sb_edac.c 65.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
 *
 * This driver supports the memory controllers found on the Intel
 * processor family Sandy Bridge.
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2011 by:
10
 *	 Mauro Carvalho Chehab
11 12 13 14 15 16 17 18 19 20 21 22
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
23
#include <linux/math64.h>
24
#include <asm/processor.h>
25
#include <asm/mce.h>
26 27 28 29 30 31 32 33 34 35 36

#include "edac_core.h"

/* Static vars */
static LIST_HEAD(sbridge_edac_list);
static DEFINE_MUTEX(sbridge_edac_lock);
static int probed;

/*
 * Alter this version for the module when modifications are made
 */
37
#define SBRIDGE_REVISION    " Ver: 1.1.0 "
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#define EDAC_MOD_STR      "sbridge_edac"

/*
 * Debug macros
 */
#define sbridge_printk(level, fmt, arg...)			\
	edac_printk(level, "sbridge", fmt, ##arg)

#define sbridge_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)

/*
 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 */
#define GET_BITFIELD(v, lo, hi)	\
53
	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 55

/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56
static const u32 sbridge_dram_rule[] = {
57 58 59 60
	0x80, 0x88, 0x90, 0x98, 0xa0,
	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
};

61 62 63 64 65 66
static const u32 ibridge_dram_rule[] = {
	0x60, 0x68, 0x70, 0x78, 0x80,
	0x88, 0x90, 0x98, 0xa0,	0xa8,
	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
};
67 68 69 70 71

#define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
#define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
#define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
72
#define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

static char *get_dram_attr(u32 reg)
{
	switch(DRAM_ATTR(reg)) {
		case 0:
			return "DRAM";
		case 1:
			return "MMCFG";
		case 2:
			return "NXM";
		default:
			return "unknown";
	}
}

88
static const u32 sbridge_interleave_list[] = {
89 90 91 92
	0x84, 0x8c, 0x94, 0x9c, 0xa4,
	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
};

93 94 95 96 97 98 99
static const u32 ibridge_interleave_list[] = {
	0x64, 0x6c, 0x74, 0x7c, 0x84,
	0x8c, 0x94, 0x9c, 0xa4, 0xac,
	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
};

A
Aristeu Rozanski 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
struct interleave_pkg {
	unsigned char start;
	unsigned char end;
};

static const struct interleave_pkg sbridge_interleave_pkg[] = {
	{ 0, 2 },
	{ 3, 5 },
	{ 8, 10 },
	{ 11, 13 },
	{ 16, 18 },
	{ 19, 21 },
	{ 24, 26 },
	{ 27, 29 },
};

116 117 118 119 120 121 122 123 124 125 126
static const struct interleave_pkg ibridge_interleave_pkg[] = {
	{ 0, 3 },
	{ 4, 7 },
	{ 8, 11 },
	{ 12, 15 },
	{ 16, 19 },
	{ 20, 23 },
	{ 24, 27 },
	{ 28, 31 },
};

A
Aristeu Rozanski 已提交
127 128
static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
			  int interleave)
129
{
A
Aristeu Rozanski 已提交
130 131
	return GET_BITFIELD(reg, table[interleave].start,
			    table[interleave].end);
132 133 134 135 136 137
}

/* Devices 12 Function 7 */

#define TOLM		0x80
#define	TOHM		0x84
138
#define HASWELL_TOLM	0xd0
139 140
#define HASWELL_TOHM_0	0xd4
#define HASWELL_TOHM_1	0xd8
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)

/* Device 13 Function 6 */

#define SAD_TARGET	0xf0

#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)

#define SAD_CONTROL	0xf4

/* Device 14 function 0 */

static const u32 tad_dram_rule[] = {
	0x40, 0x44, 0x48, 0x4c,
	0x50, 0x54, 0x58, 0x5c,
	0x60, 0x64, 0x68, 0x6c,
};
#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)

#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)

/* Device 15, function 0 */

#define MCMTR			0x7c

#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)

/* Device 15, function 1 */

#define RASENABLES		0xac
#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)

/* Device 15, functions 2-5 */

static const int mtr_regs[] = {
	0x80, 0x84, 0x88,
};

#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)

static const u32 tad_ch_nilv_offset[] = {
	0x90, 0x94, 0x98, 0x9c,
	0xa0, 0xa4, 0xa8, 0xac,
	0xb0, 0xb4, 0xb8, 0xbc,
};
#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)

static const u32 rir_way_limit[] = {
	0x108, 0x10c, 0x110, 0x114, 0x118,
};
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)

#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)

#define MAX_RIR_WAY	8

static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
};

#define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
#define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)

/* Device 16, functions 2-7 */

/*
 * FIXME: Implement the error count reads directly
 */

static const u32 correrrcnt[] = {
	0x104, 0x108, 0x10c, 0x110,
};

#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)

static const u32 correrrthrsld[] = {
	0x11c, 0x120, 0x124, 0x128,
};

#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)


/* Device 17, function 0 */

249
#define SB_RANK_CFG_A		0x0328
250

251
#define IB_RANK_CFG_A		0x0320
252 253 254 255 256

/*
 * sbridge structs
 */

257 258 259
#define NUM_CHANNELS		4
#define MAX_DIMMS		3	/* Max DIMMS per channel */
#define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
260

261 262 263
enum type {
	SANDY_BRIDGE,
	IVY_BRIDGE,
264
	HASWELL,
265
	BROADWELL,
266 267
};

A
Aristeu Rozanski 已提交
268
struct sbridge_pvt;
269
struct sbridge_info {
270
	enum type	type;
271 272 273 274
	u32		mcmtr;
	u32		rankcfgr;
	u64		(*get_tolm)(struct sbridge_pvt *pvt);
	u64		(*get_tohm)(struct sbridge_pvt *pvt);
275
	u64		(*rir_limit)(u32 reg);
276
	const u32	*dram_rule;
277
	const u32	*interleave_list;
A
Aristeu Rozanski 已提交
278
	const struct interleave_pkg *interleave_pkg;
279
	u8		max_sad;
280
	u8		max_interleave;
281
	u8		(*get_node_id)(struct sbridge_pvt *pvt);
282
	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
283
	struct pci_dev	*pci_vtd;
284 285 286 287 288 289 290 291
};

struct sbridge_channel {
	u32		ranks;
	u32		dimms;
};

struct pci_id_descr {
292
	int			dev_id;
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
	int			optional;
};

struct pci_id_table {
	const struct pci_id_descr	*descr;
	int				n_devs;
};

struct sbridge_dev {
	struct list_head	list;
	u8			bus, mc;
	u8			node_id, source_id;
	struct pci_dev		**pdev;
	int			n_devs;
	struct mem_ctl_info	*mci;
};

struct sbridge_pvt {
	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
312 313 314
	struct pci_dev		*pci_sad0, *pci_sad1;
	struct pci_dev		*pci_ha0, *pci_ha1;
	struct pci_dev		*pci_br0, *pci_br1;
315
	struct pci_dev		*pci_ha1_ta;
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	struct pci_dev		*pci_tad[NUM_CHANNELS];

	struct sbridge_dev	*sbridge_dev;

	struct sbridge_info	info;
	struct sbridge_channel	channel[NUM_CHANNELS];

