common.c 26.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * This file contains common generic and tag-based KASAN code.
 *
 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
 *
 * Some code borrowed from https://github.com/xairy/kasan-prototype by
 *        Andrey Konovalov <andreyknvl@gmail.com>
 */

#include <linux/export.h>
#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/kmemleak.h>
#include <linux/linkage.h>
#include <linux/memblock.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <linux/bug.h>

Z
zhong jiang 已提交
32
#include <asm/cacheflush.h>
33 34
#include <asm/tlbflush.h>

35 36 37
#include "kasan.h"
#include "../slab.h"

38
depot_stack_handle_t kasan_save_stack(gfp_t flags)
39 40
{
	unsigned long entries[KASAN_STACK_DEPTH];
41
	unsigned int nr_entries;
42

43 44 45
	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
	nr_entries = filter_irq_stacks(entries, nr_entries);
	return stack_depot_save(entries, nr_entries, flags);
46 47
}

48
void kasan_set_track(struct kasan_track *track, gfp_t flags)
49 50
{
	track->pid = current->pid;
51
	track->stack = kasan_save_stack(flags);
52 53 54 55 56 57 58 59 60 61 62 63
}

void kasan_enable_current(void)
{
	current->kasan_depth++;
}

void kasan_disable_current(void)
{
	current->kasan_depth--;
}

64
bool __kasan_check_read(const volatile void *p, unsigned int size)
65
{
66
	return check_memory_region((unsigned long)p, size, false, _RET_IP_);
67
}
68
EXPORT_SYMBOL(__kasan_check_read);
69

70
bool __kasan_check_write(const volatile void *p, unsigned int size)
71
{
72
	return check_memory_region((unsigned long)p, size, true, _RET_IP_);
73
}
74
EXPORT_SYMBOL(__kasan_check_write);
75 76 77 78

#undef memset
void *memset(void *addr, int c, size_t len)
{
79 80
	if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
		return NULL;
81 82 83 84

	return __memset(addr, c, len);
}

85
#ifdef __HAVE_ARCH_MEMMOVE
86 87 88
#undef memmove
void *memmove(void *dest, const void *src, size_t len)
{
89 90 91
	if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
	    !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
		return NULL;
92 93 94

	return __memmove(dest, src, len);
}
95
#endif
96 97 98 99

#undef memcpy
void *memcpy(void *dest, const void *src, size_t len)
{
100 101 102
	if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
	    !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
		return NULL;
103 104 105 106 107 108 109 110 111 112 113 114

	return __memcpy(dest, src, len);
}

/*
 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
 */
void kasan_poison_shadow(const void *address, size_t size, u8 value)
{
	void *shadow_start, *shadow_end;

115 116 117 118 119 120 121
	/*
	 * Perform shadow offset calculation based on untagged address, as
	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
	 * addresses to this function.
	 */
	address = reset_tag(address);

122 123 124 125 126 127 128 129
	shadow_start = kasan_mem_to_shadow(address);
	shadow_end = kasan_mem_to_shadow(address + size);

	__memset(shadow_start, value, shadow_end - shadow_start);
}

void kasan_unpoison_shadow(const void *address, size_t size)
{
130 131 132 133 134 135 136 137 138 139
	u8 tag = get_tag(address);

	/*
	 * Perform shadow offset calculation based on untagged address, as
	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
	 * addresses to this function.
	 */
	address = reset_tag(address);

	kasan_poison_shadow(address, size, tag);
140 141 142

	if (size & KASAN_SHADOW_MASK) {
		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
143 144 145 146 147

		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
			*shadow = tag;
		else
			*shadow = size & KASAN_SHADOW_MASK;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
	}
}

static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
{
	void *base = task_stack_page(task);
	size_t size = sp - base;

	kasan_unpoison_shadow(base, size);
}

/* Unpoison the entire stack for a task. */
void kasan_unpoison_task_stack(struct task_struct *task)
{
	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
}

/* Unpoison the stack for the current task beyond a watermark sp value. */
asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
{
	/*
	 * Calculate the task stack base address.  Avoid using 'current'
	 * because this function is called by early resume code which hasn't
	 * yet set up the percpu register (%gs).
	 */
	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));

	kasan_unpoison_shadow(base, watermark - base);
}

void kasan_alloc_pages(struct page *page, unsigned int order)
{
180 181 182
	u8 tag;
	unsigned long i;

