bpf_counter.c 22.6 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0

/* Copyright (c) 2019 Facebook */

#include <assert.h>
#include <limits.h>
#include <unistd.h>
8
#include <sys/file.h>
9 10 11 12 13 14 15
#include <sys/time.h>
#include <sys/resource.h>
#include <linux/err.h>
#include <linux/zalloc.h>
#include <bpf/bpf.h>
#include <bpf/btf.h>
#include <bpf/libbpf.h>
16
#include <api/fs/fs.h>
17
#include <perf/bpf_perf.h>
18 19 20 21 22

#include "bpf_counter.h"
#include "counts.h"
#include "debug.h"
#include "evsel.h"
23
#include "evlist.h"
24
#include "target.h"
25 26
#include "cpumap.h"
#include "thread_map.h"
27 28

#include "bpf_skel/bpf_prog_profiler.skel.h"
29 30 31 32 33
#include "bpf_skel/bperf_u.h"
#include "bpf_skel/bperf_leader.skel.h"
#include "bpf_skel/bperf_follower.skel.h"

#define ATTR_MAP_SIZE 16
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

static inline void *u64_to_ptr(__u64 ptr)
{
	return (void *)(unsigned long)ptr;
}

static void set_max_rlimit(void)
{
	struct rlimit rinf = { RLIM_INFINITY, RLIM_INFINITY };

	setrlimit(RLIMIT_MEMLOCK, &rinf);
}

static struct bpf_counter *bpf_counter_alloc(void)
{
	struct bpf_counter *counter;

	counter = zalloc(sizeof(*counter));
	if (counter)
		INIT_LIST_HEAD(&counter->list);
	return counter;
}

static int bpf_program_profiler__destroy(struct evsel *evsel)
{
	struct bpf_counter *counter, *tmp;

	list_for_each_entry_safe(counter, tmp,
				 &evsel->bpf_counter_list, list) {
		list_del_init(&counter->list);
		bpf_prog_profiler_bpf__destroy(counter->skel);
		free(counter);
	}
	assert(list_empty(&evsel->bpf_counter_list));

	return 0;
}

static char *bpf_target_prog_name(int tgt_fd)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_func_info *func_info;
	const struct btf_type *t;
	char *name = NULL;
	struct btf *btf;

	info_linear = bpf_program__get_prog_info_linear(
		tgt_fd, 1UL << BPF_PROG_INFO_FUNC_INFO);
	if (IS_ERR_OR_NULL(info_linear)) {
		pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
		return NULL;
	}

	if (info_linear->info.btf_id == 0 ||
	    btf__get_from_id(info_linear->info.btf_id, &btf)) {
		pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
		goto out;
	}

	func_info = u64_to_ptr(info_linear->info.func_info);
	t = btf__type_by_id(btf, func_info[0].type_id);
	if (!t) {
		pr_debug("btf %d doesn't have type %d\n",
			 info_linear->info.btf_id, func_info[0].type_id);
		goto out;
	}
	name = strdup(btf__name_by_offset(btf, t->name_off));
out:
	free(info_linear);
	return name;
}

static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
{
	struct bpf_prog_profiler_bpf *skel;
	struct bpf_counter *counter;
	struct bpf_program *prog;
	char *prog_name;
	int prog_fd;
	int err;

	prog_fd = bpf_prog_get_fd_by_id(prog_id);
	if (prog_fd < 0) {
		pr_err("Failed to open fd for bpf prog %u\n", prog_id);
		return -1;
	}
	counter = bpf_counter_alloc();
	if (!counter) {
		close(prog_fd);
		return -1;
	}

	skel = bpf_prog_profiler_bpf__open();
	if (!skel) {
		pr_err("Failed to open bpf skeleton\n");
		goto err_out;
	}

	skel->rodata->num_cpu = evsel__nr_cpus(evsel);

	bpf_map__resize(skel->maps.events, evsel__nr_cpus(evsel));
	bpf_map__resize(skel->maps.fentry_readings, 1);
	bpf_map__resize(skel->maps.accum_readings, 1);

	prog_name = bpf_target_prog_name(prog_fd);
	if (!prog_name) {
		pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
		goto err_out;
	}