	/* Memory type detection */
	bool			is_mirrored, is_lockstep, is_close_pg;

	/* Fifo double buffers */
	struct mce		mce_entry[MCE_LOG_LEN];
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;

	/* Memory description */
	u64			tolm, tohm;
};

340 341
#define PCI_DESCR(device_id, opt)	\
	.dev_id = (device_id),		\
342
	.optional = opt
343 344 345

static const struct pci_id_descr pci_dev_descr_sbridge[] = {
		/* Processor Home Agent */
346
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
347 348

		/* Memory controller */
349 350 351 352 353 354 355
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
356 357

		/* System Address Decoder */
358 359
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
360 361

		/* Broadcast Registers */
362
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
363 364 365 366 367 368 369 370
};

#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
	{0,}			/* 0 terminated list. */
};

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
/* This changes depending if 1HA or 2HA:
 * 1HA:
 *	0x0eb8 (17.0) is DDRIO0
 * 2HA:
 *	0x0ebc (17.4) is DDRIO0
 */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc

/* pci ids */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b

static const struct pci_id_descr pci_dev_descr_ibridge[] = {
		/* Processor Home Agent */
399
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
400 401

		/* Memory controller */
402 403 404 405 406 407
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
408 409

		/* System Address Decoder */
410
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
411 412

		/* Broadcast Registers */
413 414
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
415 416

		/* Optional, mode 2HA */
417
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
418
#if 0
419 420
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
421
#endif
422 423
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
424

425 426
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
427 428 429 430 431 432 433
};

static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
	{0,}			/* 0 terminated list. */
};

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
/* Haswell support */
/* EN processor:
 *	- 1 IMC
 *	- 3 DDR3 channels, 2 DPC per channel
 * EP processor:
 *	- 1 or 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EP 4S processor:
 *	- 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EX processor:
 *	- 2 IMC
 *	- each IMC interfaces with a SMI 2 channel
 *	- each SMI channel interfaces with a scalable memory buffer
 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 */
450
#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
#define HASWELL_HASYSDEFEATURE2 0x84
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
static const struct pci_id_descr pci_dev_descr_haswell[] = {
	/* first item must be the HA */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
};

static const struct pci_id_table pci_dev_descr_haswell_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
	{0,}			/* 0 terminated list. */
};

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
/*
 * Broadwell support
 *
 * DE processor:
 *	- 1 IMC
 *	- 2 DDR3 channels, 2 DPC per channel
 */
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf

static const struct pci_id_descr pci_dev_descr_broadwell[] = {
	/* first item must be the HA */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)		},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)	},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)	},
};

static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
	{0,}			/* 0 terminated list. */
};

541 542 543
/*
 *	pci_device_id	table for which devices we are looking for
 */
544
static const struct pci_device_id sbridge_pci_tbl[] = {
545
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
546
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
547
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
548
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
549 550 551 552 553
	{0,}			/* 0 terminated list. */
};


/****************************************************************************
D
David Mackey 已提交
554
			Ancillary status routines
555 556
 ****************************************************************************/

557
static inline int numrank(enum type type, u32 mtr)
558 559
{
	int ranks = (1 << RANK_CNT_BITS(mtr));
560 561 562 563
	int max = 4;

	if (type == HASWELL)
		max = 8;
564

565 566 567
	if (ranks > max) {
		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
568 569 570 571 572 573 574 575 576 577 578
		return -EINVAL;
	}

	return ranks;
}

static inline int numrow(u32 mtr)
{
	int rows = (RANK_WIDTH_BITS(mtr) + 12);

	if (rows < 13 || rows > 18) {
579 580
		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
581 582 583 584 585 586 587 588 589 590 591
		return -EINVAL;
	}

	return 1 << rows;
}

static inline int numcol(u32 mtr)
{
	int cols = (COL_WIDTH_BITS(mtr) + 10);

	if (cols > 12) {
592 593
		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
		return -EINVAL;
	}

	return 1 << cols;
}

static struct sbridge_dev *get_sbridge_dev(u8 bus)
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->bus == bus)
			return sbridge_dev;
	}

	return NULL;
}

static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
					   const struct pci_id_table *table)
{
	struct sbridge_dev *sbridge_dev;

	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
	if (!sbridge_dev)
		return NULL;

	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!sbridge_dev->pdev) {
		kfree(sbridge_dev);
		return NULL;
	}

	sbridge_dev->bus = bus;
	sbridge_dev->n_devs = table->n_devs;
	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);

	return sbridge_dev;
}

static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
{
	list_del(&sbridge_dev->list);
	kfree(sbridge_dev->pdev);
	kfree(sbridge_dev);
}

A
Aristeu Rozanski 已提交
642 643 644 645 646 647 648 649 650
static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	/* Address range is 32:28 */
	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
	return GET_TOLM(reg);
}

A
Aristeu Rozanski 已提交
651 652 653 654 655 656 657 658
static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
	return GET_TOHM(reg);
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);

	return GET_TOLM(reg);
}

static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);

	return GET_TOHM(reg);
}

677 678 679 680 681
static u64 rir_limit(u32 reg)
{
	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
}

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	enum mem_type mtype;

	if (pvt->pci_ddrio) {
		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
				      &reg);
		if (GET_BITFIELD(reg, 11, 11))
			/* FIXME: Can also be LRDIMM */
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	} else
		mtype = MEM_UNKNOWN;

	return mtype;
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	bool registered = false;
	enum mem_type mtype = MEM_UNKNOWN;

	if (!pvt->pci_ddrio)
		goto out;

	pci_read_config_dword(pvt->pci_ddrio,
			      HASWELL_DDRCRCLKCONTROLS, &reg);
	/* Is_Rdimm */
	if (GET_BITFIELD(reg, 16, 16))
		registered = true;

	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
	if (GET_BITFIELD(reg, 14, 14)) {
		if (registered)
			mtype = MEM_RDDR4;
		else
			mtype = MEM_DDR4;
	} else {
		if (registered)
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	}

out:
	return mtype;
}

733 734 735 736 737 738 739
static u8 get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;
	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 2);
}

