lan78xx.c 102.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright (C) 2015 Microchip Technology
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */
#include <linux/version.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/if_vlan.h>
#include <linux/uaccess.h>
#include <linux/list.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/mdio.h>
32
#include <linux/phy.h>
33
#include <net/ip6_checksum.h>
34 35 36 37
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/irq.h>
#include <linux/irqchip/chained_irq.h>
38
#include <linux/microchipphy.h>
39
#include <linux/phy_fixed.h>
40
#include <linux/of_mdio.h>
41
#include <linux/of_net.h>
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
#include "lan78xx.h"

#define DRIVER_AUTHOR	"WOOJUNG HUH <woojung.huh@microchip.com>"
#define DRIVER_DESC	"LAN78XX USB 3.0 Gigabit Ethernet Devices"
#define DRIVER_NAME	"lan78xx"

#define TX_TIMEOUT_JIFFIES		(5 * HZ)
#define THROTTLE_JIFFIES		(HZ / 8)
#define UNLINK_TIMEOUT_MS		3

#define RX_MAX_QUEUE_MEMORY		(60 * 1518)

#define SS_USB_PKT_SIZE			(1024)
#define HS_USB_PKT_SIZE			(512)
#define FS_USB_PKT_SIZE			(64)

#define MAX_RX_FIFO_SIZE		(12 * 1024)
#define MAX_TX_FIFO_SIZE		(12 * 1024)
#define DEFAULT_BURST_CAP_SIZE		(MAX_TX_FIFO_SIZE)
#define DEFAULT_BULK_IN_DELAY		(0x0800)
#define MAX_SINGLE_PACKET_SIZE		(9000)
#define DEFAULT_TX_CSUM_ENABLE		(true)
#define DEFAULT_RX_CSUM_ENABLE		(true)
#define DEFAULT_TSO_CSUM_ENABLE		(true)
#define DEFAULT_VLAN_FILTER_ENABLE	(true)
#define TX_OVERHEAD			(8)
#define RXW_PADDING			2

#define LAN78XX_USB_VENDOR_ID		(0x0424)
#define LAN7800_USB_PRODUCT_ID		(0x7800)
#define LAN7850_USB_PRODUCT_ID		(0x7850)
73
#define LAN7801_USB_PRODUCT_ID		(0x7801)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#define LAN78XX_EEPROM_MAGIC		(0x78A5)
#define LAN78XX_OTP_MAGIC		(0x78F3)

#define	MII_READ			1
#define	MII_WRITE			0

#define EEPROM_INDICATOR		(0xA5)
#define EEPROM_MAC_OFFSET		(0x01)
#define MAX_EEPROM_SIZE			512
#define OTP_INDICATOR_1			(0xF3)
#define OTP_INDICATOR_2			(0xF7)

#define WAKE_ALL			(WAKE_PHY | WAKE_UCAST | \
					 WAKE_MCAST | WAKE_BCAST | \
					 WAKE_ARP | WAKE_MAGIC)

/* USB related defines */
#define BULK_IN_PIPE			1
#define BULK_OUT_PIPE			2

/* default autosuspend delay (mSec)*/
#define DEFAULT_AUTOSUSPEND_DELAY	(10 * 1000)

97 98 99
/* statistic update interval (mSec) */
#define STAT_UPDATE_TIMER		(1 * 1000)

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* defines interrupts from interrupt EP */
#define MAX_INT_EP			(32)
#define INT_EP_INTEP			(31)
#define INT_EP_OTP_WR_DONE		(28)
#define INT_EP_EEE_TX_LPI_START		(26)
#define INT_EP_EEE_TX_LPI_STOP		(25)
#define INT_EP_EEE_RX_LPI		(24)
#define INT_EP_MAC_RESET_TIMEOUT	(23)
#define INT_EP_RDFO			(22)
#define INT_EP_TXE			(21)
#define INT_EP_USB_STATUS		(20)
#define INT_EP_TX_DIS			(19)
#define INT_EP_RX_DIS			(18)
#define INT_EP_PHY			(17)
#define INT_EP_DP			(16)
#define INT_EP_MAC_ERR			(15)
#define INT_EP_TDFU			(14)
#define INT_EP_TDFO			(13)
#define INT_EP_UTX			(12)
#define INT_EP_GPIO_11			(11)
#define INT_EP_GPIO_10			(10)
#define INT_EP_GPIO_9			(9)
#define INT_EP_GPIO_8			(8)
#define INT_EP_GPIO_7			(7)
#define INT_EP_GPIO_6			(6)
#define INT_EP_GPIO_5			(5)
#define INT_EP_GPIO_4			(4)
#define INT_EP_GPIO_3			(3)
#define INT_EP_GPIO_2			(2)
#define INT_EP_GPIO_1			(1)
#define INT_EP_GPIO_0			(0)

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static const char lan78xx_gstrings[][ETH_GSTRING_LEN] = {
	"RX FCS Errors",
	"RX Alignment Errors",
	"Rx Fragment Errors",
	"RX Jabber Errors",
	"RX Undersize Frame Errors",
	"RX Oversize Frame Errors",
	"RX Dropped Frames",
	"RX Unicast Byte Count",
	"RX Broadcast Byte Count",
	"RX Multicast Byte Count",
	"RX Unicast Frames",
	"RX Broadcast Frames",
	"RX Multicast Frames",
	"RX Pause Frames",
	"RX 64 Byte Frames",
	"RX 65 - 127 Byte Frames",
	"RX 128 - 255 Byte Frames",
	"RX 256 - 511 Bytes Frames",
	"RX 512 - 1023 Byte Frames",
	"RX 1024 - 1518 Byte Frames",
	"RX Greater 1518 Byte Frames",
	"EEE RX LPI Transitions",
	"EEE RX LPI Time",
	"TX FCS Errors",
	"TX Excess Deferral Errors",
	"TX Carrier Errors",
	"TX Bad Byte Count",
	"TX Single Collisions",
	"TX Multiple Collisions",
	"TX Excessive Collision",
	"TX Late Collisions",
	"TX Unicast Byte Count",
	"TX Broadcast Byte Count",
	"TX Multicast Byte Count",
	"TX Unicast Frames",
	"TX Broadcast Frames",
	"TX Multicast Frames",
	"TX Pause Frames",
	"TX 64 Byte Frames",
	"TX 65 - 127 Byte Frames",
	"TX 128 - 255 Byte Frames",
	"TX 256 - 511 Bytes Frames",
	"TX 512 - 1023 Byte Frames",
	"TX 1024 - 1518 Byte Frames",
	"TX Greater 1518 Byte Frames",
	"EEE TX LPI Transitions",
	"EEE TX LPI Time",
};

struct lan78xx_statstage {
	u32 rx_fcs_errors;
	u32 rx_alignment_errors;
	u32 rx_fragment_errors;
	u32 rx_jabber_errors;
	u32 rx_undersize_frame_errors;
	u32 rx_oversize_frame_errors;
	u32 rx_dropped_frames;
	u32 rx_unicast_byte_count;
	u32 rx_broadcast_byte_count;
	u32 rx_multicast_byte_count;
	u32 rx_unicast_frames;
	u32 rx_broadcast_frames;
	u32 rx_multicast_frames;
	u32 rx_pause_frames;
	u32 rx_64_byte_frames;
	u32 rx_65_127_byte_frames;
	u32 rx_128_255_byte_frames;
	u32 rx_256_511_bytes_frames;
	u32 rx_512_1023_byte_frames;
	u32 rx_1024_1518_byte_frames;
	u32 rx_greater_1518_byte_frames;
	u32 eee_rx_lpi_transitions;
	u32 eee_rx_lpi_time;
	u32 tx_fcs_errors;
	u32 tx_excess_deferral_errors;
	u32 tx_carrier_errors;
	u32 tx_bad_byte_count;
	u32 tx_single_collisions;
	u32 tx_multiple_collisions;
	u32 tx_excessive_collision;
	u32 tx_late_collisions;
	u32 tx_unicast_byte_count;
	u32 tx_broadcast_byte_count;
	u32 tx_multicast_byte_count;
	u32 tx_unicast_frames;
	u32 tx_broadcast_frames;
	u32 tx_multicast_frames;
	u32 tx_pause_frames;
	u32 tx_64_byte_frames;
	u32 tx_65_127_byte_frames;
	u32 tx_128_255_byte_frames;
	u32 tx_256_511_bytes_frames;
	u32 tx_512_1023_byte_frames;
	u32 tx_1024_1518_byte_frames;
	u32 tx_greater_1518_byte_frames;
	u32 eee_tx_lpi_transitions;
	u32 eee_tx_lpi_time;
};