	bpf_object__for_each_program(prog, skel->obj) {
		err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
		if (err) {
			pr_err("bpf_program__set_attach_target failed.\n"
			       "Does bpf prog %u have BTF?\n", prog_id);
			goto err_out;
		}
	}
	set_max_rlimit();
	err = bpf_prog_profiler_bpf__load(skel);
	if (err) {
		pr_err("bpf_prog_profiler_bpf__load failed\n");
		goto err_out;
	}

	assert(skel != NULL);
	counter->skel = skel;
	list_add(&counter->list, &evsel->bpf_counter_list);
	close(prog_fd);
	return 0;
err_out:
	bpf_prog_profiler_bpf__destroy(skel);
	free(counter);
	close(prog_fd);
	return -1;
}

static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
{
	char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
	u32 prog_id;
	int ret;

	bpf_str_ = bpf_str = strdup(target->bpf_str);
	if (!bpf_str)
		return -1;

	while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
		prog_id = strtoul(tok, &p, 10);
		if (prog_id == 0 || prog_id == UINT_MAX ||
		    (*p != '\0' && *p != ',')) {
			pr_err("Failed to parse bpf prog ids %s\n",
			       target->bpf_str);
			return -1;
		}

		ret = bpf_program_profiler_load_one(evsel, prog_id);
		if (ret) {
			bpf_program_profiler__destroy(evsel);
			free(bpf_str_);
			return -1;
		}
		bpf_str = NULL;
	}
	free(bpf_str_);
	return 0;
}

static int bpf_program_profiler__enable(struct evsel *evsel)
{
	struct bpf_counter *counter;
	int ret;

	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
		assert(counter->skel != NULL);
		ret = bpf_prog_profiler_bpf__attach(counter->skel);
		if (ret) {
			bpf_program_profiler__destroy(evsel);
			return ret;
		}
	}
	return 0;
}

static int bpf_program_profiler__read(struct evsel *evsel)
{
	// perf_cpu_map uses /sys/devices/system/cpu/online
	int num_cpu = evsel__nr_cpus(evsel);
	// BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
	// Sometimes possible > online, like on a Ryzen 3900X that has 24
	// threads but its possible showed 0-31 -acme
	int num_cpu_bpf = libbpf_num_possible_cpus();
	struct bpf_perf_event_value values[num_cpu_bpf];
	struct bpf_counter *counter;
	int reading_map_fd;
	__u32 key = 0;
	int err, cpu;

	if (list_empty(&evsel->bpf_counter_list))
		return -EAGAIN;

	for (cpu = 0; cpu < num_cpu; cpu++) {
		perf_counts(evsel->counts, cpu, 0)->val = 0;
		perf_counts(evsel->counts, cpu, 0)->ena = 0;
		perf_counts(evsel->counts, cpu, 0)->run = 0;
	}
	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
		struct bpf_prog_profiler_bpf *skel = counter->skel;

		assert(skel != NULL);
		reading_map_fd = bpf_map__fd(skel->maps.accum_readings);

		err = bpf_map_lookup_elem(reading_map_fd, &key, values);
		if (err) {
			pr_err("failed to read value\n");
			return err;
		}

		for (cpu = 0; cpu < num_cpu; cpu++) {
			perf_counts(evsel->counts, cpu, 0)->val += values[cpu].counter;
			perf_counts(evsel->counts, cpu, 0)->ena += values[cpu].enabled;
			perf_counts(evsel->counts, cpu, 0)->run += values[cpu].running;
		}
	}
	return 0;
}

static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu,
					    int fd)
{
	struct bpf_prog_profiler_bpf *skel;
	struct bpf_counter *counter;
	int ret;

	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
		skel = counter->skel;
		assert(skel != NULL);

		ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
					  &cpu, &fd, BPF_ANY);
		if (ret)
			return ret;
	}
	return 0;
}

struct bpf_counter_ops bpf_program_profiler_ops = {
	.load       = bpf_program_profiler__load,
	.enable	    = bpf_program_profiler__enable,
	.read       = bpf_program_profiler__read,
	.destroy    = bpf_program_profiler__destroy,
	.install_pe = bpf_program_profiler__install_pe,
};

