_device(sensors);
	if (ret)
		return ERR_PTR(ret);

	return sensors;
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static struct input_dev *ps_touchpad_create(struct hid_device *hdev, int width, int height,
		unsigned int num_contacts)
{
	struct input_dev *touchpad;
	int ret;

	touchpad = ps_allocate_input_dev(hdev, "Touchpad");
	if (IS_ERR(touchpad))
		return ERR_CAST(touchpad);

	/* Map button underneath touchpad to BTN_LEFT. */
	input_set_capability(touchpad, EV_KEY, BTN_LEFT);
	__set_bit(INPUT_PROP_BUTTONPAD, touchpad->propbit);

	input_set_abs_params(touchpad, ABS_MT_POSITION_X, 0, width - 1, 0, 0);
	input_set_abs_params(touchpad, ABS_MT_POSITION_Y, 0, height - 1, 0, 0);

	ret = input_mt_init_slots(touchpad, num_contacts, INPUT_MT_POINTER);
	if (ret)
		return ERR_PTR(ret);

	ret = input_register_device(touchpad);
	if (ret)
		return ERR_PTR(ret);

	return touchpad;
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
static ssize_t firmware_version_show(struct device *dev,
				struct device_attribute
				*attr, char *buf)
{
	struct hid_device *hdev = to_hid_device(dev);
	struct ps_device *ps_dev = hid_get_drvdata(hdev);

	return sysfs_emit(buf, "0x%08x\n", ps_dev->fw_version);
}

static DEVICE_ATTR_RO(firmware_version);

static ssize_t hardware_version_show(struct device *dev,
				struct device_attribute
				*attr, char *buf)
{
	struct hid_device *hdev = to_hid_device(dev);
	struct ps_device *ps_dev = hid_get_drvdata(hdev);

	return sysfs_emit(buf, "0x%08x\n", ps_dev->hw_version);
}

static DEVICE_ATTR_RO(hardware_version);

795
static struct attribute *ps_device_attrs[] = {
796 797 798 799
	&dev_attr_firmware_version.attr,
	&dev_attr_hardware_version.attr,
	NULL
};
800
ATTRIBUTE_GROUPS(ps_device);
801

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
static int dualsense_get_calibration_data(struct dualsense *ds)
{
	short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus;
	short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus;
	short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus;
	short gyro_speed_plus, gyro_speed_minus;
	short acc_x_plus, acc_x_minus;
	short acc_y_plus, acc_y_minus;
	short acc_z_plus, acc_z_minus;
	int speed_2x;
	int range_2g;
	int ret = 0;
	uint8_t *buf;

	buf = kzalloc(DS_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_CALIBRATION, buf,
			DS_FEATURE_REPORT_CALIBRATION_SIZE);
	if (ret) {
		hid_err(ds->base.hdev, "Failed to retrieve DualSense calibration info: %d\n", ret);
		goto err_free;
	}

	gyro_pitch_bias  = get_unaligned_le16(&buf[1]);
	gyro_yaw_bias    = get_unaligned_le16(&buf[3]);
	gyro_roll_bias   = get_unaligned_le16(&buf[5]);
	gyro_pitch_plus  = get_unaligned_le16(&buf[7]);
	gyro_pitch_minus = get_unaligned_le16(&buf[9]);
	gyro_yaw_plus    = get_unaligned_le16(&buf[11]);
	gyro_yaw_minus   = get_unaligned_le16(&buf[13]);
	gyro_roll_plus   = get_unaligned_le16(&buf[15]);
	gyro_roll_minus  = get_unaligned_le16(&buf[17]);
	gyro_speed_plus  = get_unaligned_le16(&buf[19]);
	gyro_speed_minus = get_unaligned_le16(&buf[21]);
	acc_x_plus       = get_unaligned_le16(&buf[23]);
	acc_x_minus      = get_unaligned_le16(&buf[25]);
	acc_y_plus       = get_unaligned_le16(&buf[27]);
	acc_y_minus      = get_unaligned_le16(&buf[29]);
	acc_z_plus       = get_unaligned_le16(&buf[31]);
	acc_z_minus      = get_unaligned_le16(&buf[33]);

	/*
	 * Set gyroscope calibration and normalization parameters.
	 * Data values will be normalized to 1/DS_GYRO_RES_PER_DEG_S degree/s.
	 */
	speed_2x = (gyro_speed_plus + gyro_speed_minus);
	ds->gyro_calib_data[0].abs_code = ABS_RX;
	ds->gyro_calib_data[0].bias = gyro_pitch_bias;
	ds->gyro_calib_data[0].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S;
	ds->gyro_calib_data[0].sens_denom = gyro_pitch_plus - gyro_pitch_minus;

	ds->gyro_calib_data[1].abs_code = ABS_RY;
	ds->gyro_calib_data[1].bias = gyro_yaw_bias;
	ds->gyro_calib_data[1].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S;
	ds->gyro_calib_data[1].sens_denom = gyro_yaw_plus - gyro_yaw_minus;

	ds->gyro_calib_data[2].abs_code = ABS_RZ;
	ds->gyro_calib_data[2].bias = gyro_roll_bias;
	ds->gyro_calib_data[2].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S;
	ds->gyro_calib_data[2].sens_denom = gyro_roll_plus - gyro_roll_minus;

	/*
	 * Set accelerometer calibration and normalization parameters.
	 * Data values will be normalized to 1/DS_ACC_RES_PER_G g.
	 */
	range_2g = acc_x_plus - acc_x_minus;
	ds->accel_calib_data[0].abs_code = ABS_X;
	ds->accel_calib_data[0].bias = acc_x_plus - range_2g / 2;
	ds->accel_calib_data[0].sens_numer = 2*DS_ACC_RES_PER_G;
	ds->accel_calib_data[0].sens_denom = range_2g;

	range_2g = acc_y_plus - acc_y_minus;
	ds->accel_calib_data[1].abs_code = ABS_Y;
	ds->accel_calib_data[1].bias = acc_y_plus - range_2g / 2;
	ds->accel_calib_data[1].sens_numer = 2*DS_ACC_RES_PER_G;
	ds->accel_calib_data[1].sens_denom = range_2g;

	range_2g = acc_z_plus - acc_z_minus;
	ds->accel_calib_data[2].abs_code = ABS_Z;
	ds->accel_calib_data[2].bias = acc_z_plus - range_2g / 2;
	ds->accel_calib_data[2].sens_numer = 2*DS_ACC_RES_PER_G;
	ds->accel_calib_data[2].sens_denom = range_2g;

err_free:
	kfree(buf);
	return ret;
}

892

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
static int dualsense_get_firmware_info(struct dualsense *ds)
{
	uint8_t *buf;
	int ret;

	buf = kzalloc(DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_FIRMWARE_INFO, buf,
			DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE);
	if (ret) {
		hid_err(ds->base.hdev, "Failed to retrieve DualSense firmware info: %d\n", ret);
		goto err_free;
	}

	ds->base.hw_version = get_unaligned_le32(&buf[24]);
	ds->base.fw_version = get_unaligned_le32(&buf[28]);