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
struct lan78xx_statstage64 {
	u64 rx_fcs_errors;
	u64 rx_alignment_errors;
	u64 rx_fragment_errors;
	u64 rx_jabber_errors;
	u64 rx_undersize_frame_errors;
	u64 rx_oversize_frame_errors;
	u64 rx_dropped_frames;
	u64 rx_unicast_byte_count;
	u64 rx_broadcast_byte_count;
	u64 rx_multicast_byte_count;
	u64 rx_unicast_frames;
	u64 rx_broadcast_frames;
	u64 rx_multicast_frames;
	u64 rx_pause_frames;
	u64 rx_64_byte_frames;
	u64 rx_65_127_byte_frames;
	u64 rx_128_255_byte_frames;
	u64 rx_256_511_bytes_frames;
	u64 rx_512_1023_byte_frames;
	u64 rx_1024_1518_byte_frames;
	u64 rx_greater_1518_byte_frames;
	u64 eee_rx_lpi_transitions;
	u64 eee_rx_lpi_time;
	u64 tx_fcs_errors;
	u64 tx_excess_deferral_errors;
	u64 tx_carrier_errors;
	u64 tx_bad_byte_count;
	u64 tx_single_collisions;
	u64 tx_multiple_collisions;
	u64 tx_excessive_collision;
	u64 tx_late_collisions;
	u64 tx_unicast_byte_count;
	u64 tx_broadcast_byte_count;
	u64 tx_multicast_byte_count;
	u64 tx_unicast_frames;
	u64 tx_broadcast_frames;
	u64 tx_multicast_frames;
	u64 tx_pause_frames;
	u64 tx_64_byte_frames;
	u64 tx_65_127_byte_frames;
	u64 tx_128_255_byte_frames;
	u64 tx_256_511_bytes_frames;
	u64 tx_512_1023_byte_frames;
	u64 tx_1024_1518_byte_frames;
	u64 tx_greater_1518_byte_frames;
	u64 eee_tx_lpi_transitions;
	u64 eee_tx_lpi_time;
};

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static u32 lan78xx_regs[] = {
	ID_REV,
	INT_STS,
	HW_CFG,
	PMT_CTL,
	E2P_CMD,
	E2P_DATA,
	USB_STATUS,
	VLAN_TYPE,
	MAC_CR,
	MAC_RX,
	MAC_TX,
	FLOW,
	ERR_STS,
	MII_ACC,
	MII_DATA,
	EEE_TX_LPI_REQ_DLY,
	EEE_TW_TX_SYS,
	EEE_TX_LPI_REM_DLY,
	WUCSR
};

#define PHY_REG_SIZE (32 * sizeof(u32))

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
struct lan78xx_net;

struct lan78xx_priv {
	struct lan78xx_net *dev;
	u32 rfe_ctl;
	u32 mchash_table[DP_SEL_VHF_HASH_LEN]; /* multicat hash table */
	u32 pfilter_table[NUM_OF_MAF][2]; /* perfect filter table */
	u32 vlan_table[DP_SEL_VHF_VLAN_LEN];
	struct mutex dataport_mutex; /* for dataport access */
	spinlock_t rfe_ctl_lock; /* for rfe register access */
	struct work_struct set_multicast;
	struct work_struct set_vlan;
	u32 wol;
};

enum skb_state {
	illegal = 0,
	tx_start,
	tx_done,
	rx_start,
	rx_done,
	rx_cleanup,
	unlink_start
};

struct skb_data {		/* skb->cb is one of these */
	struct urb *urb;
	struct lan78xx_net *dev;
	enum skb_state state;
	size_t length;
336
	int num_of_packet;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
};

struct usb_context {
	struct usb_ctrlrequest req;
	struct lan78xx_net *dev;
};

#define EVENT_TX_HALT			0
#define EVENT_RX_HALT			1
#define EVENT_RX_MEMORY			2
#define EVENT_STS_SPLIT			3
#define EVENT_LINK_RESET		4
#define EVENT_RX_PAUSED			5
#define EVENT_DEV_WAKING		6
#define EVENT_DEV_ASLEEP		7
#define EVENT_DEV_OPEN			8
353 354 355 356 357 358 359 360 361
#define EVENT_STAT_UPDATE		9

struct statstage {
	struct mutex			access_lock;	/* for stats access */
	struct lan78xx_statstage	saved;
	struct lan78xx_statstage	rollover_count;
	struct lan78xx_statstage	rollover_max;
	struct lan78xx_statstage64	curr_stat;
};
362

363 364 365 366 367 368 369 370 371
struct irq_domain_data {
	struct irq_domain	*irqdomain;
	unsigned int		phyirq;
	struct irq_chip		*irqchip;
	irq_flow_handler_t	irq_handler;
	u32			irqenable;
	struct mutex		irq_lock;		/* for irq bus access */
};

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
struct lan78xx_net {
	struct net_device	*net;
	struct usb_device	*udev;
	struct usb_interface	*intf;
	void			*driver_priv;

	int			rx_qlen;
	int			tx_qlen;
	struct sk_buff_head	rxq;
	struct sk_buff_head	txq;
	struct sk_buff_head	done;
	struct sk_buff_head	rxq_pause;
	struct sk_buff_head	txq_pend;

	struct tasklet_struct	bh;
	struct delayed_work	wq;

	struct usb_host_endpoint *ep_blkin;
	struct usb_host_endpoint *ep_blkout;
	struct usb_host_endpoint *ep_intr;

	int			msg_enable;

	struct urb		*urb_intr;
	struct usb_anchor	deferred;

	struct mutex		phy_mutex; /* for phy access */
	unsigned		pipe_in, pipe_out, pipe_intr;

	u32			hard_mtu;	/* count any extra framing */
	size_t			rx_urb_size;	/* size for rx urbs */

	unsigned long		flags;

	wait_queue_head_t	*wait;
	unsigned char		suspend_count;

	unsigned		maxpacket;
	struct timer_list	delay;
411
	struct timer_list	stat_monitor;
412 413 414 415 416

	unsigned long		data[5];

	int			link_on;
	u8			mdix_ctrl;
417

418 419
	u32			chipid;
	u32			chiprev;
420
	struct mii_bus		*mdiobus;
421
	phy_interface_t		interface;
422 423 424

	int			fc_autoneg;
	u8			fc_request_control;
425 426 427

	int			delta;
	struct statstage	stats;
428 429

	struct irq_domain_data	domain_data;
430 431
};

432 433 434 435
/* define external phy id */
#define	PHY_LAN8835			(0x0007C130)
#define	PHY_KSZ9031RNX			(0x00221620)

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/* use ethtool to change the level for any given device */
static int msg_level = -1;
module_param(msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Override default message level");

static int lan78xx_read_reg(struct lan78xx_net *dev, u32 index, u32 *data)
{
	u32 *buf = kmalloc(sizeof(u32), GFP_KERNEL);
	int ret;

	if (!buf)
		return -ENOMEM;

	ret = usb_control_msg(dev->udev, usb_rcvctrlpipe(dev->udev, 0),
			      USB_VENDOR_REQUEST_READ_REGISTER,
			      USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
			      0, index, buf, 4, USB_CTRL_GET_TIMEOUT);
	if (likely(ret >= 0)) {
		le32_to_cpus(buf);
		*data = *buf;
	} else {
		netdev_warn(dev->net,
			    "Failed to read register index 0x%08x. ret = %d",
			    index, ret);
	}

	kfree(buf);

	return ret;
}

static int lan78xx_write_reg(struct lan78xx_net *dev, u32 index, u32 data)
{
	u32 *buf = kmalloc(sizeof(u32), GFP_KERNEL);
	int ret;

	if (!buf)
		return -ENOMEM;