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static __u32 bpf_link_get_id(int fd)
{
	struct bpf_link_info link_info = {0};
	__u32 link_info_len = sizeof(link_info);

	bpf_obj_get_info_by_fd(fd, &link_info, &link_info_len);
	return link_info.id;
}

static __u32 bpf_link_get_prog_id(int fd)
{
	struct bpf_link_info link_info = {0};
	__u32 link_info_len = sizeof(link_info);

	bpf_obj_get_info_by_fd(fd, &link_info, &link_info_len);
	return link_info.prog_id;
}

static __u32 bpf_map_get_id(int fd)
{
	struct bpf_map_info map_info = {0};
	__u32 map_info_len = sizeof(map_info);

	bpf_obj_get_info_by_fd(fd, &map_info, &map_info_len);
	return map_info.id;
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328
static bool bperf_attr_map_compatible(int attr_map_fd)
{
	struct bpf_map_info map_info = {0};
	__u32 map_info_len = sizeof(map_info);
	int err;

	err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);

	if (err)
		return false;
	return (map_info.key_size == sizeof(struct perf_event_attr)) &&
		(map_info.value_size == sizeof(struct perf_event_attr_map_entry));
}

329 330 331 332 333 334 335 336
static int bperf_lock_attr_map(struct target *target)
{
	char path[PATH_MAX];
	int map_fd, err;

	if (target->attr_map) {
		scnprintf(path, PATH_MAX, "%s", target->attr_map);
	} else {
337 338
		scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
			  BPF_PERF_DEFAULT_ATTR_MAP_PATH);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	}

	if (access(path, F_OK)) {
		map_fd = bpf_create_map(BPF_MAP_TYPE_HASH,
					sizeof(struct perf_event_attr),
					sizeof(struct perf_event_attr_map_entry),
					ATTR_MAP_SIZE, 0);
		if (map_fd < 0)
			return -1;

		err = bpf_obj_pin(map_fd, path);
		if (err) {
			/* someone pinned the map in parallel? */
			close(map_fd);
			map_fd = bpf_obj_get(path);
			if (map_fd < 0)
				return -1;
		}
	} else {
		map_fd = bpf_obj_get(path);
		if (map_fd < 0)
			return -1;
	}

363 364 365 366 367
	if (!bperf_attr_map_compatible(map_fd)) {
		close(map_fd);
		return -1;

	}
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	err = flock(map_fd, LOCK_EX);
	if (err) {
		close(map_fd);
		return -1;
	}
	return map_fd;
}

/* trigger the leader program on a cpu */
static int bperf_trigger_reading(int prog_fd, int cpu)
{
	DECLARE_LIBBPF_OPTS(bpf_test_run_opts, opts,
			    .ctx_in = NULL,
			    .ctx_size_in = 0,
			    .flags = BPF_F_TEST_RUN_ON_CPU,
			    .cpu = cpu,
			    .retval = 0,
		);

	return bpf_prog_test_run_opts(prog_fd, &opts);
}

static int bperf_check_target(struct evsel *evsel,
			      struct target *target,
			      enum bperf_filter_type *filter_type,
			      __u32 *filter_entry_cnt)
{
	if (evsel->leader->core.nr_members > 1) {
		pr_err("bpf managed perf events do not yet support groups.\n");
		return -1;
	}

	/* determine filter type based on target */
	if (target->system_wide) {
		*filter_type = BPERF_FILTER_GLOBAL;
		*filter_entry_cnt = 1;
	} else if (target->cpu_list) {
		*filter_type = BPERF_FILTER_CPU;
		*filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
	} else if (target->tid) {
		*filter_type = BPERF_FILTER_PID;
		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
	} else if (target->pid || evsel->evlist->workload.pid != -1) {
		*filter_type = BPERF_FILTER_TGID;
		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
	} else {
		pr_err("bpf managed perf events do not yet support these targets.\n");
		return -1;
	}

	return 0;
}

static	struct perf_cpu_map *all_cpu_map;

static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
				       struct perf_event_attr_map_entry *entry)
{
	struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
	int link_fd, diff_map_fd, err;
	struct bpf_link *link = NULL;

	if (!skel) {
		pr_err("Failed to open leader skeleton\n");
		return -1;
	}

	bpf_map__resize(skel->maps.events, libbpf_num_possible_cpus());
	err = bperf_leader_bpf__load(skel);
	if (err) {
		pr_err("Failed to load leader skeleton\n");
		goto out;
	}

	err = -1;
	link = bpf_program__attach(skel->progs.on_switch);
	if (!link) {
		pr_err("Failed to attach leader program\n");
		goto out;
	}

	link_fd = bpf_link__fd(link);
	diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
	entry->link_id = bpf_link_get_id(link_fd);
	entry->diff_map_id = bpf_map_get_id(diff_map_fd);
	err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
	assert(err == 0);