912 913 914 915 916 917 918 919 920
	/* Update version is some kind of feature version. It is distinct from
	 * the firmware version as there can be many different variations of a
	 * controller over time with the same physical shell, but with different
	 * PCBs and other internal changes. The update version (internal name) is
	 * used as a means to detect what features are available and change behavior.
	 * Note: the version is different between DualSense and DualSense Edge.
	 */
	ds->update_version = get_unaligned_le16(&buf[44]);

921 922 923 924 925
err_free:
	kfree(buf);
	return ret;
}

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
static int dualsense_get_mac_address(struct dualsense *ds)
{
	uint8_t *buf;
	int ret = 0;

	buf = kzalloc(DS_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_PAIRING_INFO, buf,
			DS_FEATURE_REPORT_PAIRING_INFO_SIZE);
	if (ret) {
		hid_err(ds->base.hdev, "Failed to retrieve DualSense pairing info: %d\n", ret);
		goto err_free;
	}

	memcpy(ds->base.mac_address, &buf[1], sizeof(ds->base.mac_address));

err_free:
	kfree(buf);
	return ret;
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
static int dualsense_lightbar_set_brightness(struct led_classdev *cdev,
	enum led_brightness brightness)
{
	struct led_classdev_mc *mc_cdev = lcdev_to_mccdev(cdev);
	struct dualsense *ds = container_of(mc_cdev, struct dualsense, lightbar);
	uint8_t red, green, blue;

	led_mc_calc_color_components(mc_cdev, brightness);
	red = mc_cdev->subled_info[0].brightness;
	green = mc_cdev->subled_info[1].brightness;
	blue = mc_cdev->subled_info[2].brightness;

	dualsense_set_lightbar(ds, red, green, blue);
	return 0;
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
static enum led_brightness dualsense_player_led_get_brightness(struct led_classdev *led)
{
	struct hid_device *hdev = to_hid_device(led->dev->parent);
	struct dualsense *ds = hid_get_drvdata(hdev);

	return !!(ds->player_leds_state & BIT(led - ds->player_leds));
}

static int dualsense_player_led_set_brightness(struct led_classdev *led, enum led_brightness value)
{
	struct hid_device *hdev = to_hid_device(led->dev->parent);
	struct dualsense *ds = hid_get_drvdata(hdev);
	unsigned long flags;
	unsigned int led_index;

	spin_lock_irqsave(&ds->base.lock, flags);

	led_index = led - ds->player_leds;
	if (value == LED_OFF)
		ds->player_leds_state &= ~BIT(led_index);
	else
		ds->player_leds_state |= BIT(led_index);

	ds->update_player_leds = true;
	spin_unlock_irqrestore(&ds->base.lock, flags);

991
	dualsense_schedule_work(ds);
992 993

	return 0;
994 995
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
static void dualsense_init_output_report(struct dualsense *ds, struct dualsense_output_report *rp,
		void *buf)
{
	struct hid_device *hdev = ds->base.hdev;

	if (hdev->bus == BUS_BLUETOOTH) {
		struct dualsense_output_report_bt *bt = buf;

		memset(bt, 0, sizeof(*bt));
		bt->report_id = DS_OUTPUT_REPORT_BT;
		bt->tag = DS_OUTPUT_TAG; /* Tag must be set. Exact meaning is unclear. */

		/*
		 * Highest 4-bit is a sequence number, which needs to be increased
		 * every report. Lowest 4-bit is tag and can be zero for now.
		 */
		bt->seq_tag = (ds->output_seq << 4) | 0x0;
		if (++ds->output_seq == 16)
			ds->output_seq = 0;

		rp->data = buf;
		rp->len = sizeof(*bt);
		rp->bt = bt;
		rp->usb = NULL;
		rp->common = &bt->common;
	} else { /* USB */
		struct dualsense_output_report_usb *usb = buf;

		memset(usb, 0, sizeof(*usb));
		usb->report_id = DS_OUTPUT_REPORT_USB;

		rp->data = buf;
		rp->len = sizeof(*usb);
		rp->bt = NULL;
		rp->usb = usb;
		rp->common = &usb->common;
	}
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
static inline void dualsense_schedule_work(struct dualsense *ds)
{
	unsigned long flags;

	spin_lock_irqsave(&ds->base.lock, flags);
	if (ds->output_worker_initialized)
		schedule_work(&ds->output_worker);
	spin_unlock_irqrestore(&ds->base.lock, flags);
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/*
 * Helper function to send DualSense output reports. Applies a CRC at the end of a report
 * for Bluetooth reports.
 */
static void dualsense_send_output_report(struct dualsense *ds,
		struct dualsense_output_report *report)
{
	struct hid_device *hdev = ds->base.hdev;

	/* Bluetooth packets need to be signed with a CRC in the last 4 bytes. */
	if (report->bt) {
		uint32_t crc;
		uint8_t seed = PS_OUTPUT_CRC32_SEED;

		crc = crc32_le(0xFFFFFFFF, &seed, 1);
		crc = ~crc32_le(crc, report->data, report->len - 4);

		report->bt->crc32 = cpu_to_le32(crc);
	}

	hid_hw_output_report(hdev, report->data, report->len);
}

static void dualsense_output_worker(struct work_struct *work)
{
	struct dualsense *ds = container_of(work, struct dualsense, output_worker);
	struct dualsense_output_report report;
	struct dualsense_output_report_common *common;
	unsigned long flags;

	dualsense_init_output_report(ds, &report, ds->output_report_dmabuf);
	common = report.common;

	spin_lock_irqsave(&ds->base.lock, flags);

	if (ds->update_rumble) {
		/* Select classic rumble style haptics and enable it. */
		common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT;
1083 1084 1085 1086
		if (ds->use_vibration_v2)
			common->valid_flag2 |= DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2;
		else
			common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION;
1087 1088 1089 1090 1091
		common->motor_left = ds->motor_left;
		common->motor_right = ds->motor_right;
		ds->update_rumble = false;
	}