183 184
	if (unlikely(PageHighMem(page)))
		return;
185 186 187 188

	tag = random_tag();
	for (i = 0; i < (1 << order); i++)
		page_kasan_tag_set(page + i, tag);
189
	kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
}

void kasan_free_pages(struct page *page, unsigned int order)
{
	if (likely(!PageHighMem(page)))
		kasan_poison_shadow(page_address(page),
				PAGE_SIZE << order,
				KASAN_FREE_PAGE);
}

/*
 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
 * For larger allocations larger redzones are used.
 */
static inline unsigned int optimal_redzone(unsigned int object_size)
{
206 207 208
	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
		return 0;

209 210 211 212 213 214 215 216 217 218 219 220 221 222
	return
		object_size <= 64        - 16   ? 16 :
		object_size <= 128       - 32   ? 32 :
		object_size <= 512       - 64   ? 64 :
		object_size <= 4096      - 128  ? 128 :
		object_size <= (1 << 14) - 256  ? 256 :
		object_size <= (1 << 15) - 512  ? 512 :
		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
}

void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
			slab_flags_t *flags)
{
	unsigned int orig_size = *size;
223
	unsigned int redzone_size;
224 225 226 227 228 229 230
	int redzone_adjust;

	/* Add alloc meta. */
	cache->kasan_info.alloc_meta_offset = *size;
	*size += sizeof(struct kasan_alloc_meta);

	/* Add free meta. */
231 232 233
	if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
	    (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
	     cache->object_size < sizeof(struct kasan_free_meta))) {
234 235 236 237
		cache->kasan_info.free_meta_offset = *size;
		*size += sizeof(struct kasan_free_meta);
	}

238 239
	redzone_size = optimal_redzone(cache->object_size);
	redzone_adjust = redzone_size -	(*size - cache->object_size);
240 241 242 243
	if (redzone_adjust > 0)
		*size += redzone_adjust;

	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
244
			max(*size, cache->object_size + redzone_size));
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

	/*
	 * If the metadata doesn't fit, don't enable KASAN at all.
	 */
	if (*size <= cache->kasan_info.alloc_meta_offset ||
			*size <= cache->kasan_info.free_meta_offset) {
		cache->kasan_info.alloc_meta_offset = 0;
		cache->kasan_info.free_meta_offset = 0;
		*size = orig_size;
		return;
	}

	*flags |= SLAB_KASAN;
}

size_t kasan_metadata_size(struct kmem_cache *cache)
{
	return (cache->kasan_info.alloc_meta_offset ?
		sizeof(struct kasan_alloc_meta) : 0) +
		(cache->kasan_info.free_meta_offset ?
		sizeof(struct kasan_free_meta) : 0);
}

struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
					const void *object)
{
	return (void *)object + cache->kasan_info.alloc_meta_offset;
}

struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
				      const void *object)
{
	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
	return (void *)object + cache->kasan_info.free_meta_offset;
}

void kasan_poison_slab(struct page *page)
{
283 284
	unsigned long i;

285
	for (i = 0; i < compound_nr(page); i++)
286
		page_kasan_tag_reset(page + i);
287
	kasan_poison_shadow(page_address(page), page_size(page),
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
			KASAN_KMALLOC_REDZONE);
}

void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
{
	kasan_unpoison_shadow(object, cache->object_size);
}

void kasan_poison_object_data(struct kmem_cache *cache, void *object)
{
	kasan_poison_shadow(object,
			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
			KASAN_KMALLOC_REDZONE);
}

303
/*
304 305 306 307 308 309 310 311 312 313 314 315
 * This function assigns a tag to an object considering the following:
 * 1. A cache might have a constructor, which might save a pointer to a slab
 *    object somewhere (e.g. in the object itself). We preassign a tag for
 *    each object in caches with constructors during slab creation and reuse
 *    the same tag each time a particular object is allocated.
 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
 *    accessed after being freed. We preassign tags for objects in these
 *    caches as well.
 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
 *    is stored as an array of indexes instead of a linked list. Assign tags
 *    based on objects indexes, so that objects that are next to each other
 *    get different tags.
316
 */
317
static u8 assign_tag(struct kmem_cache *cache, const void *object,
318
			bool init, bool keep_tag)
319
{
320 321 322 323 324 325 326
	/*
	 * 1. When an object is kmalloc()'ed, two hooks are called:
	 *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
	 *    tag only in the first one.
	 * 2. We reuse the same tag for krealloc'ed objects.
	 */
	if (keep_tag)
327 328 329 330 331 332
		return get_tag(object);