	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
	assert(evsel->bperf_leader_link_fd >= 0);

	/*
	 * save leader_skel for install_pe, which is called within
	 * following evsel__open_per_cpu call
	 */
	evsel->leader_skel = skel;
	evsel__open_per_cpu(evsel, all_cpu_map, -1);

out:
	bperf_leader_bpf__destroy(skel);
	bpf_link__destroy(link);
	return err;
}

static int bperf__load(struct evsel *evsel, struct target *target)
{
	struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
	int attr_map_fd, diff_map_fd = -1, err;
	enum bperf_filter_type filter_type;
	__u32 filter_entry_cnt, i;

	if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
		return -1;

	if (!all_cpu_map) {
		all_cpu_map = perf_cpu_map__new(NULL);
		if (!all_cpu_map)
			return -1;
	}

	evsel->bperf_leader_prog_fd = -1;
	evsel->bperf_leader_link_fd = -1;

	/*
	 * Step 1: hold a fd on the leader program and the bpf_link, if
	 * the program is not already gone, reload the program.
	 * Use flock() to ensure exclusive access to the perf_event_attr
	 * map.
	 */
	attr_map_fd = bperf_lock_attr_map(target);
	if (attr_map_fd < 0) {
		pr_err("Failed to lock perf_event_attr map\n");
		return -1;
	}

	err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
	if (err) {
		err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
		if (err)
			goto out;
	}

	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
	if (evsel->bperf_leader_link_fd < 0 &&
	    bperf_reload_leader_program(evsel, attr_map_fd, &entry))
		goto out;

	/*
	 * The bpf_link holds reference to the leader program, and the
	 * leader program holds reference to the maps. Therefore, if
	 * link_id is valid, diff_map_id should also be valid.
	 */
	evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
		bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
	assert(evsel->bperf_leader_prog_fd >= 0);

	diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
	assert(diff_map_fd >= 0);

	/*
	 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
	 * whether the kernel support it
	 */
	err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
	if (err) {
		pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
		       "Therefore, --use-bpf might show inaccurate readings\n");
		goto out;
	}

	/* Step 2: load the follower skeleton */
	evsel->follower_skel = bperf_follower_bpf__open();
	if (!evsel->follower_skel) {
		pr_err("Failed to open follower skeleton\n");
		goto out;
	}

	/* attach fexit program to the leader program */
	bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
				       evsel->bperf_leader_prog_fd, "on_switch");

	/* connect to leader diff_reading map */
	bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);

	/* set up reading map */
	bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
				 filter_entry_cnt);
	/* set up follower filter based on target */
	bpf_map__set_max_entries(evsel->follower_skel->maps.filter,
				 filter_entry_cnt);
	err = bperf_follower_bpf__load(evsel->follower_skel);
	if (err) {
		pr_err("Failed to load follower skeleton\n");
		bperf_follower_bpf__destroy(evsel->follower_skel);
		evsel->follower_skel = NULL;
		goto out;
	}

	for (i = 0; i < filter_entry_cnt; i++) {
		int filter_map_fd;
		__u32 key;

		if (filter_type == BPERF_FILTER_PID ||
		    filter_type == BPERF_FILTER_TGID)
			key = evsel->core.threads->map[i].pid;
		else if (filter_type == BPERF_FILTER_CPU)
			key = evsel->core.cpus->map[i];
		else
			break;

		filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
		bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY);
	}

	evsel->follower_skel->bss->type = filter_type;

	err = bperf_follower_bpf__attach(evsel->follower_skel);

out:
	if (err && evsel->bperf_leader_link_fd >= 0)
		close(evsel->bperf_leader_link_fd);
	if (err && evsel->bperf_leader_prog_fd >= 0)
		close(evsel->bperf_leader_prog_fd);
	if (diff_map_fd >= 0)
		close(diff_map_fd);

	flock(attr_map_fd, LOCK_UN);
	close(attr_map_fd);

	return err;
}

static int bperf__install_pe(struct evsel *evsel, int cpu, int fd)
{
	struct bperf_leader_bpf *skel = evsel->leader_skel;

	return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
				   &cpu, &fd, BPF_ANY);
}