1092 1093 1094 1095 1096 1097 1098 1099 1100
	if (ds->update_lightbar) {
		common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE;
		common->lightbar_red = ds->lightbar_red;
		common->lightbar_green = ds->lightbar_green;
		common->lightbar_blue = ds->lightbar_blue;

		ds->update_lightbar = false;
	}

1101 1102 1103 1104 1105 1106 1107
	if (ds->update_player_leds) {
		common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE;
		common->player_leds = ds->player_leds_state;

		ds->update_player_leds = false;
	}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	if (ds->update_mic_mute) {
		common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE;
		common->mute_button_led = ds->mic_muted;

		if (ds->mic_muted) {
			/* Disable microphone */
			common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE;
			common->power_save_control |= DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE;
		} else {
			/* Enable microphone */
			common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE;
			common->power_save_control &= ~DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE;
		}

		ds->update_mic_mute = false;
	}

1125 1126 1127 1128 1129
	spin_unlock_irqrestore(&ds->base.lock, flags);

	dualsense_send_output_report(ds, &report);
}

1130 1131 1132 1133 1134 1135
static int dualsense_parse_report(struct ps_device *ps_dev, struct hid_report *report,
		u8 *data, int size)
{
	struct hid_device *hdev = ps_dev->hdev;
	struct dualsense *ds = container_of(ps_dev, struct dualsense, base);
	struct dualsense_input_report *ds_report;
1136 1137
	uint8_t battery_data, battery_capacity, charging_status, value;
	int battery_status;
1138
	uint32_t sensor_timestamp;
1139
	bool btn_mic_state;
1140
	unsigned long flags;
1141
	int i;
1142 1143 1144 1145 1146 1147 1148 1149 1150

	/*
	 * DualSense in USB uses the full HID report for reportID 1, but
	 * Bluetooth uses a minimal HID report for reportID 1 and reports
	 * the full report using reportID 49.
	 */
	if (hdev->bus == BUS_USB && report->id == DS_INPUT_REPORT_USB &&
			size == DS_INPUT_REPORT_USB_SIZE) {
		ds_report = (struct dualsense_input_report *)&data[1];
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	} else if (hdev->bus == BUS_BLUETOOTH && report->id == DS_INPUT_REPORT_BT &&
			size == DS_INPUT_REPORT_BT_SIZE) {
		/* Last 4 bytes of input report contain crc32 */
		uint32_t report_crc = get_unaligned_le32(&data[size - 4]);

		if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) {
			hid_err(hdev, "DualSense input CRC's check failed\n");
			return -EILSEQ;
		}

		ds_report = (struct dualsense_input_report *)&data[2];
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	} else {
		hid_err(hdev, "Unhandled reportID=%d\n", report->id);
		return -1;
	}

	input_report_abs(ds->gamepad, ABS_X,  ds_report->x);
	input_report_abs(ds->gamepad, ABS_Y,  ds_report->y);
	input_report_abs(ds->gamepad, ABS_RX, ds_report->rx);
	input_report_abs(ds->gamepad, ABS_RY, ds_report->ry);
	input_report_abs(ds->gamepad, ABS_Z,  ds_report->z);
	input_report_abs(ds->gamepad, ABS_RZ, ds_report->rz);

	value = ds_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH;
1175
	if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping))
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
		value = 8; /* center */
	input_report_abs(ds->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x);
	input_report_abs(ds->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y);

	input_report_key(ds->gamepad, BTN_WEST,   ds_report->buttons[0] & DS_BUTTONS0_SQUARE);
	input_report_key(ds->gamepad, BTN_SOUTH,  ds_report->buttons[0] & DS_BUTTONS0_CROSS);
	input_report_key(ds->gamepad, BTN_EAST,   ds_report->buttons[0] & DS_BUTTONS0_CIRCLE);
	input_report_key(ds->gamepad, BTN_NORTH,  ds_report->buttons[0] & DS_BUTTONS0_TRIANGLE);
	input_report_key(ds->gamepad, BTN_TL,     ds_report->buttons[1] & DS_BUTTONS1_L1);
	input_report_key(ds->gamepad, BTN_TR,     ds_report->buttons[1] & DS_BUTTONS1_R1);
	input_report_key(ds->gamepad, BTN_TL2,    ds_report->buttons[1] & DS_BUTTONS1_L2);
	input_report_key(ds->gamepad, BTN_TR2,    ds_report->buttons[1] & DS_BUTTONS1_R2);
	input_report_key(ds->gamepad, BTN_SELECT, ds_report->buttons[1] & DS_BUTTONS1_CREATE);
	input_report_key(ds->gamepad, BTN_START,  ds_report->buttons[1] & DS_BUTTONS1_OPTIONS);
	input_report_key(ds->gamepad, BTN_THUMBL, ds_report->buttons[1] & DS_BUTTONS1_L3);
	input_report_key(ds->gamepad, BTN_THUMBR, ds_report->buttons[1] & DS_BUTTONS1_R3);
	input_report_key(ds->gamepad, BTN_MODE,   ds_report->buttons[2] & DS_BUTTONS2_PS_HOME);
	input_sync(ds->gamepad);

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	/*
	 * The DualSense has an internal microphone, which can be muted through a mute button
	 * on the device. The driver is expected to read the button state and program the device
	 * to mute/unmute audio at the hardware level.
	 */
	btn_mic_state = !!(ds_report->buttons[2] & DS_BUTTONS2_MIC_MUTE);
	if (btn_mic_state && !ds->last_btn_mic_state) {
		spin_lock_irqsave(&ps_dev->lock, flags);
		ds->update_mic_mute = true;
		ds->mic_muted = !ds->mic_muted; /* toggle */
		spin_unlock_irqrestore(&ps_dev->lock, flags);

		/* Schedule updating of microphone state at hardware level. */
1208
		dualsense_schedule_work(ds);
1209 1210 1211
	}
	ds->last_btn_mic_state = btn_mic_state;

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	/* Parse and calibrate gyroscope data. */
	for (i = 0; i < ARRAY_SIZE(ds_report->gyro); i++) {
		int raw_data = (short)le16_to_cpu(ds_report->gyro[i]);
		int calib_data = mult_frac(ds->gyro_calib_data[i].sens_numer,
					   raw_data - ds->gyro_calib_data[i].bias,
					   ds->gyro_calib_data[i].sens_denom);

		input_report_abs(ds->sensors, ds->gyro_calib_data[i].abs_code, calib_data);
	}

	/* Parse and calibrate accelerometer data. */
	for (i = 0; i < ARRAY_SIZE(ds_report->accel); i++) {
		int raw_data = (short)le16_to_cpu(ds_report->accel[i]);
		int calib_data = mult_frac(ds->accel_calib_data[i].sens_numer,
					   raw_data - ds->accel_calib_data[i].bias,
					   ds->accel_calib_data[i].sens_denom);

		input_report_abs(ds->sensors, ds->accel_calib_data[i].abs_code, calib_data);
	}

	/* Convert timestamp (in 0.33us unit) to timestamp_us */
	sensor_timestamp = le32_to_cpu(ds_report->sensor_timestamp);
	if (!ds->sensor_timestamp_initialized) {
		ds->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp, 3);
		ds->sensor_timestamp_initialized = true;
	} else {
		uint32_t delta;

		if (ds->prev_sensor_timestamp > sensor_timestamp)
			delta = (U32_MAX - ds->prev_sensor_timestamp + sensor_timestamp + 1);
		else
			delta = sensor_timestamp - ds->prev_sensor_timestamp;
		ds->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta, 3);
	}
	ds->prev_sensor_timestamp = sensor_timestamp;
	input_event(ds->sensors, EV_MSC, MSC_TIMESTAMP, ds->sensor_timestamp_us);
	input_sync(ds->sensors);