	/*
	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
	 * set, assign a tag when the object is being allocated (init == false).
	 */
333
	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
334
		return init ? KASAN_TAG_KERNEL : random_tag();
335

336
	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
337
#ifdef CONFIG_SLAB
338
	/* For SLAB assign tags based on the object index in the freelist. */
339 340
	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
#else
341 342 343 344 345
	/*
	 * For SLUB assign a random tag during slab creation, otherwise reuse
	 * the already assigned tag.
	 */
	return init ? random_tag() : get_tag(object);
346 347 348
#endif
}

349 350
void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
						const void *object)
351 352 353 354 355 356 357 358 359
{
	struct kasan_alloc_meta *alloc_info;

	if (!(cache->flags & SLAB_KASAN))
		return (void *)object;

	alloc_info = get_alloc_info(cache, object);
	__memset(alloc_info, 0, sizeof(*alloc_info));

360
	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
361 362
		object = set_tag(object,
				assign_tag(cache, object, true, false));
363

364 365 366
	return (void *)object;
}

367 368 369 370 371
static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
{
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		return shadow_byte < 0 ||
			shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
372 373 374 375 376 377 378 379

	/* else CONFIG_KASAN_SW_TAGS: */
	if ((u8)shadow_byte == KASAN_TAG_INVALID)
		return true;
	if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
		return true;

	return false;
380 381
}

382 383 384 385
static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
			      unsigned long ip, bool quarantine)
{
	s8 shadow_byte;
386 387
	u8 tag;
	void *tagged_object;
388 389
	unsigned long rounded_up_size;

390 391 392 393
	tag = get_tag(object);
	tagged_object = object;
	object = reset_tag(object);

394 395
	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
	    object)) {
396
		kasan_report_invalid_free(tagged_object, ip);
397 398 399 400 401 402 403 404
		return true;
	}

	/* RCU slabs could be legally used after free within the RCU period */
	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
		return false;

	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
405 406
	if (shadow_invalid(tag, shadow_byte)) {
		kasan_report_invalid_free(tagged_object, ip);
407 408 409 410 411 412
		return true;
	}

	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);

413 414
	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
			unlikely(!(cache->flags & SLAB_KASAN)))
415 416
		return false;

417 418
	kasan_set_free_info(cache, object, tag);

419
	quarantine_put(get_free_info(cache, object), cache);
420 421

	return IS_ENABLED(CONFIG_KASAN_GENERIC);
422 423 424 425 426 427 428
}

bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
{
	return __kasan_slab_free(cache, object, ip, true);
}

429
static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
430
				size_t size, gfp_t flags, bool keep_tag)
431 432 433
{
	unsigned long redzone_start;
	unsigned long redzone_end;
434
	u8 tag = 0xff;
435 436 437 438 439 440 441 442 443 444 445 446

	if (gfpflags_allow_blocking(flags))
		quarantine_reduce();

	if (unlikely(object == NULL))
		return NULL;

	redzone_start = round_up((unsigned long)(object + size),
				KASAN_SHADOW_SCALE_SIZE);
	redzone_end = round_up((unsigned long)object + cache->object_size,
				KASAN_SHADOW_SCALE_SIZE);

447
	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
448
		tag = assign_tag(cache, object, false, keep_tag);
449 450 451

	/* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
	kasan_unpoison_shadow(set_tag(object, tag), size);
452 453 454 455
	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
		KASAN_KMALLOC_REDZONE);

	if (cache->flags & SLAB_KASAN)
456
		kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags);
457

458
	return set_tag(object, tag);
459
}
460

461 462 463 464 465 466
void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
					gfp_t flags)
{
	return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
}

467 468 469
void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
				size_t size, gfp_t flags)
{
470
	return __kasan_kmalloc(cache, object, size, flags, true);
471
}
472 473
EXPORT_SYMBOL(kasan_kmalloc);