	*buf = data;
	cpu_to_le32s(buf);

	ret = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0),
			      USB_VENDOR_REQUEST_WRITE_REGISTER,
			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
			      0, index, buf, 4, USB_CTRL_SET_TIMEOUT);
	if (unlikely(ret < 0)) {
		netdev_warn(dev->net,
			    "Failed to write register index 0x%08x. ret = %d",
			    index, ret);
	}

	kfree(buf);

	return ret;
}

static int lan78xx_read_stats(struct lan78xx_net *dev,
			      struct lan78xx_statstage *data)
{
	int ret = 0;
	int i;
	struct lan78xx_statstage *stats;
	u32 *src;
	u32 *dst;

	stats = kmalloc(sizeof(*stats), GFP_KERNEL);
	if (!stats)
		return -ENOMEM;

	ret = usb_control_msg(dev->udev,
			      usb_rcvctrlpipe(dev->udev, 0),
			      USB_VENDOR_REQUEST_GET_STATS,
			      USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
			      0,
			      0,
			      (void *)stats,
			      sizeof(*stats),
			      USB_CTRL_SET_TIMEOUT);
	if (likely(ret >= 0)) {
		src = (u32 *)stats;
		dst = (u32 *)data;
		for (i = 0; i < sizeof(*stats)/sizeof(u32); i++) {
			le32_to_cpus(&src[i]);
			dst[i] = src[i];
		}
	} else {
		netdev_warn(dev->net,
			    "Failed to read stat ret = 0x%x", ret);
	}

	kfree(stats);

	return ret;
}

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
#define check_counter_rollover(struct1, dev_stats, member) {	\
	if (struct1->member < dev_stats.saved.member)		\
		dev_stats.rollover_count.member++;		\
	}

static void lan78xx_check_stat_rollover(struct lan78xx_net *dev,
					struct lan78xx_statstage *stats)
{
	check_counter_rollover(stats, dev->stats, rx_fcs_errors);
	check_counter_rollover(stats, dev->stats, rx_alignment_errors);
	check_counter_rollover(stats, dev->stats, rx_fragment_errors);
	check_counter_rollover(stats, dev->stats, rx_jabber_errors);
	check_counter_rollover(stats, dev->stats, rx_undersize_frame_errors);
	check_counter_rollover(stats, dev->stats, rx_oversize_frame_errors);
	check_counter_rollover(stats, dev->stats, rx_dropped_frames);
	check_counter_rollover(stats, dev->stats, rx_unicast_byte_count);
	check_counter_rollover(stats, dev->stats, rx_broadcast_byte_count);
	check_counter_rollover(stats, dev->stats, rx_multicast_byte_count);
	check_counter_rollover(stats, dev->stats, rx_unicast_frames);
	check_counter_rollover(stats, dev->stats, rx_broadcast_frames);
	check_counter_rollover(stats, dev->stats, rx_multicast_frames);
	check_counter_rollover(stats, dev->stats, rx_pause_frames);
	check_counter_rollover(stats, dev->stats, rx_64_byte_frames);
	check_counter_rollover(stats, dev->stats, rx_65_127_byte_frames);
	check_counter_rollover(stats, dev->stats, rx_128_255_byte_frames);
	check_counter_rollover(stats, dev->stats, rx_256_511_bytes_frames);
	check_counter_rollover(stats, dev->stats, rx_512_1023_byte_frames);
	check_counter_rollover(stats, dev->stats, rx_1024_1518_byte_frames);
	check_counter_rollover(stats, dev->stats, rx_greater_1518_byte_frames);
	check_counter_rollover(stats, dev->stats, eee_rx_lpi_transitions);
	check_counter_rollover(stats, dev->stats, eee_rx_lpi_time);
	check_counter_rollover(stats, dev->stats, tx_fcs_errors);
	check_counter_rollover(stats, dev->stats, tx_excess_deferral_errors);
	check_counter_rollover(stats, dev->stats, tx_carrier_errors);
	check_counter_rollover(stats, dev->stats, tx_bad_byte_count);
	check_counter_rollover(stats, dev->stats, tx_single_collisions);
	check_counter_rollover(stats, dev->stats, tx_multiple_collisions);
	check_counter_rollover(stats, dev->stats, tx_excessive_collision);
	check_counter_rollover(stats, dev->stats, tx_late_collisions);
	check_counter_rollover(stats, dev->stats, tx_unicast_byte_count);
	check_counter_rollover(stats, dev->stats, tx_broadcast_byte_count);
	check_counter_rollover(stats, dev->stats, tx_multicast_byte_count);
	check_counter_rollover(stats, dev->stats, tx_unicast_frames);
	check_counter_rollover(stats, dev->stats, tx_broadcast_frames);
	check_counter_rollover(stats, dev->stats, tx_multicast_frames);
	check_counter_rollover(stats, dev->stats, tx_pause_frames);
	check_counter_rollover(stats, dev->stats, tx_64_byte_frames);
	check_counter_rollover(stats, dev->stats, tx_65_127_byte_frames);
	check_counter_rollover(stats, dev->stats, tx_128_255_byte_frames);
	check_counter_rollover(stats, dev->stats, tx_256_511_bytes_frames);
	check_counter_rollover(stats, dev->stats, tx_512_1023_byte_frames);
	check_counter_rollover(stats, dev->stats, tx_1024_1518_byte_frames);
	check_counter_rollover(stats, dev->stats, tx_greater_1518_byte_frames);
	check_counter_rollover(stats, dev->stats, eee_tx_lpi_transitions);
	check_counter_rollover(stats, dev->stats, eee_tx_lpi_time);

	memcpy(&dev->stats.saved, stats, sizeof(struct lan78xx_statstage));
}

static void lan78xx_update_stats(struct lan78xx_net *dev)
{
	u32 *p, *count, *max;
	u64 *data;
	int i;
	struct lan78xx_statstage lan78xx_stats;

	if (usb_autopm_get_interface(dev->intf) < 0)
		return;

	p = (u32 *)&lan78xx_stats;
	count = (u32 *)&dev->stats.rollover_count;
	max = (u32 *)&dev->stats.rollover_max;
	data = (u64 *)&dev->stats.curr_stat;

	mutex_lock(&dev->stats.access_lock);

	if (lan78xx_read_stats(dev, &lan78xx_stats) > 0)
		lan78xx_check_stat_rollover(dev, &lan78xx_stats);

	for (i = 0; i < (sizeof(lan78xx_stats) / (sizeof(u32))); i++)
		data[i] = (u64)p[i] + ((u64)count[i] * ((u64)max[i] + 1));

	mutex_unlock(&dev->stats.access_lock);

	usb_autopm_put_interface(dev->intf);
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/* Loop until the read is completed with timeout called with phy_mutex held */
static int lan78xx_phy_wait_not_busy(struct lan78xx_net *dev)
{
	unsigned long start_time = jiffies;
	u32 val;
	int ret;

	do {
		ret = lan78xx_read_reg(dev, MII_ACC, &val);
		if (unlikely(ret < 0))
			return -EIO;

		if (!(val & MII_ACC_MII_BUSY_))
			return 0;
	} while (!time_after(jiffies, start_time + HZ));

	return -EIO;
}

static inline u32 mii_access(int id, int index, int read)
{
	u32 ret;

	ret = ((u32)id << MII_ACC_PHY_ADDR_SHIFT_) & MII_ACC_PHY_ADDR_MASK_;
	ret |= ((u32)index << MII_ACC_MIIRINDA_SHIFT_) & MII_ACC_MIIRINDA_MASK_;
	if (read)
		ret |= MII_ACC_MII_READ_;
	else
		ret |= MII_ACC_MII_WRITE_;
	ret |= MII_ACC_MII_BUSY_;

	return ret;
}

static int lan78xx_wait_eeprom(struct lan78xx_net *dev)
{
	unsigned long start_time = jiffies;
	u32 val;
	int ret;

	do {
		ret = lan78xx_read_reg(dev, E2P_CMD, &val);
		if (unlikely(ret < 0))
			return -EIO;

		if (!(val & E2P_CMD_EPC_BUSY_) ||
		    (val & E2P_CMD_EPC_TIMEOUT_))
			break;
		usleep_range(40, 100);
	} while (!time_after(jiffies, start_time + HZ));

	if (val & (E2P_CMD_EPC_TIMEOUT_ | E2P_CMD_EPC_BUSY_)) {
		netdev_warn(dev->net, "EEPROM read operation timeout");
		return -EIO;
	}

	return 0;
}

static int lan78xx_eeprom_confirm_not_busy(struct lan78xx_net *dev)
{
	unsigned long start_time = jiffies;
	u32 val;
	int ret;

	do {
		ret = lan78xx_read_reg(dev, E2P_CMD, &val);
		if (unlikely(ret < 0))
			return -EIO;

		if (!(val & E2P_CMD_EPC_BUSY_))
			return 0;

		usleep_range(40, 100);
	} while (!time_after(jiffies, start_time + HZ));

	netdev_warn(dev->net, "EEPROM is busy");
	return -EIO;
}

static int lan78xx_read_raw_eeprom(struct lan78xx_net *dev, u32 offset,
				   u32 length, u8 *data)
{
	u32 val;
703
	u32 saved;
704
	int i, ret;
705 706 707 708 709 710 711
	int retval;

	/* depends on chip, some EEPROM pins are muxed with LED function.
	 * disable & restore LED function to access EEPROM.
	 */
	ret = lan78xx_read_reg(dev, HW_CFG, &val);
	saved = val;
712
	if (dev->chipid == ID_REV_CHIP_ID_7800_) {
713 714 715
		val &= ~(HW_CFG_LED1_EN_ | HW_CFG_LED0_EN_);
		ret = lan78xx_write_reg(dev, HW_CFG, val);
	}
716