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	for (i = 0; i < ARRAY_SIZE(ds_report->points); i++) {
		struct dualsense_touch_point *point = &ds_report->points[i];
		bool active = (point->contact & DS_TOUCH_POINT_INACTIVE) ? false : true;

		input_mt_slot(ds->touchpad, i);
		input_mt_report_slot_state(ds->touchpad, MT_TOOL_FINGER, active);

		if (active) {
			int x = (point->x_hi << 8) | point->x_lo;
			int y = (point->y_hi << 4) | point->y_lo;

			input_report_abs(ds->touchpad, ABS_MT_POSITION_X, x);
			input_report_abs(ds->touchpad, ABS_MT_POSITION_Y, y);
		}
	}
	input_mt_sync_frame(ds->touchpad);
	input_report_key(ds->touchpad, BTN_LEFT, ds_report->buttons[2] & DS_BUTTONS2_TOUCHPAD);
	input_sync(ds->touchpad);

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	battery_data = ds_report->status & DS_STATUS_BATTERY_CAPACITY;
	charging_status = (ds_report->status & DS_STATUS_CHARGING) >> DS_STATUS_CHARGING_SHIFT;

	switch (charging_status) {
	case 0x0:
		/*
		 * Each unit of battery data corresponds to 10%
		 * 0 = 0-9%, 1 = 10-19%, .. and 10 = 100%
		 */
		battery_capacity = min(battery_data * 10 + 5, 100);
		battery_status = POWER_SUPPLY_STATUS_DISCHARGING;
		break;
	case 0x1:
		battery_capacity = min(battery_data * 10 + 5, 100);
		battery_status = POWER_SUPPLY_STATUS_CHARGING;
		break;
	case 0x2:
		battery_capacity = 100;
		battery_status = POWER_SUPPLY_STATUS_FULL;
		break;
	case 0xa: /* voltage or temperature out of range */
	case 0xb: /* temperature error */
		battery_capacity = 0;
		battery_status = POWER_SUPPLY_STATUS_NOT_CHARGING;
		break;
	case 0xf: /* charging error */
	default:
		battery_capacity = 0;
		battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
	}

	spin_lock_irqsave(&ps_dev->lock, flags);
	ps_dev->battery_capacity = battery_capacity;
	ps_dev->battery_status = battery_status;
	spin_unlock_irqrestore(&ps_dev->lock, flags);

1305 1306 1307
	return 0;
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
static int dualsense_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect)
{
	struct hid_device *hdev = input_get_drvdata(dev);
	struct dualsense *ds = hid_get_drvdata(hdev);
	unsigned long flags;

	if (effect->type != FF_RUMBLE)
		return 0;

	spin_lock_irqsave(&ds->base.lock, flags);
	ds->update_rumble = true;
	ds->motor_left = effect->u.rumble.strong_magnitude / 256;
	ds->motor_right = effect->u.rumble.weak_magnitude / 256;
	spin_unlock_irqrestore(&ds->base.lock, flags);

1323
	dualsense_schedule_work(ds);
1324 1325 1326
	return 0;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
static void dualsense_remove(struct ps_device *ps_dev)
{
	struct dualsense *ds = container_of(ps_dev, struct dualsense, base);
	unsigned long flags;

	spin_lock_irqsave(&ds->base.lock, flags);
	ds->output_worker_initialized = false;
	spin_unlock_irqrestore(&ds->base.lock, flags);

	cancel_work_sync(&ds->output_worker);
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static int dualsense_reset_leds(struct dualsense *ds)
{
	struct dualsense_output_report report;
	uint8_t *buf;

	buf = kzalloc(sizeof(struct dualsense_output_report_bt), GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	dualsense_init_output_report(ds, &report, buf);
	/*
	 * On Bluetooth the DualSense outputs an animation on the lightbar
	 * during startup and maintains a color afterwards. We need to explicitly
	 * reconfigure the lightbar before we can do any programming later on.
	 * In USB the lightbar is not on by default, but redoing the setup there
	 * doesn't hurt.
	 */
	report.common->valid_flag2 = DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE;
	report.common->lightbar_setup = DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT; /* Fade light out. */
	dualsense_send_output_report(ds, &report);

	kfree(buf);
	return 0;
}

static void dualsense_set_lightbar(struct dualsense *ds, uint8_t red, uint8_t green, uint8_t blue)
{
1366 1367 1368
	unsigned long flags;

	spin_lock_irqsave(&ds->base.lock, flags);
1369 1370 1371 1372
	ds->update_lightbar = true;
	ds->lightbar_red = red;
	ds->lightbar_green = green;
	ds->lightbar_blue = blue;
1373
	spin_unlock_irqrestore(&ds->base.lock, flags);
1374

1375
	dualsense_schedule_work(ds);
1376 1377
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static void dualsense_set_player_leds(struct dualsense *ds)
{
	/*
	 * The DualSense controller has a row of 5 LEDs used for player ids.
	 * Behavior on the PlayStation 5 console is to center the player id
	 * across the LEDs, so e.g. player 1 would be "--x--" with x being 'on'.
	 * Follow a similar mapping here.
	 */
	static const int player_ids[5] = {
		BIT(2),
		BIT(3) | BIT(1),
		BIT(4) | BIT(2) | BIT(0),
		BIT(4) | BIT(3) | BIT(1) | BIT(0),
		BIT(4) | BIT(3) | BIT(2) | BIT(1) | BIT(0)
	};

	uint8_t player_id = ds->base.player_id % ARRAY_SIZE(player_ids);

	ds->update_player_leds = true;
	ds->player_leds_state = player_ids[player_id];
1398
	dualsense_schedule_work(ds);
1399 1400
}

1401 1402 1403
static struct ps_device *dualsense_create(struct hid_device *hdev)
{
	struct dualsense *ds;
1404
	struct ps_device *ps_dev;
1405
	uint8_t max_output_report_size;
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	int i, ret;

	static const struct ps_led_info player_leds_info[] = {
		{ LED_FUNCTION_PLAYER1, "white", dualsense_player_led_get_brightness,
				dualsense_player_led_set_brightness },
		{ LED_FUNCTION_PLAYER2, "white", dualsense_player_led_get_brightness,
				dualsense_player_led_set_brightness },
		{ LED_FUNCTION_PLAYER3, "white", dualsense_player_led_get_brightness,
				dualsense_player_led_set_brightness },
		{ LED_FUNCTION_PLAYER4, "white", dualsense_player_led_get_brightness,
				dualsense_player_led_set_brightness },
		{ LED_FUNCTION_PLAYER5, "white", dualsense_player_led_get_brightness,
				dualsense_player_led_set_brightness }
	};
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

	ds = devm_kzalloc(&hdev->dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return ERR_PTR(-ENOMEM);