740 741 742 743 744 745 746 747 748 749 750 751
static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 3);
}

static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

752 753
	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
}

static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
{
	u64 rc;
	u32 reg;

	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
	rc = GET_BITFIELD(reg, 26, 31);
	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
	rc = ((reg << 6) | rc) << 26;

	return rc | 0x1ffffff;
}

static u64 haswell_rir_limit(u32 reg)
{
	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
}

774 775 776
static inline u8 sad_pkg_socket(u8 pkg)
{
	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
777
	return ((pkg >> 3) << 2) | (pkg & 0x3);
778 779 780 781 782 783 784
}

static inline u8 sad_pkg_ha(u8 pkg)
{
	return (pkg >> 2) & 0x1;
}

785 786 787
/****************************************************************************
			Memory check routines
 ****************************************************************************/
788
static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
789
{
790
	struct pci_dev *pdev = NULL;
791

792 793 794 795 796
	do {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
		if (pdev && pdev->bus->number == bus)
			break;
	} while (pdev);
797

798
	return pdev;
799 800 801
}

/**
802
 * check_if_ecc_is_active() - Checks if ECC is active
803 804 805 806
 * @bus:	Device bus
 * @type:	Memory controller type
 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
 *	    disabled
807
 */
808
static int check_if_ecc_is_active(const u8 bus, enum type type)
809 810
{
	struct pci_dev *pdev = NULL;
811
	u32 mcmtr, id;
812

813 814
	switch (type) {
	case IVY_BRIDGE:
815
		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
816 817
		break;
	case HASWELL:
818
		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
819 820
		break;
	case SANDY_BRIDGE:
821
		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
822 823 824 825 826 827 828
		break;
	case BROADWELL:
		id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
		break;
	default:
		return -ENODEV;
	}
829 830

	pdev = get_pdev_same_bus(bus, id);
831 832
	if (!pdev) {
		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
833 834
					"%04x:%04x! on bus %02d\n",
					PCI_VENDOR_ID_INTEL, id, bus);
835 836 837 838 839 840 841 842 843 844 845
		return -ENODEV;
	}

	pci_read_config_dword(pdev, MCMTR, &mcmtr);
	if (!IS_ECC_ENABLED(mcmtr)) {
		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
		return -ENODEV;
	}
	return 0;
}

846
static int get_dimm_config(struct mem_ctl_info *mci)
847 848
{
	struct sbridge_pvt *pvt = mci->pvt_info;
849
	struct dimm_info *dimm;
850 851
	unsigned i, j, banks, ranks, rows, cols, npages;
	u64 size;
852 853
	u32 reg;
	enum edac_type mode;
854
	enum mem_type mtype;
855

856
	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL)
857 858 859 860
		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
	else
		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);

861 862
	pvt->sbridge_dev->source_id = SOURCE_ID(reg);

863
	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
864 865 866 867
	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
		 pvt->sbridge_dev->mc,
		 pvt->sbridge_dev->node_id,
		 pvt->sbridge_dev->source_id);
868 869 870

	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
	if (IS_MIRROR_ENABLED(reg)) {
871
		edac_dbg(0, "Memory mirror is enabled\n");
872 873
		pvt->is_mirrored = true;
	} else {
874
		edac_dbg(0, "Memory mirror is disabled\n");
875 876 877 878 879
		pvt->is_mirrored = false;
	}

	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
880
		edac_dbg(0, "Lockstep is enabled\n");
881 882 883
		mode = EDAC_S8ECD8ED;
		pvt->is_lockstep = true;
	} else {
884
		edac_dbg(0, "Lockstep is disabled\n");
885 886 887 888
		mode = EDAC_S4ECD4ED;
		pvt->is_lockstep = false;
	}
	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
889
		edac_dbg(0, "address map is on closed page mode\n");
890 891
		pvt->is_close_pg = true;
	} else {
892
		edac_dbg(0, "address map is on open page mode\n");
893 894 895
		pvt->is_close_pg = false;
	}

896
	mtype = pvt->info.get_memory_type(pvt);
897
	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
898 899
		edac_dbg(0, "Memory is registered\n");
	else if (mtype == MEM_UNKNOWN)
900
		edac_dbg(0, "Cannot determine memory type\n");
901 902
	else
		edac_dbg(0, "Memory is unregistered\n");
903

904
	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
905 906 907
		banks = 16;
	else
		banks = 8;
908 909 910 911 912

	for (i = 0; i < NUM_CHANNELS; i++) {
		u32 mtr;

		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
913 914
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       i, j, 0);
915 916
			pci_read_config_dword(pvt->pci_tad[i],
					      mtr_regs[j], &mtr);
917
			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
918 919 920
			if (IS_DIMM_PRESENT(mtr)) {
				pvt->channel[i].dimms++;

921
				ranks = numrank(pvt->info.type, mtr);
922 923 924
				rows = numrow(mtr);
				cols = numcol(mtr);

925
				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
926 927
				npages = MiB_TO_PAGES(size);

928
				edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
929 930 931
					 pvt->sbridge_dev->mc, i, j,
					 size, npages,
					 banks, ranks, rows, cols);
932

933
				dimm->nr_pages = npages;
934
				dimm->grain = 32;
935 936 937 938 939 940 941 942 943 944 945
				switch (banks) {
				case 16:
					dimm->dtype = DEV_X16;
					break;
				case 8:
					dimm->dtype = DEV_X8;
					break;
				case 4:
					dimm->dtype = DEV_X4;
					break;
				}
946 947 948
				dimm->mtype = mtype;
				dimm->edac_mode = mode;
				snprintf(dimm->label, sizeof(dimm->label),
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
					 pvt->sbridge_dev->source_id, i, j);
			}
		}
	}

	return 0;
}

static void get_memory_layout(const struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i, j, k, n_sads, n_tads, sad_interl;
	u32 reg;
	u64 limit, prv = 0;
	u64 tmp_mb;
965
	u32 gb, mb;
966 967 968 969 970 971
	u32 rir_way;

	/*
	 * Step 1) Get TOLM/TOHM ranges
	 */

A
Aristeu Rozanski 已提交
972
	pvt->tolm = pvt->info.get_tolm(pvt);
973 974
	tmp_mb = (1 + pvt->tolm) >> 20;

975 976 977
	gb = div_u64_rem(tmp_mb, 1024, &mb);
	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
		gb, (mb*1000)/1024, (u64)pvt->tolm);
978 979

	/* Address range is already 45:25 */
A
Aristeu Rozanski 已提交
980
	pvt->tohm = pvt->info.get_tohm(pvt);
981 982
	tmp_mb = (1 + pvt->tohm) >> 20;