717 718 719
	retval = lan78xx_eeprom_confirm_not_busy(dev);
	if (retval)
		return retval;
720 721 722 723 724

	for (i = 0; i < length; i++) {
		val = E2P_CMD_EPC_BUSY_ | E2P_CMD_EPC_CMD_READ_;
		val |= (offset & E2P_CMD_EPC_ADDR_MASK_);
		ret = lan78xx_write_reg(dev, E2P_CMD, val);
725 726 727 728
		if (unlikely(ret < 0)) {
			retval = -EIO;
			goto exit;
		}
729

730 731 732
		retval = lan78xx_wait_eeprom(dev);
		if (retval < 0)
			goto exit;
733 734

		ret = lan78xx_read_reg(dev, E2P_DATA, &val);
735 736 737 738
		if (unlikely(ret < 0)) {
			retval = -EIO;
			goto exit;
		}
739 740 741 742 743

		data[i] = val & 0xFF;
		offset++;
	}

744 745
	retval = 0;
exit:
746
	if (dev->chipid == ID_REV_CHIP_ID_7800_)
747 748 749
		ret = lan78xx_write_reg(dev, HW_CFG, saved);

	return retval;
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
}

static int lan78xx_read_eeprom(struct lan78xx_net *dev, u32 offset,
			       u32 length, u8 *data)
{
	u8 sig;
	int ret;

	ret = lan78xx_read_raw_eeprom(dev, 0, 1, &sig);
	if ((ret == 0) && (sig == EEPROM_INDICATOR))
		ret = lan78xx_read_raw_eeprom(dev, offset, length, data);
	else
		ret = -EINVAL;

	return ret;
}

static int lan78xx_write_raw_eeprom(struct lan78xx_net *dev, u32 offset,
				    u32 length, u8 *data)
{
	u32 val;
771
	u32 saved;
772
	int i, ret;
773 774 775 776 777 778 779
	int retval;

	/* depends on chip, some EEPROM pins are muxed with LED function.
	 * disable & restore LED function to access EEPROM.
	 */
	ret = lan78xx_read_reg(dev, HW_CFG, &val);
	saved = val;
780
	if (dev->chipid == ID_REV_CHIP_ID_7800_) {
781 782 783
		val &= ~(HW_CFG_LED1_EN_ | HW_CFG_LED0_EN_);
		ret = lan78xx_write_reg(dev, HW_CFG, val);
	}
784

785 786 787
	retval = lan78xx_eeprom_confirm_not_busy(dev);
	if (retval)
		goto exit;
788 789 790 791

	/* Issue write/erase enable command */
	val = E2P_CMD_EPC_BUSY_ | E2P_CMD_EPC_CMD_EWEN_;
	ret = lan78xx_write_reg(dev, E2P_CMD, val);
792 793 794 795
	if (unlikely(ret < 0)) {
		retval = -EIO;
		goto exit;
	}
796

797 798 799
	retval = lan78xx_wait_eeprom(dev);
	if (retval < 0)
		goto exit;
800 801 802 803 804

	for (i = 0; i < length; i++) {
		/* Fill data register */
		val = data[i];
		ret = lan78xx_write_reg(dev, E2P_DATA, val);
805 806 807 808
		if (ret < 0) {
			retval = -EIO;
			goto exit;
		}
809 810 811 812 813

		/* Send "write" command */
		val = E2P_CMD_EPC_BUSY_ | E2P_CMD_EPC_CMD_WRITE_;
		val |= (offset & E2P_CMD_EPC_ADDR_MASK_);
		ret = lan78xx_write_reg(dev, E2P_CMD, val);
814 815 816 817
		if (ret < 0) {
			retval = -EIO;
			goto exit;
		}
818

819 820 821
		retval = lan78xx_wait_eeprom(dev);
		if (retval < 0)
			goto exit;
822 823 824 825

		offset++;
	}

826 827
	retval = 0;
exit:
828
	if (dev->chipid == ID_REV_CHIP_ID_7800_)
829 830 831
		ret = lan78xx_write_reg(dev, HW_CFG, saved);

	return retval;
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
}

static int lan78xx_read_raw_otp(struct lan78xx_net *dev, u32 offset,
				u32 length, u8 *data)
{
	int i;
	int ret;
	u32 buf;
	unsigned long timeout;

	ret = lan78xx_read_reg(dev, OTP_PWR_DN, &buf);

	if (buf & OTP_PWR_DN_PWRDN_N_) {
		/* clear it and wait to be cleared */
		ret = lan78xx_write_reg(dev, OTP_PWR_DN, 0);

		timeout = jiffies + HZ;
		do {
			usleep_range(1, 10);
			ret = lan78xx_read_reg(dev, OTP_PWR_DN, &buf);
			if (time_after(jiffies, timeout)) {
				netdev_warn(dev->net,
					    "timeout on OTP_PWR_DN");
				return -EIO;
			}
		} while (buf & OTP_PWR_DN_PWRDN_N_);
	}

	for (i = 0; i < length; i++) {
		ret = lan78xx_write_reg(dev, OTP_ADDR1,
					((offset + i) >> 8) & OTP_ADDR1_15_11);
		ret = lan78xx_write_reg(dev, OTP_ADDR2,
					((offset + i) & OTP_ADDR2_10_3));

		ret = lan78xx_write_reg(dev, OTP_FUNC_CMD, OTP_FUNC_CMD_READ_);
		ret = lan78xx_write_reg(dev, OTP_CMD_GO, OTP_CMD_GO_GO_);

		timeout = jiffies + HZ;
		do {
			udelay(1);
			ret = lan78xx_read_reg(dev, OTP_STATUS, &buf);
			if (time_after(jiffies, timeout)) {
				netdev_warn(dev->net,
					    "timeout on OTP_STATUS");
				return -EIO;
			}
		} while (buf & OTP_STATUS_BUSY_);

		ret = lan78xx_read_reg(dev, OTP_RD_DATA, &buf);

		data[i] = (u8)(buf & 0xFF);
	}

	return 0;
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
static int lan78xx_write_raw_otp(struct lan78xx_net *dev, u32 offset,
				 u32 length, u8 *data)
{
	int i;
	int ret;
	u32 buf;
	unsigned long timeout;

	ret = lan78xx_read_reg(dev, OTP_PWR_DN, &buf);

	if (buf & OTP_PWR_DN_PWRDN_N_) {
		/* clear it and wait to be cleared */
		ret = lan78xx_write_reg(dev, OTP_PWR_DN, 0);

		timeout = jiffies + HZ;
		do {
			udelay(1);
			ret = lan78xx_read_reg(dev, OTP_PWR_DN, &buf);
			if (time_after(jiffies, timeout)) {
				netdev_warn(dev->net,
					    "timeout on OTP_PWR_DN completion");
				return -EIO;
			}
		} while (buf & OTP_PWR_DN_PWRDN_N_);
	}

	/* set to BYTE program mode */
	ret = lan78xx_write_reg(dev, OTP_PRGM_MODE, OTP_PRGM_MODE_BYTE_);

	for (i = 0; i < length; i++) {
		ret = lan78xx_write_reg(dev, OTP_ADDR1,
					((offset + i) >> 8) & OTP_ADDR1_15_11);
		ret = lan78xx_write_reg(dev, OTP_ADDR2,
					((offset + i) & OTP_ADDR2_10_3));
		ret = lan78xx_write_reg(dev, OTP_PRGM_DATA, data[i]);
		ret = lan78xx_write_reg(dev, OTP_TST_CMD, OTP_TST_CMD_PRGVRFY_);
		ret = lan78xx_write_reg(dev, OTP_CMD_GO, OTP_CMD_GO_GO_);

		timeout = jiffies + HZ;
		do {
			udelay(1);
			ret = lan78xx_read_reg(dev, OTP_STATUS, &buf);
			if (time_after(jiffies, timeout)) {
				netdev_warn(dev->net,
					    "Timeout on OTP_STATUS completion");
				return -EIO;
			}
		} while (buf & OTP_STATUS_BUSY_);
	}

	return 0;
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
static int lan78xx_read_otp(struct lan78xx_net *dev, u32 offset,
			    u32 length, u8 *data)
{
	u8 sig;
	int ret;

	ret = lan78xx_read_raw_otp(dev, 0, 1, &sig);

	if (ret == 0) {
		if (sig == OTP_INDICATOR_1)
			offset = offset;
		else if (sig == OTP_INDICATOR_2)
			offset += 0x100;
		else
			ret = -EINVAL;
956 957
		if (!ret)
			ret = lan78xx_read_raw_otp(dev, offset, length, data);
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	}

	return ret;
}

static int lan78xx_dataport_wait_not_busy(struct lan78xx_net *dev)
{
	int i, ret;