	/*
	 * Patch version to allow userspace to distinguish between
	 * hid-generic vs hid-playstation axis and button mapping.
	 */
	hdev->version |= HID_PLAYSTATION_VERSION_PATCH;

1431 1432 1433 1434 1435 1436
	ps_dev = &ds->base;
	ps_dev->hdev = hdev;
	spin_lock_init(&ps_dev->lock);
	ps_dev->battery_capacity = 100; /* initial value until parse_report. */
	ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
	ps_dev->parse_report = dualsense_parse_report;
1437
	ps_dev->remove = dualsense_remove;
1438
	INIT_WORK(&ds->output_worker, dualsense_output_worker);
1439
	ds->output_worker_initialized = true;
1440 1441
	hid_set_drvdata(hdev, ds);

1442 1443 1444 1445 1446
	max_output_report_size = sizeof(struct dualsense_output_report_bt);
	ds->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL);
	if (!ds->output_report_dmabuf)
		return ERR_PTR(-ENOMEM);

1447 1448 1449 1450 1451 1452 1453
	ret = dualsense_get_mac_address(ds);
	if (ret) {
		hid_err(hdev, "Failed to get MAC address from DualSense\n");
		return ERR_PTR(ret);
	}
	snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds->base.mac_address);

1454 1455 1456 1457 1458 1459
	ret = dualsense_get_firmware_info(ds);
	if (ret) {
		hid_err(hdev, "Failed to get firmware info from DualSense\n");
		return ERR_PTR(ret);
	}

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	/* Original DualSense firmware simulated classic controller rumble through
	 * its new haptics hardware. It felt different from classic rumble users
	 * were used to. Since then new firmwares were introduced to change behavior
	 * and make this new 'v2' behavior default on PlayStation and other platforms.
	 * The original DualSense requires a new enough firmware as bundled with PS5
	 * software released in 2021. DualSense edge supports it out of the box.
	 * Both devices also support the old mode, but it is not really used.
	 */
	if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER) {
		/* Feature version 2.21 introduced new vibration method. */
		ds->use_vibration_v2 = ds->update_version >= DS_FEATURE_VERSION(2, 21);
	} else if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) {
		ds->use_vibration_v2 = true;
	}

1475 1476 1477 1478
	ret = ps_devices_list_add(ps_dev);
	if (ret)
		return ERR_PTR(ret);

1479 1480 1481 1482 1483 1484
	ret = dualsense_get_calibration_data(ds);
	if (ret) {
		hid_err(hdev, "Failed to get calibration data from DualSense\n");
		goto err;
	}

1485
	ds->gamepad = ps_gamepad_create(hdev, dualsense_play_effect);
1486 1487 1488 1489
	if (IS_ERR(ds->gamepad)) {
		ret = PTR_ERR(ds->gamepad);
		goto err;
	}
1490 1491
	/* Use gamepad input device name as primary device name for e.g. LEDs */
	ps_dev->input_dev_name = dev_name(&ds->gamepad->dev);
1492

1493 1494 1495 1496 1497 1498 1499
	ds->sensors = ps_sensors_create(hdev, DS_ACC_RANGE, DS_ACC_RES_PER_G,
			DS_GYRO_RANGE, DS_GYRO_RES_PER_DEG_S);
	if (IS_ERR(ds->sensors)) {
		ret = PTR_ERR(ds->sensors);
		goto err;
	}

1500 1501 1502 1503 1504 1505
	ds->touchpad = ps_touchpad_create(hdev, DS_TOUCHPAD_WIDTH, DS_TOUCHPAD_HEIGHT, 2);
	if (IS_ERR(ds->touchpad)) {
		ret = PTR_ERR(ds->touchpad);
		goto err;
	}

1506 1507 1508 1509
	ret = ps_device_register_battery(ps_dev);
	if (ret)
		goto err;

1510 1511 1512 1513 1514 1515 1516 1517 1518
	/*
	 * The hardware may have control over the LEDs (e.g. in Bluetooth on startup).
	 * Reset the LEDs (lightbar, mute, player leds), so we can control them
	 * from software.
	 */
	ret = dualsense_reset_leds(ds);
	if (ret)
		goto err;

1519 1520 1521 1522 1523
	ret = ps_lightbar_register(ps_dev, &ds->lightbar, dualsense_lightbar_set_brightness);
	if (ret)
		goto err;

	/* Set default lightbar color. */
1524 1525
	dualsense_set_lightbar(ds, 0, 0, 128); /* blue */

1526 1527 1528 1529 1530 1531 1532 1533
	for (i = 0; i < ARRAY_SIZE(player_leds_info); i++) {
		const struct ps_led_info *led_info = &player_leds_info[i];

		ret = ps_led_register(ps_dev, &ds->player_leds[i], led_info);
		if (ret < 0)
			goto err;
	}

1534 1535 1536 1537 1538 1539 1540 1541 1542
	ret = ps_device_set_player_id(ps_dev);
	if (ret) {
		hid_err(hdev, "Failed to assign player id for DualSense: %d\n", ret);
		goto err;
	}

	/* Set player LEDs to our player id. */
	dualsense_set_player_leds(ds);

1543 1544 1545 1546 1547 1548 1549
	/*
	 * Reporting hardware and firmware is important as there are frequent updates, which
	 * can change behavior.
	 */
	hid_info(hdev, "Registered DualSense controller hw_version=0x%08x fw_version=0x%08x\n",
			ds->base.hw_version, ds->base.fw_version);