474 475
void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
						gfp_t flags)
476 477 478 479 480 481 482 483 484 485 486 487 488 489
{
	struct page *page;
	unsigned long redzone_start;
	unsigned long redzone_end;

	if (gfpflags_allow_blocking(flags))
		quarantine_reduce();

	if (unlikely(ptr == NULL))
		return NULL;

	page = virt_to_page(ptr);
	redzone_start = round_up((unsigned long)(ptr + size),
				KASAN_SHADOW_SCALE_SIZE);
490
	redzone_end = (unsigned long)ptr + page_size(page);
491 492 493 494 495 496 497 498

	kasan_unpoison_shadow(ptr, size);
	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
		KASAN_PAGE_REDZONE);

	return (void *)ptr;
}

499
void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
500 501 502 503 504 505 506 507 508 509 510
{
	struct page *page;

	if (unlikely(object == ZERO_SIZE_PTR))
		return (void *)object;

	page = virt_to_head_page(object);

	if (unlikely(!PageSlab(page)))
		return kasan_kmalloc_large(object, size, flags);
	else
511 512
		return __kasan_kmalloc(page->slab_cache, object, size,
						flags, true);
513 514 515 516 517 518 519 520 521
}

void kasan_poison_kfree(void *ptr, unsigned long ip)
{
	struct page *page;

	page = virt_to_head_page(ptr);

	if (unlikely(!PageSlab(page))) {
522
		if (ptr != page_address(page)) {
523 524 525
			kasan_report_invalid_free(ptr, ip);
			return;
		}
526
		kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
527 528 529 530 531 532 533
	} else {
		__kasan_slab_free(page->slab_cache, ptr, ip, false);
	}
}

void kasan_kfree_large(void *ptr, unsigned long ip)
{
534
	if (ptr != page_address(virt_to_head_page(ptr)))
535 536 537 538
		kasan_report_invalid_free(ptr, ip);
	/* The object will be poisoned by page_alloc. */
}

539
#ifndef CONFIG_KASAN_VMALLOC
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
int kasan_module_alloc(void *addr, size_t size)
{
	void *ret;
	size_t scaled_size;
	size_t shadow_size;
	unsigned long shadow_start;

	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
	shadow_size = round_up(scaled_size, PAGE_SIZE);

	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
		return -EINVAL;

	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
			shadow_start + shadow_size,
556
			GFP_KERNEL,
557 558 559 560
			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
			__builtin_return_address(0));

	if (ret) {
561
		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
562 563 564 565 566 567 568 569 570 571 572 573 574
		find_vm_area(addr)->flags |= VM_KASAN;
		kmemleak_ignore(ret);
		return 0;
	}

	return -ENOMEM;
}

void kasan_free_shadow(const struct vm_struct *vm)
{
	if (vm->flags & VM_KASAN)
		vfree(kasan_mem_to_shadow(vm->addr));
}
575
#endif
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

#ifdef CONFIG_MEMORY_HOTPLUG
static bool shadow_mapped(unsigned long addr)
{
	pgd_t *pgd = pgd_offset_k(addr);
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	if (pgd_none(*pgd))
		return false;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return false;
	pud = pud_offset(p4d, addr);
	if (pud_none(*pud))
		return false;

	/*
	 * We can't use pud_large() or pud_huge(), the first one is
	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
	 * pud_bad(), if pud is bad then it's bad because it's huge.
	 */
	if (pud_bad(*pud))
		return true;
	pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd))
		return false;

	if (pmd_bad(*pmd))
		return true;
	pte = pte_offset_kernel(pmd, addr);
	return !pte_none(*pte);
}

static int __meminit kasan_mem_notifier(struct notifier_block *nb,
			unsigned long action, void *data)
{
	struct memory_notify *mem_data = data;
	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
	unsigned long shadow_end, shadow_size;

	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
	shadow_size = nr_shadow_pages << PAGE_SHIFT;
	shadow_end = shadow_start + shadow_size;

	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
		return NOTIFY_BAD;

	switch (action) {
	case MEM_GOING_ONLINE: {
		void *ret;