	for (i = 0; i < 100; i++) {
		u32 dp_sel;

		ret = lan78xx_read_reg(dev, DP_SEL, &dp_sel);
		if (unlikely(ret < 0))
			return -EIO;

		if (dp_sel & DP_SEL_DPRDY_)
			return 0;

		usleep_range(40, 100);
	}

	netdev_warn(dev->net, "lan78xx_dataport_wait_not_busy timed out");

	return -EIO;
}

static int lan78xx_dataport_write(struct lan78xx_net *dev, u32 ram_select,
				  u32 addr, u32 length, u32 *buf)
{
	struct lan78xx_priv *pdata = (struct lan78xx_priv *)(dev->data[0]);
	u32 dp_sel;
	int i, ret;

	if (usb_autopm_get_interface(dev->intf) < 0)
			return 0;

	mutex_lock(&pdata->dataport_mutex);

	ret = lan78xx_dataport_wait_not_busy(dev);
	if (ret < 0)
		goto done;

	ret = lan78xx_read_reg(dev, DP_SEL, &dp_sel);

	dp_sel &= ~DP_SEL_RSEL_MASK_;
	dp_sel |= ram_select;
	ret = lan78xx_write_reg(dev, DP_SEL, dp_sel);

	for (i = 0; i < length; i++) {
		ret = lan78xx_write_reg(dev, DP_ADDR, addr + i);

		ret = lan78xx_write_reg(dev, DP_DATA, buf[i]);

		ret = lan78xx_write_reg(dev, DP_CMD, DP_CMD_WRITE_);

		ret = lan78xx_dataport_wait_not_busy(dev);
		if (ret < 0)
			goto done;
	}

done:
	mutex_unlock(&pdata->dataport_mutex);
	usb_autopm_put_interface(dev->intf);

	return ret;
}

static void lan78xx_set_addr_filter(struct lan78xx_priv *pdata,
				    int index, u8 addr[ETH_ALEN])
{
	u32	temp;

	if ((pdata) && (index > 0) && (index < NUM_OF_MAF)) {
		temp = addr[3];
		temp = addr[2] | (temp << 8);
		temp = addr[1] | (temp << 8);
		temp = addr[0] | (temp << 8);
		pdata->pfilter_table[index][1] = temp;
		temp = addr[5];
		temp = addr[4] | (temp << 8);
		temp |= MAF_HI_VALID_ | MAF_HI_TYPE_DST_;
		pdata->pfilter_table[index][0] = temp;
	}
}

/* returns hash bit number for given MAC address */
static inline u32 lan78xx_hash(char addr[ETH_ALEN])
{
	return (ether_crc(ETH_ALEN, addr) >> 23) & 0x1ff;
}

static void lan78xx_deferred_multicast_write(struct work_struct *param)
{
	struct lan78xx_priv *pdata =
			container_of(param, struct lan78xx_priv, set_multicast);
	struct lan78xx_net *dev = pdata->dev;
	int i;
	int ret;

	netif_dbg(dev, drv, dev->net, "deferred multicast write 0x%08x\n",
		  pdata->rfe_ctl);

	lan78xx_dataport_write(dev, DP_SEL_RSEL_VLAN_DA_, DP_SEL_VHF_VLAN_LEN,
			       DP_SEL_VHF_HASH_LEN, pdata->mchash_table);

	for (i = 1; i < NUM_OF_MAF; i++) {
		ret = lan78xx_write_reg(dev, MAF_HI(i), 0);
		ret = lan78xx_write_reg(dev, MAF_LO(i),
					pdata->pfilter_table[i][1]);
		ret = lan78xx_write_reg(dev, MAF_HI(i),
					pdata->pfilter_table[i][0]);
	}

	ret = lan78xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl);
}

static void lan78xx_set_multicast(struct net_device *netdev)
{
	struct lan78xx_net *dev = netdev_priv(netdev);
	struct lan78xx_priv *pdata = (struct lan78xx_priv *)(dev->data[0]);
	unsigned long flags;
	int i;

	spin_lock_irqsave(&pdata->rfe_ctl_lock, flags);

	pdata->rfe_ctl &= ~(RFE_CTL_UCAST_EN_ | RFE_CTL_MCAST_EN_ |
			    RFE_CTL_DA_PERFECT_ | RFE_CTL_MCAST_HASH_);

	for (i = 0; i < DP_SEL_VHF_HASH_LEN; i++)
			pdata->mchash_table[i] = 0;
	/* pfilter_table[0] has own HW address */
	for (i = 1; i < NUM_OF_MAF; i++) {
			pdata->pfilter_table[i][0] =
			pdata->pfilter_table[i][1] = 0;
	}

	pdata->rfe_ctl |= RFE_CTL_BCAST_EN_;

	if (dev->net->flags & IFF_PROMISC) {
		netif_dbg(dev, drv, dev->net, "promiscuous mode enabled");
		pdata->rfe_ctl |= RFE_CTL_MCAST_EN_ | RFE_CTL_UCAST_EN_;
	} else {
		if (dev->net->flags & IFF_ALLMULTI) {
			netif_dbg(dev, drv, dev->net,
				  "receive all multicast enabled");
			pdata->rfe_ctl |= RFE_CTL_MCAST_EN_;
		}
	}

	if (netdev_mc_count(dev->net)) {
		struct netdev_hw_addr *ha;
		int i;

		netif_dbg(dev, drv, dev->net, "receive multicast hash filter");

		pdata->rfe_ctl |= RFE_CTL_DA_PERFECT_;

		i = 1;
		netdev_for_each_mc_addr(ha, netdev) {
			/* set first 32 into Perfect Filter */
			if (i < 33) {
				lan78xx_set_addr_filter(pdata, i, ha->addr);
			} else {
				u32 bitnum = lan78xx_hash(ha->addr);

				pdata->mchash_table[bitnum / 32] |=
							(1 << (bitnum % 32));
				pdata->rfe_ctl |= RFE_CTL_MCAST_HASH_;
			}
			i++;
		}
	}

	spin_unlock_irqrestore(&pdata->rfe_ctl_lock, flags);

	/* defer register writes to a sleepable context */
	schedule_work(&pdata->set_multicast);
}

static int lan78xx_update_flowcontrol(struct lan78xx_net *dev, u8 duplex,
				      u16 lcladv, u16 rmtadv)
{
	u32 flow = 0, fct_flow = 0;
	int ret;
1143
	u8 cap;
1144

1145 1146 1147 1148
	if (dev->fc_autoneg)
		cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
	else
		cap = dev->fc_request_control;
1149 1150

	if (cap & FLOW_CTRL_TX)
1151
		flow |= (FLOW_CR_TX_FCEN_ | 0xFFFF);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	if (cap & FLOW_CTRL_RX)
		flow |= FLOW_CR_RX_FCEN_;

	if (dev->udev->speed == USB_SPEED_SUPER)
		fct_flow = 0x817;
	else if (dev->udev->speed == USB_SPEED_HIGH)
		fct_flow = 0x211;

	netif_dbg(dev, link, dev->net, "rx pause %s, tx pause %s",
		  (cap & FLOW_CTRL_RX ? "enabled" : "disabled"),
		  (cap & FLOW_CTRL_TX ? "enabled" : "disabled"));

	ret = lan78xx_write_reg(dev, FCT_FLOW, fct_flow);

	/* threshold value should be set before enabling flow */
	ret = lan78xx_write_reg(dev, FLOW, flow);

	return 0;
}

static int lan78xx_link_reset(struct lan78xx_net *dev)
{
1175
	struct phy_device *phydev = dev->net->phydev;
1176
	struct ethtool_link_ksettings ecmd;
1177
	int ladv, radv, ret;
1178 1179 1180 1181 1182 1183 1184
	u32 buf;

	/* clear LAN78xx interrupt status */
	ret = lan78xx_write_reg(dev, INT_STS, INT_STS_PHY_INT_);
	if (unlikely(ret < 0))
		return -EIO;

1185 1186 1187
	phy_read_status(phydev);

	if (!phydev->link && dev->link_on) {
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		dev->link_on = false;

		/* reset MAC */
		ret = lan78xx_read_reg(dev, MAC_CR, &buf);
		if (unlikely(ret < 0))
			return -EIO;
		buf |= MAC_CR_RST_;
		ret = lan78xx_write_reg(dev, MAC_CR, buf);
		if (unlikely(ret < 0))
			return -EIO;
1198

1199
		del_timer(&dev->stat_monitor);
1200
	} else if (phydev->link && !dev->link_on) {
1201 1202
		dev->link_on = true;