1550 1551 1552
	return &ds->base;

err:
1553
	ps_devices_list_remove(ps_dev);
1554 1555 1556
	return ERR_PTR(ret);
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
static int dualshock4_get_calibration_data(struct dualshock4 *ds4)
{
	struct hid_device *hdev = ds4->base.hdev;
	short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus;
	short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus;
	short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus;
	short gyro_speed_plus, gyro_speed_minus;
	short acc_x_plus, acc_x_minus;
	short acc_y_plus, acc_y_minus;
	short acc_z_plus, acc_z_minus;
	int speed_2x;
	int range_2g;
	int ret = 0;
	uint8_t *buf;

	buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION, buf,
			DS4_FEATURE_REPORT_CALIBRATION_SIZE);
	if (ret) {
		hid_err(hdev, "Failed to retrieve DualShock4 calibration info: %d\n", ret);
		goto err_free;
	}

	gyro_pitch_bias  = get_unaligned_le16(&buf[1]);
	gyro_yaw_bias    = get_unaligned_le16(&buf[3]);
	gyro_roll_bias   = get_unaligned_le16(&buf[5]);
	gyro_pitch_plus  = get_unaligned_le16(&buf[7]);
	gyro_pitch_minus = get_unaligned_le16(&buf[9]);
	gyro_yaw_plus    = get_unaligned_le16(&buf[11]);
	gyro_yaw_minus   = get_unaligned_le16(&buf[13]);
	gyro_roll_plus   = get_unaligned_le16(&buf[15]);
	gyro_roll_minus  = get_unaligned_le16(&buf[17]);
	gyro_speed_plus  = get_unaligned_le16(&buf[19]);
	gyro_speed_minus = get_unaligned_le16(&buf[21]);
	acc_x_plus       = get_unaligned_le16(&buf[23]);
	acc_x_minus      = get_unaligned_le16(&buf[25]);
	acc_y_plus       = get_unaligned_le16(&buf[27]);
	acc_y_minus      = get_unaligned_le16(&buf[29]);
	acc_z_plus       = get_unaligned_le16(&buf[31]);
	acc_z_minus      = get_unaligned_le16(&buf[33]);

	/*
	 * Set gyroscope calibration and normalization parameters.
	 * Data values will be normalized to 1/DS4_GYRO_RES_PER_DEG_S degree/s.
	 */
	speed_2x = (gyro_speed_plus + gyro_speed_minus);
	ds4->gyro_calib_data[0].abs_code = ABS_RX;
	ds4->gyro_calib_data[0].bias = gyro_pitch_bias;
	ds4->gyro_calib_data[0].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S;
	ds4->gyro_calib_data[0].sens_denom = gyro_pitch_plus - gyro_pitch_minus;

	ds4->gyro_calib_data[1].abs_code = ABS_RY;
	ds4->gyro_calib_data[1].bias = gyro_yaw_bias;
	ds4->gyro_calib_data[1].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S;
	ds4->gyro_calib_data[1].sens_denom = gyro_yaw_plus - gyro_yaw_minus;

	ds4->gyro_calib_data[2].abs_code = ABS_RZ;
	ds4->gyro_calib_data[2].bias = gyro_roll_bias;
	ds4->gyro_calib_data[2].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S;
	ds4->gyro_calib_data[2].sens_denom = gyro_roll_plus - gyro_roll_minus;

	/*
	 * Set accelerometer calibration and normalization parameters.
	 * Data values will be normalized to 1/DS4_ACC_RES_PER_G g.
	 */
	range_2g = acc_x_plus - acc_x_minus;
	ds4->accel_calib_data[0].abs_code = ABS_X;
	ds4->accel_calib_data[0].bias = acc_x_plus - range_2g / 2;
	ds4->accel_calib_data[0].sens_numer = 2*DS4_ACC_RES_PER_G;
	ds4->accel_calib_data[0].sens_denom = range_2g;

	range_2g = acc_y_plus - acc_y_minus;
	ds4->accel_calib_data[1].abs_code = ABS_Y;
	ds4->accel_calib_data[1].bias = acc_y_plus - range_2g / 2;
	ds4->accel_calib_data[1].sens_numer = 2*DS4_ACC_RES_PER_G;
	ds4->accel_calib_data[1].sens_denom = range_2g;

	range_2g = acc_z_plus - acc_z_minus;
	ds4->accel_calib_data[2].abs_code = ABS_Z;
	ds4->accel_calib_data[2].bias = acc_z_plus - range_2g / 2;
	ds4->accel_calib_data[2].sens_numer = 2*DS4_ACC_RES_PER_G;
	ds4->accel_calib_data[2].sens_denom = range_2g;

err_free:
	kfree(buf);
	return ret;
}

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
static int dualshock4_get_firmware_info(struct dualshock4 *ds4)
{
	uint8_t *buf;
	int ret;

	buf = kzalloc(DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = ps_get_report(ds4->base.hdev, DS4_FEATURE_REPORT_FIRMWARE_INFO, buf,
			DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE);
	if (ret) {
		hid_err(ds4->base.hdev, "Failed to retrieve DualShock4 firmware info: %d\n", ret);
		goto err_free;
	}

	ds4->base.hw_version = get_unaligned_le16(&buf[35]);
	ds4->base.fw_version = get_unaligned_le16(&buf[41]);

err_free:
	kfree(buf);
	return ret;
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
static int dualshock4_get_mac_address(struct dualshock4 *ds4)
{
	uint8_t *buf;
	int ret = 0;

	buf = kzalloc(DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = ps_get_report(ds4->base.hdev, DS4_FEATURE_REPORT_PAIRING_INFO, buf,
			DS4_FEATURE_REPORT_PAIRING_INFO_SIZE);
	if (ret) {
		hid_err(ds4->base.hdev, "Failed to retrieve DualShock4 pairing info: %d\n", ret);
		goto err_free;
	}

	memcpy(ds4->base.mac_address, &buf[1], sizeof(ds4->base.mac_address));

err_free:
	kfree(buf);
	return ret;
}

static int dualshock4_parse_report(struct ps_device *ps_dev, struct hid_report *report,
		u8 *data, int size)
{
	struct hid_device *hdev = ps_dev->hdev;
	struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base);
	struct dualshock4_input_report_common *ds4_report;
1701 1702 1703
	struct dualshock4_touch_report *touch_reports;
	uint8_t battery_capacity, num_touch_reports, value;
	int battery_status, i, j;
1704
	uint16_t sensor_timestamp;
1705
	unsigned long flags;
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

	/*
	 * DualShock4 in USB uses the full HID report for reportID 1, but
	 * Bluetooth uses a minimal HID report for reportID 1 and reports
	 * the full report using reportID 17.
	 */
	if (hdev->bus == BUS_USB && report->id == DS4_INPUT_REPORT_USB &&
			size == DS4_INPUT_REPORT_USB_SIZE) {
		struct dualshock4_input_report_usb *usb = (struct dualshock4_input_report_usb *)data;

		ds4_report = &usb->common;
1717 1718
		num_touch_reports = usb->num_touch_reports;
		touch_reports = usb->touch_reports;
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	} else {
		hid_err(hdev, "Unhandled reportID=%d\n", report->id);
		return -1;
	}

	input_report_abs(ds4->gamepad, ABS_X,  ds4_report->x);
	input_report_abs(ds4->gamepad, ABS_Y,  ds4_report->y);
	input_report_abs(ds4->gamepad, ABS_RX, ds4_report->rx);
	input_report_abs(ds4->gamepad, ABS_RY, ds4_report->ry);
	input_report_abs(ds4->gamepad, ABS_Z,  ds4_report->z);
	input_report_abs(ds4->gamepad, ABS_RZ, ds4_report->rz);