983 984 985
	gb = div_u64_rem(tmp_mb, 1024, &mb);
	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
		gb, (mb*1000)/1024, (u64)pvt->tohm);
986 987 988 989 990 991 992 993

	/*
	 * Step 2) Get SAD range and SAD Interleave list
	 * TAD registers contain the interleave wayness. However, it
	 * seems simpler to just discover it indirectly, with the
	 * algorithm bellow.
	 */
	prv = 0;
994
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
995
		/* SAD_LIMIT Address range is 45:26 */
996
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
997 998 999 1000 1001 1002 1003 1004 1005 1006
				      &reg);
		limit = SAD_LIMIT(reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		if (limit <= prv)
			break;

		tmp_mb = (limit + 1) >> 20;
1007
		gb = div_u64_rem(tmp_mb, 1024, &mb);
1008 1009 1010
		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
			 n_sads,
			 get_dram_attr(reg),
1011
			 gb, (mb*1000)/1024,
1012 1013 1014
			 ((u64)tmp_mb) << 20L,
			 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
			 reg);
1015 1016
		prv = limit;

1017
		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1018
				      &reg);
A
Aristeu Rozanski 已提交
1019
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1020
		for (j = 0; j < 8; j++) {
A
Aristeu Rozanski 已提交
1021 1022
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
			if (j > 0 && sad_interl == pkg)
1023 1024
				break;

1025
			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
A
Aristeu Rozanski 已提交
1026
				 n_sads, j, pkg);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		}
	}

	/*
	 * Step 3) Get TAD range
	 */
	prv = 0;
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
				      &reg);
		limit = TAD_LIMIT(reg);
		if (limit <= prv)
			break;
		tmp_mb = (limit + 1) >> 20;

1042
		gb = div_u64_rem(tmp_mb, 1024, &mb);
1043
		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1044
			 n_tads, gb, (mb*1000)/1024,
1045 1046 1047 1048 1049 1050 1051 1052
			 ((u64)tmp_mb) << 20L,
			 (u32)TAD_SOCK(reg),
			 (u32)TAD_CH(reg),
			 (u32)TAD_TGT0(reg),
			 (u32)TAD_TGT1(reg),
			 (u32)TAD_TGT2(reg),
			 (u32)TAD_TGT3(reg),
			 reg);
1053
		prv = limit;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	}

	/*
	 * Step 4) Get TAD offsets, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < n_tads; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      tad_ch_nilv_offset[j],
					      &reg);
			tmp_mb = TAD_OFFSET(reg) >> 20;
1067
			gb = div_u64_rem(tmp_mb, 1024, &mb);
1068 1069
			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
				 i, j,
1070
				 gb, (mb*1000)/1024,
1071 1072
				 ((u64)tmp_mb) << 20L,
				 reg);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
		}
	}

	/*
	 * Step 6) Get RIR Wayness/Limit, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < MAX_RIR_RANGES; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      rir_way_limit[j],
					      &reg);

			if (!IS_RIR_VALID(reg))
				continue;

1090
			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1091
			rir_way = 1 << RIR_WAY(reg);
1092
			gb = div_u64_rem(tmp_mb, 1024, &mb);
1093 1094
			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
				 i, j,
1095
				 gb, (mb*1000)/1024,
1096 1097 1098
				 ((u64)tmp_mb) << 20L,
				 rir_way,
				 reg);
1099 1100 1101 1102 1103 1104 1105

			for (k = 0; k < rir_way; k++) {
				pci_read_config_dword(pvt->pci_tad[i],
						      rir_offset[j][k],
						      &reg);
				tmp_mb = RIR_OFFSET(reg) << 6;

1106
				gb = div_u64_rem(tmp_mb, 1024, &mb);
1107 1108
				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
					 i, j, k,
1109
					 gb, (mb*1000)/1024,
1110 1111 1112
					 ((u64)tmp_mb) << 20L,
					 (u32)RIR_RNK_TGT(reg),
					 reg);
1113 1114 1115 1116 1117
			}
		}
	}
}

1118
static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->node_id == node_id)
			return sbridge_dev->mci;
	}
	return NULL;
}

static int get_memory_error_data(struct mem_ctl_info *mci,
				 u64 addr,
				 u8 *socket,
				 long *channel_mask,
				 u8 *rank,
1134
				 char **area_type, char *msg)
1135 1136 1137
{
	struct mem_ctl_info	*new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
1138
	struct pci_dev		*pci_ha;
1139
	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1140
	int			sad_interl, idx, base_ch;
1141
	int			interleave_mode, shiftup = 0;
1142
	unsigned		sad_interleave[pvt->info.max_interleave];
1143
	u32			reg, dram_rule;
1144
	u8			ch_way, sck_way, pkg, sad_ha = 0;
1145 1146
	u32			tad_offset;
	u32			rir_way;
1147
	u32			mb, gb;
1148
	u64			ch_addr, offset, limit = 0, prv = 0;
1149 1150 1151 1152 1153 1154 1155 1156 1157


	/*
	 * Step 0) Check if the address is at special memory ranges
	 * The check bellow is probably enough to fill all cases where
	 * the error is not inside a memory, except for the legacy
	 * range (e. g. VGA addresses). It is unlikely, however, that the
	 * memory controller would generate an error on that range.
	 */
1158
	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
		return -EINVAL;
	}
	if (addr >= (u64)pvt->tohm) {
		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
		return -EINVAL;
	}

	/*
	 * Step 1) Get socket
	 */
1170 1171
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
				      &reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		limit = SAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory socket");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
1186
	if (n_sads == pvt->info.max_sad) {
1187 1188 1189
		sprintf(msg, "Can't discover the memory socket");
		return -EINVAL;
	}
1190 1191 1192
	dram_rule = reg;
	*area_type = get_dram_attr(dram_rule);
	interleave_mode = INTERLEAVE_MODE(dram_rule);
1193