1203
		phy_ethtool_ksettings_get(phydev, &ecmd);
1204 1205

		if (dev->udev->speed == USB_SPEED_SUPER) {
1206
			if (ecmd.base.speed == 1000) {
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
				/* disable U2 */
				ret = lan78xx_read_reg(dev, USB_CFG1, &buf);
				buf &= ~USB_CFG1_DEV_U2_INIT_EN_;
				ret = lan78xx_write_reg(dev, USB_CFG1, buf);
				/* enable U1 */
				ret = lan78xx_read_reg(dev, USB_CFG1, &buf);
				buf |= USB_CFG1_DEV_U1_INIT_EN_;
				ret = lan78xx_write_reg(dev, USB_CFG1, buf);
			} else {
				/* enable U1 & U2 */
				ret = lan78xx_read_reg(dev, USB_CFG1, &buf);
				buf |= USB_CFG1_DEV_U2_INIT_EN_;
				buf |= USB_CFG1_DEV_U1_INIT_EN_;
				ret = lan78xx_write_reg(dev, USB_CFG1, buf);
			}
		}

1224
		ladv = phy_read(phydev, MII_ADVERTISE);
1225 1226
		if (ladv < 0)
			return ladv;
1227

1228
		radv = phy_read(phydev, MII_LPA);
1229 1230
		if (radv < 0)
			return radv;
1231 1232 1233

		netif_dbg(dev, link, dev->net,
			  "speed: %u duplex: %d anadv: 0x%04x anlpa: 0x%04x",
1234
			  ecmd.base.speed, ecmd.base.duplex, ladv, radv);
1235

1236 1237
		ret = lan78xx_update_flowcontrol(dev, ecmd.base.duplex, ladv,
						 radv);
1238 1239 1240 1241 1242 1243

		if (!timer_pending(&dev->stat_monitor)) {
			dev->delta = 1;
			mod_timer(&dev->stat_monitor,
				  jiffies + STAT_UPDATE_TIMER);
		}
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	}

	return ret;
}

/* some work can't be done in tasklets, so we use keventd
 *
 * NOTE:  annoying asymmetry:  if it's active, schedule_work() fails,
 * but tasklet_schedule() doesn't.	hope the failure is rare.
 */
1254
static void lan78xx_defer_kevent(struct lan78xx_net *dev, int work)
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
{
	set_bit(work, &dev->flags);
	if (!schedule_delayed_work(&dev->wq, 0))
		netdev_err(dev->net, "kevent %d may have been dropped\n", work);
}

static void lan78xx_status(struct lan78xx_net *dev, struct urb *urb)
{
	u32 intdata;

	if (urb->actual_length != 4) {
		netdev_warn(dev->net,
			    "unexpected urb length %d", urb->actual_length);
		return;
	}

	memcpy(&intdata, urb->transfer_buffer, 4);
	le32_to_cpus(&intdata);

	if (intdata & INT_ENP_PHY_INT) {
		netif_dbg(dev, link, dev->net, "PHY INTR: 0x%08x\n", intdata);
1276 1277 1278 1279
		lan78xx_defer_kevent(dev, EVENT_LINK_RESET);

		if (dev->domain_data.phyirq > 0)
			generic_handle_irq(dev->domain_data.phyirq);
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	} else
		netdev_warn(dev->net,
			    "unexpected interrupt: 0x%08x\n", intdata);
}

static int lan78xx_ethtool_get_eeprom_len(struct net_device *netdev)
{
	return MAX_EEPROM_SIZE;
}

static int lan78xx_ethtool_get_eeprom(struct net_device *netdev,
				      struct ethtool_eeprom *ee, u8 *data)
{
	struct lan78xx_net *dev = netdev_priv(netdev);
1294 1295 1296 1297 1298
	int ret;

	ret = usb_autopm_get_interface(dev->intf);
	if (ret)
		return ret;
1299 1300 1301

	ee->magic = LAN78XX_EEPROM_MAGIC;

1302 1303 1304 1305 1306
	ret = lan78xx_read_raw_eeprom(dev, ee->offset, ee->len, data);

	usb_autopm_put_interface(dev->intf);

	return ret;
1307 1308 1309 1310 1311 1312
}

static int lan78xx_ethtool_set_eeprom(struct net_device *netdev,
				      struct ethtool_eeprom *ee, u8 *data)
{
	struct lan78xx_net *dev = netdev_priv(netdev);
1313 1314 1315 1316 1317
	int ret;

	ret = usb_autopm_get_interface(dev->intf);
	if (ret)
		return ret;
1318

1319 1320 1321 1322
	/* Invalid EEPROM_INDICATOR at offset zero will result in a failure
	 * to load data from EEPROM
	 */
	if (ee->magic == LAN78XX_EEPROM_MAGIC)
1323
		ret = lan78xx_write_raw_eeprom(dev, ee->offset, ee->len, data);
1324 1325 1326 1327
	else if ((ee->magic == LAN78XX_OTP_MAGIC) &&
		 (ee->offset == 0) &&
		 (ee->len == 512) &&
		 (data[0] == OTP_INDICATOR_1))
1328
		ret = lan78xx_write_raw_otp(dev, ee->offset, ee->len, data);
1329

1330 1331 1332
	usb_autopm_put_interface(dev->intf);

	return ret;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
}

static void lan78xx_get_strings(struct net_device *netdev, u32 stringset,
				u8 *data)
{
	if (stringset == ETH_SS_STATS)
		memcpy(data, lan78xx_gstrings, sizeof(lan78xx_gstrings));
}

static int lan78xx_get_sset_count(struct net_device *netdev, int sset)
{
	if (sset == ETH_SS_STATS)
		return ARRAY_SIZE(lan78xx_gstrings);
	else
		return -EOPNOTSUPP;
}

static void lan78xx_get_stats(struct net_device *netdev,
			      struct ethtool_stats *stats, u64 *data)
{
	struct lan78xx_net *dev = netdev_priv(netdev);

1355
	lan78xx_update_stats(dev);
1356

1357 1358 1359
	mutex_lock(&dev->stats.access_lock);
	memcpy(data, &dev->stats.curr_stat, sizeof(dev->stats.curr_stat));
	mutex_unlock(&dev->stats.access_lock);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
}

static void lan78xx_get_wol(struct net_device *netdev,
			    struct ethtool_wolinfo *wol)
{
	struct lan78xx_net *dev = netdev_priv(netdev);
	int ret;
	u32 buf;
	struct lan78xx_priv *pdata = (struct lan78xx_priv *)(dev->data[0]);

	if (usb_autopm_get_interface(dev->intf) < 0)
			return;

	ret = lan78xx_read_reg(dev, USB_CFG0, &buf);
	if (unlikely(ret < 0)) {
		wol->supported = 0;
		wol->wolopts = 0;
	} else {
		if (buf & USB_CFG_RMT_WKP_) {
			wol->supported = WAKE_ALL;
			wol->wolopts = pdata->wol;
		} else {
			wol->supported = 0;
			wol->wolopts = 0;
		}
	}

	usb_autopm_put_interface(dev->intf);
}

static int lan78xx_set_wol(struct net_device *netdev,
			   struct ethtool_wolinfo *wol)
{
	struct lan78xx_net *dev = netdev_priv(netdev);
	struct lan78xx_priv *pdata = (struct lan78xx_priv *)(dev->data[0]);
	int ret;

	ret = usb_autopm_get_interface(dev->intf);
	if (ret < 0)
		return ret;

	pdata->wol = 0;
	if (wol->wolopts & WAKE_UCAST)
		pdata->wol |= WAKE_UCAST;
	if (wol->wolopts & WAKE_MCAST)
		pdata->wol |= WAKE_MCAST;
	if (wol->wolopts & WAKE_BCAST)
		pdata->wol |= WAKE_BCAST;
	if (wol->wolopts & WAKE_MAGIC)
		pdata->wol |= WAKE_MAGIC;
	if (wol->wolopts & WAKE_PHY)
		pdata->wol |= WAKE_PHY;
	if (wol->wolopts & WAKE_ARP)
		pdata->wol |= WAKE_ARP;

	device_set_wakeup_enable(&dev->udev->dev, (bool)wol->wolopts);

1417 1418
	phy_ethtool_set_wol(netdev->phydev, wol);

1419 1420 1421 1422 1423 1424 1425 1426
	usb_autopm_put_interface(dev->intf);

	return ret;
}

static int lan78xx_get_eee(struct net_device *net, struct ethtool_eee *edata)
{
	struct lan78xx_net *dev = netdev_priv(net);
1427
	struct phy_device *phydev = net->phydev;
1428 1429 1430 1431 1432 1433 1434
	int ret;
	u32 buf;

	ret = usb_autopm_get_interface(dev->intf);
	if (ret < 0)
		return ret;

1435 1436 1437 1438
	ret = phy_ethtool_get_eee(phydev, edata);
	if (ret < 0)
		goto exit;