	value = ds4_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH;
	if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping))
		value = 8; /* center */
	input_report_abs(ds4->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x);
	input_report_abs(ds4->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y);

	input_report_key(ds4->gamepad, BTN_WEST,   ds4_report->buttons[0] & DS_BUTTONS0_SQUARE);
	input_report_key(ds4->gamepad, BTN_SOUTH,  ds4_report->buttons[0] & DS_BUTTONS0_CROSS);
	input_report_key(ds4->gamepad, BTN_EAST,   ds4_report->buttons[0] & DS_BUTTONS0_CIRCLE);
	input_report_key(ds4->gamepad, BTN_NORTH,  ds4_report->buttons[0] & DS_BUTTONS0_TRIANGLE);
	input_report_key(ds4->gamepad, BTN_TL,     ds4_report->buttons[1] & DS_BUTTONS1_L1);
	input_report_key(ds4->gamepad, BTN_TR,     ds4_report->buttons[1] & DS_BUTTONS1_R1);
	input_report_key(ds4->gamepad, BTN_TL2,    ds4_report->buttons[1] & DS_BUTTONS1_L2);
	input_report_key(ds4->gamepad, BTN_TR2,    ds4_report->buttons[1] & DS_BUTTONS1_R2);
	input_report_key(ds4->gamepad, BTN_SELECT, ds4_report->buttons[1] & DS_BUTTONS1_CREATE);
	input_report_key(ds4->gamepad, BTN_START,  ds4_report->buttons[1] & DS_BUTTONS1_OPTIONS);
	input_report_key(ds4->gamepad, BTN_THUMBL, ds4_report->buttons[1] & DS_BUTTONS1_L3);
	input_report_key(ds4->gamepad, BTN_THUMBR, ds4_report->buttons[1] & DS_BUTTONS1_R3);
	input_report_key(ds4->gamepad, BTN_MODE,   ds4_report->buttons[2] & DS_BUTTONS2_PS_HOME);
	input_sync(ds4->gamepad);

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	/* Parse and calibrate gyroscope data. */
	for (i = 0; i < ARRAY_SIZE(ds4_report->gyro); i++) {
		int raw_data = (short)le16_to_cpu(ds4_report->gyro[i]);
		int calib_data = mult_frac(ds4->gyro_calib_data[i].sens_numer,
					   raw_data - ds4->gyro_calib_data[i].bias,
					   ds4->gyro_calib_data[i].sens_denom);

		input_report_abs(ds4->sensors, ds4->gyro_calib_data[i].abs_code, calib_data);
	}

	/* Parse and calibrate accelerometer data. */
	for (i = 0; i < ARRAY_SIZE(ds4_report->accel); i++) {
		int raw_data = (short)le16_to_cpu(ds4_report->accel[i]);
		int calib_data = mult_frac(ds4->accel_calib_data[i].sens_numer,
					   raw_data - ds4->accel_calib_data[i].bias,
					   ds4->accel_calib_data[i].sens_denom);

		input_report_abs(ds4->sensors, ds4->accel_calib_data[i].abs_code, calib_data);
	}

	/* Convert timestamp (in 5.33us unit) to timestamp_us */
	sensor_timestamp = le16_to_cpu(ds4_report->sensor_timestamp);
	if (!ds4->sensor_timestamp_initialized) {
		ds4->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp*16, 3);
		ds4->sensor_timestamp_initialized = true;
	} else {
		uint16_t delta;

		if (ds4->prev_sensor_timestamp > sensor_timestamp)
			delta = (U16_MAX - ds4->prev_sensor_timestamp + sensor_timestamp + 1);
		else
			delta = sensor_timestamp - ds4->prev_sensor_timestamp;
		ds4->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta*16, 3);
	}
	ds4->prev_sensor_timestamp = sensor_timestamp;
	input_event(ds4->sensors, EV_MSC, MSC_TIMESTAMP, ds4->sensor_timestamp_us);
	input_sync(ds4->sensors);

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	for (i = 0; i < num_touch_reports; i++) {
		struct dualshock4_touch_report *touch_report = &touch_reports[i];

		for (j = 0; j < ARRAY_SIZE(touch_report->points); j++) {
			struct dualshock4_touch_point *point = &touch_report->points[j];
			bool active = (point->contact & DS4_TOUCH_POINT_INACTIVE) ? false : true;

			input_mt_slot(ds4->touchpad, j);
			input_mt_report_slot_state(ds4->touchpad, MT_TOOL_FINGER, active);

			if (active) {
				int x = (point->x_hi << 8) | point->x_lo;
				int y = (point->y_hi << 4) | point->y_lo;

				input_report_abs(ds4->touchpad, ABS_MT_POSITION_X, x);
				input_report_abs(ds4->touchpad, ABS_MT_POSITION_Y, y);
			}
		}
		input_mt_sync_frame(ds4->touchpad);
		input_sync(ds4->touchpad);
	}
	input_report_key(ds4->touchpad, BTN_LEFT, ds4_report->buttons[2] & DS_BUTTONS2_TOUCHPAD);

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	/*
	 * Interpretation of the battery_capacity data depends on the cable state.
	 * When no cable is connected (bit4 is 0):
	 * - 0:10: percentage in units of 10%.
	 * When a cable is plugged in:
	 * - 0-10: percentage in units of 10%.
	 * - 11: battery is full
	 * - 14: not charging due to Voltage or temperature error
	 * - 15: charge error
	 */
	if (ds4_report->status[0] & DS4_STATUS0_CABLE_STATE) {
		uint8_t battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY;

		if (battery_data < 10) {
			/* Take the mid-point for each battery capacity value,
			 * because on the hardware side 0 = 0-9%, 1=10-19%, etc.
			 * This matches official platform behavior, which does
			 * the same.
			 */
			battery_capacity = battery_data * 10 + 5;
			battery_status = POWER_SUPPLY_STATUS_CHARGING;
		} else if (battery_data == 10) {
			battery_capacity = 100;
			battery_status = POWER_SUPPLY_STATUS_CHARGING;
		} else if (battery_data == DS4_BATTERY_STATUS_FULL) {
			battery_capacity = 100;
			battery_status = POWER_SUPPLY_STATUS_FULL;
		} else { /* 14, 15 and undefined values */
			battery_capacity = 0;
			battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
		}
	} else {
		uint8_t battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY;

		if (battery_data < 10)
			battery_capacity = battery_data * 10 + 5;
		else /* 10 */
			battery_capacity = 100;

		battery_status = POWER_SUPPLY_STATUS_DISCHARGING;
	}

	spin_lock_irqsave(&ps_dev->lock, flags);
	ps_dev->battery_capacity = battery_capacity;
	ps_dev->battery_status = battery_status;
	spin_unlock_irqrestore(&ps_dev->lock, flags);