/*
 * trigger the leader prog on each cpu, so the accum_reading map could get
 * the latest readings.
 */
static int bperf_sync_counters(struct evsel *evsel)
{
	int num_cpu, i, cpu;

	num_cpu = all_cpu_map->nr;
	for (i = 0; i < num_cpu; i++) {
		cpu = all_cpu_map->map[i];
		bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu);
	}
	return 0;
}

static int bperf__enable(struct evsel *evsel)
{
	evsel->follower_skel->bss->enabled = 1;
	return 0;
}

static int bperf__read(struct evsel *evsel)
{
	struct bperf_follower_bpf *skel = evsel->follower_skel;
	__u32 num_cpu_bpf = cpu__max_cpu();
	struct bpf_perf_event_value values[num_cpu_bpf];
	int reading_map_fd, err = 0;
	__u32 i, j, num_cpu;

	bperf_sync_counters(evsel);
	reading_map_fd = bpf_map__fd(skel->maps.accum_readings);

	for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) {
		__u32 cpu;

		err = bpf_map_lookup_elem(reading_map_fd, &i, values);
		if (err)
			goto out;
		switch (evsel->follower_skel->bss->type) {
		case BPERF_FILTER_GLOBAL:
			assert(i == 0);

			num_cpu = all_cpu_map->nr;
			for (j = 0; j < num_cpu; j++) {
				cpu = all_cpu_map->map[j];
				perf_counts(evsel->counts, cpu, 0)->val = values[cpu].counter;
				perf_counts(evsel->counts, cpu, 0)->ena = values[cpu].enabled;
				perf_counts(evsel->counts, cpu, 0)->run = values[cpu].running;
			}
			break;
		case BPERF_FILTER_CPU:
			cpu = evsel->core.cpus->map[i];
			perf_counts(evsel->counts, i, 0)->val = values[cpu].counter;
			perf_counts(evsel->counts, i, 0)->ena = values[cpu].enabled;
			perf_counts(evsel->counts, i, 0)->run = values[cpu].running;
			break;
		case BPERF_FILTER_PID:
		case BPERF_FILTER_TGID:
			perf_counts(evsel->counts, 0, i)->val = 0;
			perf_counts(evsel->counts, 0, i)->ena = 0;
			perf_counts(evsel->counts, 0, i)->run = 0;

			for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
				perf_counts(evsel->counts, 0, i)->val += values[cpu].counter;
				perf_counts(evsel->counts, 0, i)->ena += values[cpu].enabled;
				perf_counts(evsel->counts, 0, i)->run += values[cpu].running;
			}
			break;
		default:
			break;
		}
	}
out:
	return err;
}

static int bperf__destroy(struct evsel *evsel)
{
	bperf_follower_bpf__destroy(evsel->follower_skel);
	close(evsel->bperf_leader_prog_fd);
	close(evsel->bperf_leader_link_fd);
	return 0;
}