		/*
		 * If shadow is mapped already than it must have been mapped
		 * during the boot. This could happen if we onlining previously
		 * offlined memory.
		 */
		if (shadow_mapped(shadow_start))
			return NOTIFY_OK;

		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
					shadow_end, GFP_KERNEL,
					PAGE_KERNEL, VM_NO_GUARD,
					pfn_to_nid(mem_data->start_pfn),
					__builtin_return_address(0));
		if (!ret)
			return NOTIFY_BAD;

		kmemleak_ignore(ret);
		return NOTIFY_OK;
	}
	case MEM_CANCEL_ONLINE:
	case MEM_OFFLINE: {
		struct vm_struct *vm;

		/*
		 * shadow_start was either mapped during boot by kasan_init()
		 * or during memory online by __vmalloc_node_range().
		 * In the latter case we can use vfree() to free shadow.
		 * Non-NULL result of the find_vm_area() will tell us if
		 * that was the second case.
		 *
		 * Currently it's not possible to free shadow mapped
		 * during boot by kasan_init(). It's because the code
		 * to do that hasn't been written yet. So we'll just
		 * leak the memory.
		 */
		vm = find_vm_area((void *)shadow_start);
		if (vm)
			vfree((void *)shadow_start);
	}
	}

	return NOTIFY_OK;
}

static int __init kasan_memhotplug_init(void)
{
	hotplug_memory_notifier(kasan_mem_notifier, 0);

	return 0;
}

core_initcall(kasan_memhotplug_init);
#endif
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

#ifdef CONFIG_KASAN_VMALLOC
static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
				      void *unused)
{
	unsigned long page;
	pte_t pte;

	if (likely(!pte_none(*ptep)))
		return 0;

	page = __get_free_page(GFP_KERNEL);
	if (!page)
		return -ENOMEM;

	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);

	spin_lock(&init_mm.page_table_lock);
	if (likely(pte_none(*ptep))) {
		set_pte_at(&init_mm, addr, ptep, pte);
		page = 0;
	}
	spin_unlock(&init_mm.page_table_lock);
	if (page)
		free_page(page);
	return 0;
}

715
int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
716 717 718 719
{
	unsigned long shadow_start, shadow_end;
	int ret;

720 721 722 723
	if (!is_vmalloc_or_module_addr((void *)addr))
		return 0;

	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
724
	shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
725
	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	shadow_end = ALIGN(shadow_end, PAGE_SIZE);

	ret = apply_to_page_range(&init_mm, shadow_start,
				  shadow_end - shadow_start,
				  kasan_populate_vmalloc_pte, NULL);
	if (ret)
		return ret;

	flush_cache_vmap(shadow_start, shadow_end);

	/*
	 * We need to be careful about inter-cpu effects here. Consider:
	 *
	 *   CPU#0				  CPU#1
	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
	 *					p[99] = 1;
	 *
	 * With compiler instrumentation, that ends up looking like this:
	 *
	 *   CPU#0				  CPU#1
	 * // vmalloc() allocates memory
	 * // let a = area->addr
	 * // we reach kasan_populate_vmalloc
	 * // and call kasan_unpoison_shadow:
	 * STORE shadow(a), unpoison_val
	 * ...
	 * STORE shadow(a+99), unpoison_val	x = LOAD p
	 * // rest of vmalloc process		<data dependency>
	 * STORE p, a				LOAD shadow(x+99)
	 *
	 * If there is no barrier between the end of unpoisioning the shadow
	 * and the store of the result to p, the stores could be committed
	 * in a different order by CPU#0, and CPU#1 could erroneously observe
	 * poison in the shadow.
	 *
	 * We need some sort of barrier between the stores.
	 *
	 * In the vmalloc() case, this is provided by a smp_wmb() in
	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
	 * get_vm_area() and friends, the caller gets shadow allocated but
	 * doesn't have any pages mapped into the virtual address space that
	 * has been reserved. Mapping those pages in will involve taking and
	 * releasing a page-table lock, which will provide the barrier.
	 */

	return 0;
}

/*
 * Poison the shadow for a vmalloc region. Called as part of the
 * freeing process at the time the region is freed.
 */
778
void kasan_poison_vmalloc(const void *start, unsigned long size)
779
{
780 781 782
	if (!is_vmalloc_or_module_addr(start))
		return;