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	return 0;
}

static struct ps_device *dualshock4_create(struct hid_device *hdev)
{
	struct dualshock4 *ds4;
	struct ps_device *ps_dev;
	int ret;

	ds4 = devm_kzalloc(&hdev->dev, sizeof(*ds4), GFP_KERNEL);
	if (!ds4)
		return ERR_PTR(-ENOMEM);

	/*
	 * Patch version to allow userspace to distinguish between
	 * hid-generic vs hid-playstation axis and button mapping.
	 */
	hdev->version |= HID_PLAYSTATION_VERSION_PATCH;

	ps_dev = &ds4->base;
	ps_dev->hdev = hdev;
	spin_lock_init(&ps_dev->lock);
1882 1883
	ps_dev->battery_capacity = 100; /* initial value until parse_report. */
	ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	ps_dev->parse_report = dualshock4_parse_report;
	hid_set_drvdata(hdev, ds4);

	ret = dualshock4_get_mac_address(ds4);
	if (ret) {
		hid_err(hdev, "Failed to get MAC address from DualShock4\n");
		return ERR_PTR(ret);
	}
	snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds4->base.mac_address);

1894 1895 1896 1897 1898 1899
	ret = dualshock4_get_firmware_info(ds4);
	if (ret) {
		hid_err(hdev, "Failed to get firmware info from DualShock4\n");
		return ERR_PTR(ret);
	}

1900 1901 1902 1903
	ret = ps_devices_list_add(ps_dev);
	if (ret)
		return ERR_PTR(ret);

1904 1905 1906 1907 1908 1909
	ret = dualshock4_get_calibration_data(ds4);
	if (ret) {
		hid_err(hdev, "Failed to get calibration data from DualShock4\n");
		goto err;
	}

1910 1911 1912 1913 1914 1915
	ds4->gamepad = ps_gamepad_create(hdev, NULL);
	if (IS_ERR(ds4->gamepad)) {
		ret = PTR_ERR(ds4->gamepad);
		goto err;
	}

1916 1917 1918 1919 1920 1921 1922
	ds4->sensors = ps_sensors_create(hdev, DS4_ACC_RANGE, DS4_ACC_RES_PER_G,
			DS4_GYRO_RANGE, DS4_GYRO_RES_PER_DEG_S);
	if (IS_ERR(ds4->sensors)) {
		ret = PTR_ERR(ds4->sensors);
		goto err;
	}

1923 1924 1925 1926 1927 1928
	ds4->touchpad = ps_touchpad_create(hdev, DS4_TOUCHPAD_WIDTH, DS4_TOUCHPAD_HEIGHT, 2);
	if (IS_ERR(ds4->touchpad)) {
		ret = PTR_ERR(ds4->touchpad);
		goto err;
	}

1929 1930 1931 1932
	ret = ps_device_register_battery(ps_dev);
	if (ret)
		goto err;

1933 1934 1935 1936 1937 1938
	ret = ps_device_set_player_id(ps_dev);
	if (ret) {
		hid_err(hdev, "Failed to assign player id for DualShock4: %d\n", ret);
		goto err;
	}

1939 1940 1941 1942 1943 1944
	/*
	 * Reporting hardware and firmware is important as there are frequent updates, which
	 * can change behavior.
	 */
	hid_info(hdev, "Registered DualShock4 controller hw_version=0x%08x fw_version=0x%08x\n",
			ds4->base.hw_version, ds4->base.fw_version);
1945 1946 1947 1948 1949 1950 1951
	return &ds4->base;

err:
	ps_devices_list_remove(ps_dev);
	return ERR_PTR(ret);
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
static int ps_raw_event(struct hid_device *hdev, struct hid_report *report,
		u8 *data, int size)
{
	struct ps_device *dev = hid_get_drvdata(hdev);

	if (dev && dev->parse_report)
		return dev->parse_report(dev, report, data, size);

	return 0;
}

static int ps_probe(struct hid_device *hdev, const struct hid_device_id *id)
{
	struct ps_device *dev;
	int ret;

	ret = hid_parse(hdev);
	if (ret) {
		hid_err(hdev, "Parse failed\n");
		return ret;
	}

	ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
	if (ret) {
		hid_err(hdev, "Failed to start HID device\n");
		return ret;
	}

	ret = hid_hw_open(hdev);
	if (ret) {
		hid_err(hdev, "Failed to open HID device\n");
		goto err_stop;
	}

1986 1987 1988 1989 1990 1991 1992 1993 1994
	if (hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER ||
		hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_2) {
		dev = dualshock4_create(hdev);
		if (IS_ERR(dev)) {
			hid_err(hdev, "Failed to create dualshock4.\n");
			ret = PTR_ERR(dev);
			goto err_close;
		}
	} else if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER ||
1995
		hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) {
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
		dev = dualsense_create(hdev);
		if (IS_ERR(dev)) {
			hid_err(hdev, "Failed to create dualsense.\n");
			ret = PTR_ERR(dev);
			goto err_close;
		}
	}

	return ret;

err_close:
	hid_hw_close(hdev);
err_stop:
	hid_hw_stop(hdev);
	return ret;
}

static void ps_remove(struct hid_device *hdev)
{
2015 2016 2017
	struct ps_device *dev = hid_get_drvdata(hdev);

	ps_devices_list_remove(dev);
2018
	ps_device_release_player_id(dev);
2019

2020 2021 2022
	if (dev->remove)
		dev->remove(dev);

2023 2024 2025 2026 2027
	hid_hw_close(hdev);
	hid_hw_stop(hdev);
}

static const struct hid_device_id ps_devices[] = {
2028 2029 2030 2031
	/* Sony DualShock 4 controllers for PS4 */
	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) },
	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2) },
	/* Sony DualSense controllers for PS5 */
2032
	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER) },
2033
	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER) },
2034 2035
	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) },
	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) },
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	{ }
};
MODULE_DEVICE_TABLE(hid, ps_devices);

static struct hid_driver ps_driver = {
	.name		= "playstation",
	.id_table	= ps_devices,
	.probe		= ps_probe,
	.remove		= ps_remove,
	.raw_event	= ps_raw_event,
2046 2047 2048
	.driver = {
		.dev_groups = ps_device_groups,
	},
2049 2050
};

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
static int __init ps_init(void)
{
	return hid_register_driver(&ps_driver);
}

static void __exit ps_exit(void)
{
	hid_unregister_driver(&ps_driver);
	ida_destroy(&ps_player_id_allocator);
}

module_init(ps_init);
module_exit(ps_exit);
2064 2065 2066 2067

MODULE_AUTHOR("Sony Interactive Entertainment");
MODULE_DESCRIPTION("HID Driver for PlayStation peripherals.");
MODULE_LICENSE("GPL");