/*
 * bperf: share hardware PMCs with BPF
 *
 * perf uses performance monitoring counters (PMC) to monitor system
 * performance. The PMCs are limited hardware resources. For example,
 * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
 *
 * Modern data center systems use these PMCs in many different ways:
 * system level monitoring, (maybe nested) container level monitoring, per
 * process monitoring, profiling (in sample mode), etc. In some cases,
 * there are more active perf_events than available hardware PMCs. To allow
 * all perf_events to have a chance to run, it is necessary to do expensive
 * time multiplexing of events.
 *
 * On the other hand, many monitoring tools count the common metrics
 * (cycles, instructions). It is a waste to have multiple tools create
 * multiple perf_events of "cycles" and occupy multiple PMCs.
 *
 * bperf tries to reduce such wastes by allowing multiple perf_events of
 * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
 * of having each perf-stat session to read its own perf_events, bperf uses
 * BPF programs to read the perf_events and aggregate readings to BPF maps.
 * Then, the perf-stat session(s) reads the values from these BPF maps.
 *
 *                                ||
 *       shared progs and maps <- || -> per session progs and maps
 *                                ||
 *   ---------------              ||
 *   | perf_events |              ||
 *   ---------------       fexit  ||      -----------------
 *          |             --------||----> | follower prog |
 *       --------------- /        || ---  -----------------
 * cs -> | leader prog |/         ||/        |         |
 *   --> ---------------         /||  --------------  ------------------
 *  /       |         |         / ||  | filter map |  | accum_readings |
 * /  ------------  ------------  ||  --------------  ------------------
 * |  | prev map |  | diff map |  ||                        |
 * |  ------------  ------------  ||                        |
 *  \                             ||                        |
 * = \ ==================================================== | ============
 *    \                                                    /   user space
 *     \                                                  /
 *      \                                                /
 *    BPF_PROG_TEST_RUN                    BPF_MAP_LOOKUP_ELEM
 *        \                                            /
 *         \                                          /
 *          \------  perf-stat ----------------------/
 *
 * The figure above shows the architecture of bperf. Note that the figure
 * is divided into 3 regions: shared progs and maps (top left), per session
 * progs and maps (top right), and user space (bottom).
 *
 * The leader prog is triggered on each context switch (cs). The leader
 * prog reads perf_events and stores the difference (current_reading -
 * previous_reading) to the diff map. For the same metric, e.g. "cycles",
 * multiple perf-stat sessions share the same leader prog.
 *
 * Each perf-stat session creates a follower prog as fexit program to the
 * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
 * follower progs to the same leader prog. The follower prog checks current
 * task and processor ID to decide whether to add the value from the diff
 * map to its accumulated reading map (accum_readings).
 *
 * Finally, perf-stat user space reads the value from accum_reading map.
 *
 * Besides context switch, it is also necessary to trigger the leader prog
 * before perf-stat reads the value. Otherwise, the accum_reading map may
 * not have the latest reading from the perf_events. This is achieved by
 * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
 *
 * Comment before the definition of struct perf_event_attr_map_entry
 * describes how different sessions of perf-stat share information about
 * the leader prog.
 */

struct bpf_counter_ops bperf_ops = {
	.load       = bperf__load,
	.enable     = bperf__enable,
	.read       = bperf__read,
	.install_pe = bperf__install_pe,
	.destroy    = bperf__destroy,
};

static inline bool bpf_counter_skip(struct evsel *evsel)
{
	return list_empty(&evsel->bpf_counter_list) &&
		evsel->follower_skel == NULL;
}

782 783
int bpf_counter__install_pe(struct evsel *evsel, int cpu, int fd)
{
784
	if (bpf_counter_skip(evsel))
785 786 787 788 789 790
		return 0;
	return evsel->bpf_counter_ops->install_pe(evsel, cpu, fd);
}

int bpf_counter__load(struct evsel *evsel, struct target *target)
{
791
	if (target->bpf_str)
792
		evsel->bpf_counter_ops = &bpf_program_profiler_ops;
793 794
	else if (target->use_bpf ||
		 evsel__match_bpf_counter_events(evsel->name))
795
		evsel->bpf_counter_ops = &bperf_ops;
796 797 798 799 800 801 802 803

	if (evsel->bpf_counter_ops)
		return evsel->bpf_counter_ops->load(evsel, target);
	return 0;
}

int bpf_counter__enable(struct evsel *evsel)
{
804
	if (bpf_counter_skip(evsel))
805 806 807 808 809 810
		return 0;
	return evsel->bpf_counter_ops->enable(evsel);
}

int bpf_counter__read(struct evsel *evsel)
{
811
	if (bpf_counter_skip(evsel))
812 813 814 815 816 817
		return -EAGAIN;
	return evsel->bpf_counter_ops->read(evsel);
}

void bpf_counter__destroy(struct evsel *evsel)
{
818
	if (bpf_counter_skip(evsel))
819 820 821 822
		return;
	evsel->bpf_counter_ops->destroy(evsel);
	evsel->bpf_counter_ops = NULL;
}