1194
	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1195
			      &reg);
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

	if (pvt->info.type == SANDY_BRIDGE) {
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
		for (sad_way = 0; sad_way < 8; sad_way++) {
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
			if (sad_way > 0 && sad_interl == pkg)
				break;
			sad_interleave[sad_way] = pkg;
			edac_dbg(0, "SAD interleave #%d: %d\n",
				 sad_way, sad_interleave[sad_way]);
		}
		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
			 pvt->sbridge_dev->mc,
			 n_sads,
			 addr,
			 limit,
			 sad_way + 7,
			 !interleave_mode ? "" : "XOR[18:16]");
		if (interleave_mode)
			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
		else
			idx = (addr >> 6) & 7;
		switch (sad_way) {
		case 1:
			idx = 0;
1221
			break;
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
		case 2:
			idx = idx & 1;
			break;
		case 4:
			idx = idx & 3;
			break;
		case 8:
			break;
		default:
			sprintf(msg, "Can't discover socket interleave");
			return -EINVAL;
		}
		*socket = sad_interleave[idx];
		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
			 idx, sad_way, *socket);
1237
	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		int bits, a7mode = A7MODE(dram_rule);

		if (a7mode) {
			/* A7 mode swaps P9 with P6 */
			bits = GET_BITFIELD(addr, 7, 8) << 1;
			bits |= GET_BITFIELD(addr, 9, 9);
		} else
			bits = GET_BITFIELD(addr, 7, 9);

		if (interleave_mode) {
			/* interleave mode will XOR {8,7,6} with {18,17,16} */
			idx = GET_BITFIELD(addr, 16, 18);
			idx ^= bits;
		} else
			idx = bits;

		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);

		if (a7mode) {
			/* MCChanShiftUpEnable */
			pci_read_config_dword(pvt->pci_ha0,
					      HASWELL_HASYSDEFEATURE2, &reg);
			shiftup = GET_BITFIELD(reg, 22, 22);
		}

		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
			 idx, *socket, sad_ha, shiftup);
1267 1268
	} else {
		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1269
		idx = (addr >> 6) & 7;
1270 1271 1272 1273 1274
		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);
		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
			 idx, *socket, sad_ha);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	}

	/*
	 * Move to the proper node structure, in order to access the
	 * right PCI registers
	 */
	new_mci = get_mci_for_node_id(*socket);
	if (!new_mci) {
		sprintf(msg, "Struct for socket #%u wasn't initialized",
			*socket);
		return -EINVAL;
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	/*
	 * Step 2) Get memory channel
	 */
	prv = 0;
1294 1295 1296 1297 1298 1299 1300 1301
	if (pvt->info.type == SANDY_BRIDGE)
		pci_ha = pvt->pci_ha0;
	else {
		if (sad_ha)
			pci_ha = pvt->pci_ha1;
		else
			pci_ha = pvt->pci_ha0;
	}
1302
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1303
		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1304 1305 1306 1307 1308 1309 1310 1311 1312
		limit = TAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory channel");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
1313 1314 1315 1316 1317
	if (n_tads == MAX_TAD) {
		sprintf(msg, "Can't discover the memory channel");
		return -EINVAL;
	}

1318 1319 1320 1321 1322 1323
	ch_way = TAD_CH(reg) + 1;
	sck_way = TAD_SOCK(reg) + 1;

	if (ch_way == 3)
		idx = addr >> 6;
	else
1324
		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	idx = idx % ch_way;

	/*
	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
	 */
	switch (idx) {
	case 0:
		base_ch = TAD_TGT0(reg);
		break;
	case 1:
		base_ch = TAD_TGT1(reg);
		break;
	case 2:
		base_ch = TAD_TGT2(reg);
		break;
	case 3:
		base_ch = TAD_TGT3(reg);
		break;
	default:
		sprintf(msg, "Can't discover the TAD target");
		return -EINVAL;
	}
	*channel_mask = 1 << base_ch;

1349 1350 1351 1352
	pci_read_config_dword(pvt->pci_tad[base_ch],
				tad_ch_nilv_offset[n_tads],
				&tad_offset);

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	if (pvt->is_mirrored) {
		*channel_mask |= 1 << ((base_ch + 2) % 4);
		switch(ch_way) {
		case 2:
		case 4:
			sck_xch = 1 << sck_way * (ch_way >> 1);
			break;
		default:
			sprintf(msg, "Invalid mirror set. Can't decode addr");
			return -EINVAL;
		}
	} else
		sck_xch = (1 << sck_way) * ch_way;

	if (pvt->is_lockstep)
		*channel_mask |= 1 << ((base_ch + 1) % 4);

	offset = TAD_OFFSET(tad_offset);

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
		 n_tads,
		 addr,
		 limit,
		 (u32)TAD_SOCK(reg),
		 ch_way,
		 offset,
		 idx,
		 base_ch,
		 *channel_mask);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

	/* Calculate channel address */
	/* Remove the TAD offset */

	if (offset > addr) {
		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
			offset, addr);
		return -EINVAL;
	}
	addr -= offset;
	/* Store the low bits [0:6] of the addr */
	ch_addr = addr & 0x7f;
	/* Remove socket wayness and remove 6 bits */
	addr >>= 6;
1396
	addr = div_u64(addr, sck_xch);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
#if 0
	/* Divide by channel way */
	addr = addr / ch_way;
#endif
	/* Recover the last 6 bits */
	ch_addr |= addr << 6;

	/*
	 * Step 3) Decode rank
	 */
	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
		pci_read_config_dword(pvt->pci_tad[base_ch],
				      rir_way_limit[n_rir],
				      &reg);

		if (!IS_RIR_VALID(reg))
			continue;

1415
		limit = pvt->info.rir_limit(reg);
1416
		gb = div_u64_rem(limit >> 20, 1024, &mb);
1417 1418
		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
			 n_rir,
1419
			 gb, (mb*1000)/1024,
1420 1421
			 limit,
			 1 << RIR_WAY(reg));
1422 1423 1424 1425 1426 1427 1428 1429 1430
		if  (ch_addr <= limit)
			break;
	}
	if (n_rir == MAX_RIR_RANGES) {
		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
			ch_addr);
		return -EINVAL;
	}
	rir_way = RIR_WAY(reg);
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	if (pvt->is_close_pg)
		idx = (ch_addr >> 6);
	else
		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
	idx %= 1 << rir_way;

	pci_read_config_dword(pvt->pci_tad[base_ch],
			      rir_offset[n_rir][idx],
			      &reg);
	*rank = RIR_RNK_TGT(reg);

1443 1444 1445 1446 1447 1448
	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
		 n_rir,
		 ch_addr,
		 limit,
		 rir_way,
		 idx);
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

	return 0;
}

/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	sbridge_put_all_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
{
	int i;

1465
	edac_dbg(0, "\n");
1466 1467 1468 1469
	for (i = 0; i < sbridge_dev->n_devs; i++) {
		struct pci_dev *pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
1470 1471 1472
		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
			 pdev->bus->number,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		pci_dev_put(pdev);
	}
}

static void sbridge_put_all_devices(void)
{
	struct sbridge_dev *sbridge_dev, *tmp;