1439 1440 1441
	ret = lan78xx_read_reg(dev, MAC_CR, &buf);
	if (buf & MAC_CR_EEE_EN_) {
		edata->eee_enabled = true;
1442 1443
		edata->eee_active = !!(edata->advertised &
				       edata->lp_advertised);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		edata->tx_lpi_enabled = true;
		/* EEE_TX_LPI_REQ_DLY & tx_lpi_timer are same uSec unit */
		ret = lan78xx_read_reg(dev, EEE_TX_LPI_REQ_DLY, &buf);
		edata->tx_lpi_timer = buf;
	} else {
		edata->eee_enabled = false;
		edata->eee_active = false;
		edata->tx_lpi_enabled = false;
		edata->tx_lpi_timer = 0;
	}

1455 1456
	ret = 0;
exit:
1457 1458
	usb_autopm_put_interface(dev->intf);

1459
	return ret;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
}

static int lan78xx_set_eee(struct net_device *net, struct ethtool_eee *edata)
{
	struct lan78xx_net *dev = netdev_priv(net);
	int ret;
	u32 buf;

	ret = usb_autopm_get_interface(dev->intf);
	if (ret < 0)
		return ret;

	if (edata->eee_enabled) {
		ret = lan78xx_read_reg(dev, MAC_CR, &buf);
		buf |= MAC_CR_EEE_EN_;
		ret = lan78xx_write_reg(dev, MAC_CR, buf);

1477 1478 1479 1480
		phy_ethtool_set_eee(net->phydev, edata);

		buf = (u32)edata->tx_lpi_timer;
		ret = lan78xx_write_reg(dev, EEE_TX_LPI_REQ_DLY, buf);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	} else {
		ret = lan78xx_read_reg(dev, MAC_CR, &buf);
		buf &= ~MAC_CR_EEE_EN_;
		ret = lan78xx_write_reg(dev, MAC_CR, buf);
	}

	usb_autopm_put_interface(dev->intf);

	return 0;
}

static u32 lan78xx_get_link(struct net_device *net)
{
1494
	phy_read_status(net->phydev);
1495

1496
	return net->phydev->link;
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
}

static void lan78xx_get_drvinfo(struct net_device *net,
				struct ethtool_drvinfo *info)
{
	struct lan78xx_net *dev = netdev_priv(net);

	strncpy(info->driver, DRIVER_NAME, sizeof(info->driver));
	usb_make_path(dev->udev, info->bus_info, sizeof(info->bus_info));
}

static u32 lan78xx_get_msglevel(struct net_device *net)
{
	struct lan78xx_net *dev = netdev_priv(net);

	return dev->msg_enable;
}

static void lan78xx_set_msglevel(struct net_device *net, u32 level)
{
	struct lan78xx_net *dev = netdev_priv(net);

	dev->msg_enable = level;
}

1522 1523
static int lan78xx_get_link_ksettings(struct net_device *net,
				      struct ethtool_link_ksettings *cmd)
1524 1525
{
	struct lan78xx_net *dev = netdev_priv(net);
1526
	struct phy_device *phydev = net->phydev;
1527 1528 1529 1530 1531 1532
	int ret;

	ret = usb_autopm_get_interface(dev->intf);
	if (ret < 0)
		return ret;

1533
	phy_ethtool_ksettings_get(phydev, cmd);
1534 1535 1536 1537 1538 1539

	usb_autopm_put_interface(dev->intf);

	return ret;
}

1540 1541
static int lan78xx_set_link_ksettings(struct net_device *net,
				      const struct ethtool_link_ksettings *cmd)
1542 1543
{
	struct lan78xx_net *dev = netdev_priv(net);
1544
	struct phy_device *phydev = net->phydev;
1545 1546 1547 1548 1549 1550 1551 1552
	int ret = 0;
	int temp;

	ret = usb_autopm_get_interface(dev->intf);
	if (ret < 0)
		return ret;

	/* change speed & duplex */
1553
	ret = phy_ethtool_ksettings_set(phydev, cmd);
1554

1555
	if (!cmd->base.autoneg) {
1556
		/* force link down */
1557 1558
		temp = phy_read(phydev, MII_BMCR);
		phy_write(phydev, MII_BMCR, temp | BMCR_LOOPBACK);
1559
		mdelay(1);
1560
		phy_write(phydev, MII_BMCR, temp);
1561 1562 1563 1564 1565 1566 1567
	}

	usb_autopm_put_interface(dev->intf);

	return ret;
}

1568 1569 1570 1571 1572
static void lan78xx_get_pause(struct net_device *net,
			      struct ethtool_pauseparam *pause)
{
	struct lan78xx_net *dev = netdev_priv(net);
	struct phy_device *phydev = net->phydev;
1573
	struct ethtool_link_ksettings ecmd;
1574

1575
	phy_ethtool_ksettings_get(phydev, &ecmd);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

	pause->autoneg = dev->fc_autoneg;

	if (dev->fc_request_control & FLOW_CTRL_TX)
		pause->tx_pause = 1;

	if (dev->fc_request_control & FLOW_CTRL_RX)
		pause->rx_pause = 1;
}

static int lan78xx_set_pause(struct net_device *net,
			     struct ethtool_pauseparam *pause)
{
	struct lan78xx_net *dev = netdev_priv(net);
	struct phy_device *phydev = net->phydev;
1591
	struct ethtool_link_ksettings ecmd;
1592 1593
	int ret;

1594
	phy_ethtool_ksettings_get(phydev, &ecmd);
1595

1596
	if (pause->autoneg && !ecmd.base.autoneg) {
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		ret = -EINVAL;
		goto exit;
	}

	dev->fc_request_control = 0;
	if (pause->rx_pause)
		dev->fc_request_control |= FLOW_CTRL_RX;

	if (pause->tx_pause)
		dev->fc_request_control |= FLOW_CTRL_TX;

1608
	if (ecmd.base.autoneg) {
1609
		u32 mii_adv;
1610 1611 1612 1613
		u32 advertising;

		ethtool_convert_link_mode_to_legacy_u32(
			&advertising, ecmd.link_modes.advertising);
1614

1615
		advertising &= ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1616
		mii_adv = (u32)mii_advertise_flowctrl(dev->fc_request_control);
1617 1618 1619 1620 1621 1622
		advertising |= mii_adv_to_ethtool_adv_t(mii_adv);

		ethtool_convert_legacy_u32_to_link_mode(
			ecmd.link_modes.advertising, advertising);

		phy_ethtool_ksettings_set(phydev, &ecmd);
1623 1624 1625 1626 1627 1628 1629 1630 1631
	}

	dev->fc_autoneg = pause->autoneg;

	ret = 0;
exit:
	return ret;
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
static int lan78xx_get_regs_len(struct net_device *netdev)
{
	if (!netdev->phydev)
		return (sizeof(lan78xx_regs));
	else
		return (sizeof(lan78xx_regs) + PHY_REG_SIZE);
}

static void
lan78xx_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
		 void *buf)
{
	u32 *data = buf;
	int i, j;
	struct lan78xx_net *dev = netdev_priv(netdev);

	/* Read Device/MAC registers */
	for (i = 0; i < (sizeof(lan78xx_regs) / sizeof(u32)); i++)
		lan78xx_read_reg(dev, lan78xx_regs[i], &data[i]);

	if (!netdev->phydev)
		return;

	/* Read PHY registers */
	for (j = 0; j < 32; i++, j++)
		data[i] = phy_read(netdev->phydev, j);
}

1660 1661
static const struct ethtool_ops lan78xx_ethtool_ops = {
	.get_link	= lan78xx_get_link,
1662
	.nway_reset	= phy_ethtool_nway_reset,
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	.get_drvinfo	= lan78xx_get_drvinfo,
	.get_msglevel	= lan78xx_get_msglevel,
	.set_msglevel	= lan78xx_set_msglevel,
	.get_eeprom_len = lan78xx_ethtool_get_eeprom_len,
	.get_eeprom	= lan78xx_ethtool_get_eeprom,
	.set_eeprom	= lan78xx_ethtool_set_eeprom,
	.get_ethtool_stats = lan78xx_get_stats,
	.get_sset_count = lan78xx_get_sset_count,
	.get_strings	= lan78xx_get_strings,
	.get_wol	= lan78xx_get_wol,
	.set_wol	= lan78xx_set_wol,
	.get_eee	= lan78xx_get_eee,
	.set_eee	= lan78xx_set_eee,
1676 1677
	.get_pauseparam	= lan78xx_get_pause,
	.set_pauseparam	= lan78xx_set_pause,
1678 1679
	.get_link_ksettings = lan78xx_get_link_ksettings,
	.set_link_ksettings = lan78xx_set_link_ksettings,
1680 1681
	.get_regs_len	= lan78xx_get_regs_len,
	.get_regs	= lan78xx_get_regs,
1682 1683 1684 1685 1686 1687 1688
};

static int lan78xx_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd)
{
	if (!netif_running(netdev))
		return -EINVAL;