783 784 785 786
	size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
	kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID);
}

787 788 789 790 791 792 793 794
void kasan_unpoison_vmalloc(const void *start, unsigned long size)
{
	if (!is_vmalloc_or_module_addr(start))
		return;

	kasan_unpoison_shadow(start, size);
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
					void *unused)
{
	unsigned long page;

	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);

	spin_lock(&init_mm.page_table_lock);

	if (likely(!pte_none(*ptep))) {
		pte_clear(&init_mm, addr, ptep);
		free_page(page);
	}
	spin_unlock(&init_mm.page_table_lock);

	return 0;
}

/*
 * Release the backing for the vmalloc region [start, end), which
 * lies within the free region [free_region_start, free_region_end).
 *
 * This can be run lazily, long after the region was freed. It runs
 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
 * infrastructure.
 *
 * How does this work?
 * -------------------
 *
 * We have a region that is page aligned, labelled as A.
 * That might not map onto the shadow in a way that is page-aligned:
 *
 *                    start                     end
 *                    v                         v
 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
 *  -------- -------- --------          -------- --------
 *      |        |       |                 |        |
 *      |        |       |         /-------/        |
 *      \-------\|/------/         |/---------------/
 *              |||                ||
 *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
 *                 (1)      (2)      (3)
 *
 * First we align the start upwards and the end downwards, so that the
 * shadow of the region aligns with shadow page boundaries. In the
 * example, this gives us the shadow page (2). This is the shadow entirely
 * covered by this allocation.
 *
 * Then we have the tricky bits. We want to know if we can free the
 * partially covered shadow pages - (1) and (3) in the example. For this,
 * we are given the start and end of the free region that contains this
 * allocation. Extending our previous example, we could have:
 *
 *  free_region_start                                    free_region_end
 *  |                 start                     end      |
 *  v                 v                         v        v
 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
 *  -------- -------- --------          -------- --------
 *      |        |       |                 |        |
 *      |        |       |         /-------/        |
 *      \-------\|/------/         |/---------------/
 *              |||                ||
 *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
 *                 (1)      (2)      (3)
 *
 * Once again, we align the start of the free region up, and the end of
 * the free region down so that the shadow is page aligned. So we can free
 * page (1) - we know no allocation currently uses anything in that page,
 * because all of it is in the vmalloc free region. But we cannot free
 * page (3), because we can't be sure that the rest of it is unused.
 *
 * We only consider pages that contain part of the original region for
 * freeing: we don't try to free other pages from the free region or we'd
 * end up trying to free huge chunks of virtual address space.
 *
 * Concurrency
 * -----------
 *
 * How do we know that we're not freeing a page that is simultaneously
 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
 *
 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
 * at the same time. While we run under free_vmap_area_lock, the population
 * code does not.
 *
 * free_vmap_area_lock instead operates to ensure that the larger range
 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
 * no space identified as free will become used while we are running. This
 * means that so long as we are careful with alignment and only free shadow
 * pages entirely covered by the free region, we will not run in to any
 * trouble - any simultaneous allocations will be for disjoint regions.
 */
void kasan_release_vmalloc(unsigned long start, unsigned long end,
			   unsigned long free_region_start,
			   unsigned long free_region_end)
{
	void *shadow_start, *shadow_end;
	unsigned long region_start, region_end;
894
	unsigned long size;
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916

	region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
	region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);

	free_region_start = ALIGN(free_region_start,
				  PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);

	if (start != region_start &&
	    free_region_start < region_start)
		region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;

	free_region_end = ALIGN_DOWN(free_region_end,
				     PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);

	if (end != region_end &&
	    free_region_end > region_end)
		region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;

	shadow_start = kasan_mem_to_shadow((void *)region_start);
	shadow_end = kasan_mem_to_shadow((void *)region_end);

	if (shadow_end > shadow_start) {
917 918 919 920 921
		size = shadow_end - shadow_start;
		apply_to_existing_page_range(&init_mm,
					     (unsigned long)shadow_start,
					     size, kasan_depopulate_vmalloc_pte,
					     NULL);
922 923 924 925 926
		flush_tlb_kernel_range((unsigned long)shadow_start,
				       (unsigned long)shadow_end);
	}
}
#endif