	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
		sbridge_put_devices(sbridge_dev);
		free_sbridge_dev(sbridge_dev);
	}
}

static int sbridge_get_onedevice(struct pci_dev **prev,
				 u8 *num_mc,
				 const struct pci_id_table *table,
				 const unsigned devno)
{
	struct sbridge_dev *sbridge_dev;
	const struct pci_id_descr *dev_descr = &table->descr[devno];
	struct pci_dev *pdev = NULL;
	u8 bus = 0;

1497
	sbridge_printk(KERN_DEBUG,
1498
		"Seeking for: PCI ID %04x:%04x\n",
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
			      dev_descr->dev_id, *prev);

	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
		}

		if (dev_descr->optional)
			return 0;

1513
		/* if the HA wasn't found */
1514 1515 1516 1517
		if (devno == 0)
			return -ENODEV;

		sbridge_printk(KERN_INFO,
1518
			"Device not found: %04x:%04x\n",
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;

	sbridge_dev = get_sbridge_dev(bus);
	if (!sbridge_dev) {
		sbridge_dev = alloc_sbridge_dev(bus, table);
		if (!sbridge_dev) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}
		(*num_mc)++;
	}

	if (sbridge_dev->pdev[devno]) {
		sbridge_printk(KERN_ERR,
1538
			"Duplicated device for %04x:%04x\n",
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		pci_dev_put(pdev);
		return -ENODEV;
	}

	sbridge_dev->pdev[devno] = pdev;

	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		sbridge_printk(KERN_ERR,
1549
			"Couldn't enable %04x:%04x\n",
1550 1551 1552 1553
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		return -ENODEV;
	}

1554
	edac_dbg(0, "Detected %04x:%04x\n",
1555
		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

	*prev = pdev;

	return 0;
}

1569 1570
/*
 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1571
 *			     devices we want to reference for this driver.
1572
 * @num_mc: pointer to the memory controllers count, to be incremented in case
1573
 *	    of success.
1574 1575 1576 1577 1578 1579
 * @table: model specific table
 *
 * returns 0 in case of success or error code
 */
static int sbridge_get_all_devices(u8 *num_mc,
				   const struct pci_id_table *table)
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
{
	int i, rc;
	struct pci_dev *pdev = NULL;

	while (table && table->descr) {
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
				rc = sbridge_get_onedevice(&pdev, num_mc,
							   table, i);
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					sbridge_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
		table++;
	}

	return 0;
}

A
Aristeu Rozanski 已提交
1606 1607
static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
1608 1609 1610
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1611
	int i;
1612 1613 1614 1615 1616

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
1617 1618 1619 1620

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
			pvt->pci_sad0 = pdev;
1621
			break;
1622 1623
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
			pvt->pci_sad1 = pdev;
1624
			break;
1625 1626
		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
			pvt->pci_br0 = pdev;
1627
			break;
1628 1629
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
			pvt->pci_ha0 = pdev;
1630
			break;
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
		{
			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
			pvt->pci_tad[id] = pdev;
		}
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
			pvt->pci_ddrio = pdev;
1648 1649 1650 1651 1652
			break;
		default:
			goto error;
		}

1653 1654
		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
			 pdev->vendor, pdev->device,
1655 1656
			 sbridge_dev->bus,
			 pdev);
1657 1658 1659 1660
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1661
	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
		goto enodev;

	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->pci_tad[i])
			goto enodev;
	}
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
1675 1676
	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
		       PCI_VENDOR_ID_INTEL, pdev->device);
1677 1678 1679
	return -EINVAL;
}

1680 1681 1682 1683 1684
static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev, *tmp;
1685
	int i;
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	bool mode_2ha = false;

	tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
			     PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
	if (tmp) {
		mode_2ha = true;
		pci_dev_put(tmp);
	}

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
			pvt->pci_ha0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
			pvt->pci_ta = pdev;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
			/* if we have 2 HAs active, channels 2 and 3
			 * are in other device */
			if (mode_2ha)
1714
				break;
1715 1716 1717 1718 1719 1720 1721
			/* fall through */
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
		{
			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
			pvt->pci_tad[id] = pdev;
		}
1722
			break;
1723 1724 1725 1726 1727
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
			if (!mode_2ha)
1728 1729
				pvt->pci_ddrio = pdev;
			break;
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
			pvt->pci_br0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
			pvt->pci_br1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
			pvt->pci_ha1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
		{
			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 2;

1747 1748 1749
			/* we shouldn't have this device if we have just one
			 * HA present */
			WARN_ON(!mode_2ha);
1750 1751 1752
			pvt->pci_tad[id] = pdev;
		}
			break;
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
		default:
			goto error;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
	    !pvt->pci_ta)
		goto enodev;

	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->pci_tad[i])
			goto enodev;
	}
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
	sbridge_printk(KERN_ERR,
1781 1782
		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
			pdev->device);
1783 1784 1785
	return -EINVAL;
}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev, *tmp;
	int i;
	bool mode_2ha = false;

	tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
			     PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, NULL);
	if (tmp) {
		mode_2ha = true;
		pci_dev_put(tmp);
	}

	/* there's only one device per system; not tied to any bus */
	if (pvt->info.pci_vtd == NULL)
		/* result will be checked later */
		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
						   NULL);

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
			pvt->pci_ha0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
			pvt->pci_tad[0] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
			pvt->pci_tad[1] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
			if (!mode_2ha)
				pvt->pci_tad[2] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
			if (!mode_2ha)
				pvt->pci_tad[3] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
			pvt->pci_ha1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
			pvt->pci_ha1_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
			if (mode_2ha)
				pvt->pci_tad[2] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
			if (mode_2ha)
				pvt->pci_tad[3] = pdev;
			break;
		default:
			break;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
		goto enodev;

	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->pci_tad[i])
			goto enodev;
	}
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	int i;

	/* there's only one device per system; not tied to any bus */
	if (pvt->info.pci_vtd == NULL)
		/* result will be checked later */
		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
						   NULL);

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
			pvt->pci_ha0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
			pvt->pci_tad[0] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
			pvt->pci_tad[1] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
			pvt->pci_tad[2] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
			pvt->pci_tad[3] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		default:
			break;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
		goto enodev;

	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->pci_tad[i])
			goto enodev;
	}
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
/****************************************************************************
			Error check routines
 ****************************************************************************/

/*
 * While Sandy Bridge has error count registers, SMI BIOS read values from
 * and resets the counters. So, they are not reliable for the OS to read
 * from them. So, we have no option but to just trust on whatever MCE is
 * telling us about the errors.
 */
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
				    const struct mce *m)
{
	struct mem_ctl_info *new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
1977
	enum hw_event_mc_err_type tp_event;
1978
	char *type, *optype, msg[256];
1979 1980 1981
	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
	bool overflow = GET_BITFIELD(m->status, 62, 62);
	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1982
	bool recoverable;
1983 1984 1985 1986 1987 1988 1989
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 channel = GET_BITFIELD(m->status, 0, 3);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
	long channel_mask, first_channel;
	u8  rank, socket;
1990
	int rc, dimm;
1991
	char *area_type = NULL;
1992

1993 1994 1995 1996 1997
	if (pvt->info.type == IVY_BRIDGE)
		recoverable = true;
	else
		recoverable = GET_BITFIELD(m->status, 56, 56);

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	if (uncorrected_error) {
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}
2010 2011

	/*
D
David Mackey 已提交
2012
	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
	if (! ((errcode & 0xef80) == 0x80)) {
		optype = "Can't parse: it is not a mem";
	} else {
		switch (optypenum) {
		case 0:
2027
			optype = "generic undef request error";
2028 2029
			break;
		case 1:
2030
			optype = "memory read error";
2031 2032
			break;
		case 2:
2033
			optype = "memory write error";
2034 2035
			break;
		case 3:
2036
			optype = "addr/cmd error";
2037 2038
			break;
		case 4:
2039
			optype = "memory scrubbing error";
2040 2041 2042 2043 2044 2045 2046
			break;
		default:
			optype = "reserved";
			break;
		}
	}

2047 2048 2049 2050
	/* Only decode errors with an valid address (ADDRV) */
	if (!GET_BITFIELD(m->status, 58, 58))
		return;

2051
	rc = get_memory_error_data(mci, m->addr, &socket,
2052
				   &channel_mask, &rank, &area_type, msg);
2053
	if (rc < 0)
2054
		goto err_parsing;
2055 2056
	new_mci = get_mci_for_node_id(socket);
	if (!new_mci) {
2057 2058
		strcpy(msg, "Error: socket got corrupted!");
		goto err_parsing;
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);

	if (rank < 4)
		dimm = 0;
	else if (rank < 8)
		dimm = 1;
	else
		dimm = 2;


	/*
2074 2075 2076 2077
	 * FIXME: On some memory configurations (mirror, lockstep), the
	 * Memory Controller can't point the error to a single DIMM. The
	 * EDAC core should be handling the channel mask, in order to point
	 * to the group of dimm's where the error may be happening.
2078
	 */
2079 2080 2081
	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
		channel = first_channel;

2082
	snprintf(msg, sizeof(msg),
2083
		 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
2084 2085 2086 2087 2088 2089 2090
		 overflow ? " OVERFLOW" : "",
		 (uncorrected_error && recoverable) ? " recoverable" : "",
		 area_type,
		 mscod, errcode,
		 socket,
		 channel_mask,
		 rank);
2091

2092
	edac_dbg(0, "%s\n", msg);
2093

2094 2095
	/* FIXME: need support for channel mask */

2096 2097 2098
	if (channel == CHANNEL_UNSPECIFIED)
		channel = -1;

2099
	/* Call the helper to output message */
2100
	edac_mc_handle_error(tp_event, mci, core_err_cnt,
2101 2102
			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
			     channel, dimm, -1,
2103
			     optype, msg);
2104 2105
	return;
err_parsing:
2106
	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
2107
			     -1, -1, -1,
2108
			     msg, "");
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

}

/*
 *	sbridge_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void sbridge_check_error(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
	struct mce *m;

	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
	if (!count)
		return;

	m = pvt->mce_outentry;
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;

		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}

	/*
	 * MCE second step: parse errors and display
	 */
	for (i = 0; i < count; i++)
		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
}

/*
 * sbridge_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by sbridge_check_error.
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
 */
2171 2172
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
				   void *data)
2173
{
2174 2175 2176
	struct mce *mce = (struct mce *)data;
	struct mem_ctl_info *mci;
	struct sbridge_pvt *pvt;
2177
	char *type;
2178

2179 2180 2181
	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
		return NOTIFY_DONE;

2182 2183 2184 2185
	mci = get_mci_for_node_id(mce->socketid);
	if (!mci)
		return NOTIFY_BAD;
	pvt = mci->pvt_info;
2186 2187 2188 2189 2190 2191 2192 2193

	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller. A memory error
	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
	 * bit 12 has an special meaning.
	 */
	if ((mce->status & 0xefff) >> 7 != 1)
2194
		return NOTIFY_DONE;
2195

2196 2197 2198 2199 2200
	if (mce->mcgstatus & MCG_STATUS_MCIP)
		type = "Exception";
	else
		type = "Event";

2201
	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
2202

2203 2204 2205 2206 2207 2208
	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
			  "Bank %d: %016Lx\n", mce->extcpu, type,
			  mce->mcgstatus, mce->bank, mce->status);
	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
2209

2210 2211 2212
	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
			  mce->time, mce->socketid, mce->apicid);
2213 2214 2215 2216 2217

	smp_rmb();
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
		smp_wmb();
		pvt->mce_overrun++;
2218
		return NOTIFY_DONE;
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
	}

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
	smp_wmb();
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;

	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		sbridge_check_error(mci);

	/* Advice mcelog that the error were handled */
2231
	return NOTIFY_STOP;
2232 2233
}

2234 2235 2236 2237
static struct notifier_block sbridge_mce_dec = {
	.notifier_call      = sbridge_mce_check_error,
};

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
/****************************************************************************
			EDAC register/unregister logic
 ****************************************************************************/

static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
{
	struct mem_ctl_info *mci = sbridge_dev->mci;
	struct sbridge_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
2248
		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
2249 2250 2251 2252 2253 2254 2255

		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

2256 2257
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
		 mci, &sbridge_dev->pdev[0]->dev);
2258 2259

	/* Remove MC sysfs nodes */
2260
	edac_mc_del_mc(mci->pdev);
2261

2262
	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2263 2264 2265 2266 2267
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
}

2268
static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
2269 2270
{
	struct mem_ctl_info *mci;
2271
	struct edac_mc_layer layers[2];
2272
	struct sbridge_pvt *pvt;
2273
	struct pci_dev *pdev = sbridge_dev->pdev[0];
2274
	int rc;
2275 2276

	/* Check the number of active and not disabled channels */
2277
	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
2278 2279 2280 2281
	if (unlikely(rc < 0))
		return rc;

	/* allocate a new MC control structure */
2282 2283 2284 2285 2286 2287
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANNELS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = MAX_DIMMS;
	layers[1].is_virt_csrow = true;
2288
	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
2289 2290
			    sizeof(*pvt));

2291 2292 2293
	if (unlikely(!mci))
		return -ENOMEM;

2294
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
2295
		 mci, &pdev->dev);
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

	pvt = mci->pvt_info;
	memset(pvt, 0, sizeof(*pvt));

	/* Associate sbridge_dev and mci for future usage */
	pvt->sbridge_dev = sbridge_dev;
	sbridge_dev->mci = mci;

	mci->mtype_cap = MEM_FLAG_DDR3;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "sbridge_edac.c";
	mci->mod_ver = SBRIDGE_REVISION;
2309
	mci->dev_name = pci_name(pdev);
2310 2311 2312 2313 2314
	mci->ctl_page_to_phys = NULL;

	/* Set the function pointer to an actual operation function */
	mci->edac_check = sbridge_check_error;

2315
	pvt->info.type = type;
2316 2317
	switch (type) {
	case IVY_BRIDGE:
2318 2319 2320 2321
		pvt->info.rankcfgr = IB_RANK_CFG_A;
		pvt->info.get_tolm = ibridge_get_tolm;
		pvt->info.get_tohm = ibridge_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
2322
		pvt->info.get_memory_type = get_memory_type;
2323
		pvt->info.get_node_id = get_node_id;
2324
		pvt->info.rir_limit = rir_limit;
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);

		/* Store pci devices at mci for faster access */
		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
2335 2336
		break;
	case SANDY_BRIDGE:
2337 2338 2339 2340
		pvt->info.rankcfgr = SB_RANK_CFG_A;
		pvt->info.get_tolm = sbridge_get_tolm;
		pvt->info.get_tohm = sbridge_get_tohm;
		pvt->info.dram_rule = sbridge_dram_rule;
2341
		pvt->info.get_memory_type = get_memory_type;
2342
		pvt->info.get_node_id = get_node_id;
2343
		pvt->info.rir_limit = rir_limit;
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
		pvt->info.interleave_list = sbridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
		pvt->info.interleave_pkg = sbridge_interleave_pkg;
		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);

		/* Store pci devices at mci for faster access */
		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
		break;
	case HASWELL:
		/* rankcfgr isn't used */
		pvt->info.get_tolm = haswell_get_tolm;
		pvt->info.get_tohm = haswell_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = haswell_get_memory_type;
		pvt->info.get_node_id = haswell_get_node_id;
		pvt->info.rir_limit = haswell_rir_limit;
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
2368

2369 2370 2371 2372 2373
		/* Store pci devices at mci for faster access */
		rc = haswell_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
		break;
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	case BROADWELL:
		/* rankcfgr isn't used */
		pvt->info.get_tolm = haswell_get_tolm;
		pvt->info.get_tohm = haswell_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = haswell_get_memory_type;
		pvt->info.get_node_id = haswell_get_node_id;
		pvt->info.rir_limit = haswell_rir_limit;
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);

		/* Store pci devices at mci for faster access */
		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
		break;
2393
	}
2394 2395 2396 2397 2398 2399

	/* Get dimm basic config and the memory layout */
	get_dimm_config(mci);
	get_memory_layout(mci);

	/* record ptr to the generic device */
2400
	mci->pdev = &pdev->dev;
2401 2402 2403

	/* add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc(mci))) {
2404
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
		rc = -EINVAL;
		goto fail0;
	}

	return 0;

fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
	return rc;
}

/*
 *	sbridge_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */

2426
static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2427
{
2428
	int rc = -ENODEV;
2429 2430
	u8 mc, num_mc = 0;
	struct sbridge_dev *sbridge_dev;
2431
	enum type type = SANDY_BRIDGE;
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

	/* get the pci devices we want to reserve for our use */
	mutex_lock(&sbridge_edac_lock);

	/*
	 * All memory controllers are allocated at the first pass.
	 */
	if (unlikely(probed >= 1)) {
		mutex_unlock(&sbridge_edac_lock);
		return -ENODEV;
	}
	probed++;

2445 2446
	switch (pdev->device) {
	case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2447 2448
		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
		type = IVY_BRIDGE;
2449
		break;
2450
	case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2451 2452
		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
		type = SANDY_BRIDGE;
2453 2454 2455 2456 2457
		break;
	case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
		type = HASWELL;
		break;
2458 2459 2460 2461
	case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table);
		type = BROADWELL;
		break;
2462
	}
2463 2464
	if (unlikely(rc < 0)) {
		edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
2465
		goto fail0;
2466 2467
	}

2468 2469 2470
	mc = 0;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2471 2472
		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
			 mc, mc + 1, num_mc);
2473

2474
		sbridge_dev->mc = mc++;
2475
		rc = sbridge_register_mci(sbridge_dev, type);
2476 2477 2478 2479
		if (unlikely(rc < 0))
			goto fail1;
	}

2480
	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498

	mutex_unlock(&sbridge_edac_lock);
	return 0;

fail1:
	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	sbridge_put_all_devices();
fail0:
	mutex_unlock(&sbridge_edac_lock);
	return rc;
}

/*
 *	sbridge_remove	destructor for one instance of device
 *
 */
2499
static void sbridge_remove(struct pci_dev *pdev)
2500 2501 2502
{
	struct sbridge_dev *sbridge_dev;

2503
	edac_dbg(0, "\n");
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */

	mutex_lock(&sbridge_edac_lock);

	if (unlikely(!probed)) {
		mutex_unlock(&sbridge_edac_lock);
		return;
	}

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	/* Release PCI resources */
	sbridge_put_all_devices();

	probed--;

	mutex_unlock(&sbridge_edac_lock);
}

MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);

/*
 *	sbridge_driver	pci_driver structure for this module
 *
 */
static struct pci_driver sbridge_driver = {
	.name     = "sbridge_edac",
	.probe    = sbridge_probe,
2540
	.remove   = sbridge_remove,
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	.id_table = sbridge_pci_tbl,
};

/*
 *	sbridge_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init sbridge_init(void)
{
	int pci_rc;

2552
	edac_dbg(2, "\n");
2553 2554 2555 2556 2557

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	pci_rc = pci_register_driver(&sbridge_driver);
2558 2559
	if (pci_rc >= 0) {
		mce_register_decode_chain(&sbridge_mce_dec);
2560 2561
		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2562
		return 0;
2563
	}
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576

	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
}

/*
 *	sbridge_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit sbridge_exit(void)
{
2577
	edac_dbg(2, "\n");
2578
	pci_unregister_driver(&sbridge_driver);
2579
	mce_unregister_decode_chain(&sbridge_mce_dec);
2580 2581 2582 2583 2584 2585 2586 2587 2588
}

module_init(sbridge_init);
module_exit(sbridge_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL");
2589
MODULE_AUTHOR("Mauro Carvalho Chehab");
2590
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2591
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2592
		   SBRIDGE_REVISION);