1689
	return phy_mii_ioctl(netdev->phydev, rq, cmd);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
}

static void lan78xx_init_mac_address(struct lan78xx_net *dev)
{
	u32 addr_lo, addr_hi;
	int ret;
	u8 addr[6];

	ret = lan78xx_read_reg(dev, RX_ADDRL, &addr_lo);
	ret = lan78xx_read_reg(dev, RX_ADDRH, &addr_hi);

	addr[0] = addr_lo & 0xFF;
	addr[1] = (addr_lo >> 8) & 0xFF;
	addr[2] = (addr_lo >> 16) & 0xFF;
	addr[3] = (addr_lo >> 24) & 0xFF;
	addr[4] = addr_hi & 0xFF;
	addr[5] = (addr_hi >> 8) & 0xFF;

	if (!is_valid_ether_addr(addr)) {
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
		if (!eth_platform_get_mac_address(&dev->udev->dev, addr)) {
			/* valid address present in Device Tree */
			netif_dbg(dev, ifup, dev->net,
				  "MAC address read from Device Tree");
		} else if (((lan78xx_read_eeprom(dev, EEPROM_MAC_OFFSET,
						 ETH_ALEN, addr) == 0) ||
			    (lan78xx_read_otp(dev, EEPROM_MAC_OFFSET,
					      ETH_ALEN, addr) == 0)) &&
			   is_valid_ether_addr(addr)) {
			/* eeprom values are valid so use them */
			netif_dbg(dev, ifup, dev->net,
				  "MAC address read from EEPROM");
1721 1722 1723 1724 1725 1726
		} else {
			/* generate random MAC */
			random_ether_addr(addr);
			netif_dbg(dev, ifup, dev->net,
				  "MAC address set to random addr");
		}
1727 1728 1729 1730 1731 1732 1733

		addr_lo = addr[0] | (addr[1] << 8) |
			  (addr[2] << 16) | (addr[3] << 24);
		addr_hi = addr[4] | (addr[5] << 8);

		ret = lan78xx_write_reg(dev, RX_ADDRL, addr_lo);
		ret = lan78xx_write_reg(dev, RX_ADDRH, addr_hi);
1734 1735 1736 1737 1738 1739 1740 1741
	}

	ret = lan78xx_write_reg(dev, MAF_LO(0), addr_lo);
	ret = lan78xx_write_reg(dev, MAF_HI(0), addr_hi | MAF_HI_VALID_);

	ether_addr_copy(dev->net->dev_addr, addr);
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
/* MDIO read and write wrappers for phylib */
static int lan78xx_mdiobus_read(struct mii_bus *bus, int phy_id, int idx)
{
	struct lan78xx_net *dev = bus->priv;
	u32 val, addr;
	int ret;

	ret = usb_autopm_get_interface(dev->intf);
	if (ret < 0)
		return ret;

	mutex_lock(&dev->phy_mutex);

	/* confirm MII not busy */
	ret = lan78xx_phy_wait_not_busy(dev);
	if (ret < 0)
		goto done;

	/* set the address, index & direction (read from PHY) */
	addr = mii_access(phy_id, idx, MII_READ);
	ret = lan78xx_write_reg(dev, MII_ACC, addr);

	ret = lan78xx_phy_wait_not_busy(dev);
	if (ret < 0)
		goto done;

	ret = lan78xx_read_reg(dev, MII_DATA, &val);

	ret = (int)(val & 0xFFFF);

done:
	mutex_unlock(&dev->phy_mutex);
	usb_autopm_put_interface(dev->intf);
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	return ret;
}

static int lan78xx_mdiobus_write(struct mii_bus *bus, int phy_id, int idx,
				 u16 regval)
{
	struct lan78xx_net *dev = bus->priv;
	u32 val, addr;
	int ret;

	ret = usb_autopm_get_interface(dev->intf);
	if (ret < 0)
		return ret;

	mutex_lock(&dev->phy_mutex);

	/* confirm MII not busy */
	ret = lan78xx_phy_wait_not_busy(dev);
	if (ret < 0)
		goto done;

	val = (u32)regval;
	ret = lan78xx_write_reg(dev, MII_DATA, val);

	/* set the address, index & direction (write to PHY) */
	addr = mii_access(phy_id, idx, MII_WRITE);
	ret = lan78xx_write_reg(dev, MII_ACC, addr);

	ret = lan78xx_phy_wait_not_busy(dev);
	if (ret < 0)
		goto done;

done:
	mutex_unlock(&dev->phy_mutex);
	usb_autopm_put_interface(dev->intf);
	return 0;
}

static int lan78xx_mdio_init(struct lan78xx_net *dev)
1815
{
1816
	struct device_node *node;
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	int ret;

	dev->mdiobus = mdiobus_alloc();
	if (!dev->mdiobus) {
		netdev_err(dev->net, "can't allocate MDIO bus\n");
		return -ENOMEM;
	}

	dev->mdiobus->priv = (void *)dev;
	dev->mdiobus->read = lan78xx_mdiobus_read;
	dev->mdiobus->write = lan78xx_mdiobus_write;
	dev->mdiobus->name = "lan78xx-mdiobus";

	snprintf(dev->mdiobus->id, MII_BUS_ID_SIZE, "usb-%03d:%03d",
		 dev->udev->bus->busnum, dev->udev->devnum);

1833 1834 1835
	switch (dev->chipid) {
	case ID_REV_CHIP_ID_7800_:
	case ID_REV_CHIP_ID_7850_:
1836 1837 1838
		/* set to internal PHY id */
		dev->mdiobus->phy_mask = ~(1 << 1);
		break;
1839 1840 1841 1842
	case ID_REV_CHIP_ID_7801_:
		/* scan thru PHYAD[2..0] */
		dev->mdiobus->phy_mask = ~(0xFF);
		break;
1843 1844
	}

1845
	node = of_get_child_by_name(dev->udev->dev.of_node, "mdio");
1846 1847
	ret = of_mdiobus_register(dev->mdiobus, node);
	if (node)
1848
		of_node_put(node);
1849 1850
	if (ret) {
		netdev_err(dev->net, "can't register MDIO bus\n");
1851
		goto exit1;
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	}

	netdev_dbg(dev->net, "registered mdiobus bus %s\n", dev->mdiobus->id);
	return 0;
exit1:
	mdiobus_free(dev->mdiobus);
	return ret;
}

static void lan78xx_remove_mdio(struct lan78xx_net *dev)
{
	mdiobus_unregister(dev->mdiobus);
	mdiobus_free(dev->mdiobus);
}

static void lan78xx_link_status_change(struct net_device *net)
{
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	struct phy_device *phydev = net->phydev;
	int ret, temp;

	/* At forced 100 F/H mode, chip may fail to set mode correctly
	 * when cable is switched between long(~50+m) and short one.
	 * As workaround, set to 10 before setting to 100
	 * at forced 100 F/H mode.
	 */
	if (!phydev->autoneg && (phydev->speed == 100)) {
		/* disable phy interrupt */
		temp = phy_read(phydev, LAN88XX_INT_MASK);
		temp &= ~LAN88XX_INT_MASK_MDINTPIN_EN_;
		ret = phy_write(phydev, LAN88XX_INT_MASK, temp);

		temp = phy_read(phydev, MII_BMCR);
		temp &= ~(BMCR_SPEED100 | BMCR_SPEED1000);
		phy_write(phydev, MII_BMCR, temp); /* set to 10 first */
		temp |= BMCR_SPEED100;
		phy_write(phydev, MII_BMCR, temp); /* set to 100 later */

		/* clear pending interrupt generated while workaround */
		temp = phy_read(phydev, LAN88XX_INT_STS);

		/* enable phy interrupt back */
		temp = phy_read(phydev, LAN88XX_INT_MASK);
		temp |= LAN88XX_INT_MASK_MDINTPIN_EN_;
		ret = phy_write(phydev, LAN88XX_INT_MASK, temp);
	}
1897 1898
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
static int irq_map(struct irq_domain *d, unsigned int irq,
		   irq_hw_number_t hwirq)
{
	struct irq_domain_data *data = d->host_data;

	irq_set_chip_data(irq, data);
	irq_set_chip_and_handler(irq, data->irqchip, data->irq_handler);
	irq_set_noprobe(irq);

	return 0;
}

static void irq_unmap(struct irq_domain *d, unsigned int irq)
{
	irq_set_chip_and_handler(irq, NULL, NULL);
	irq_set_chip_data(irq, NULL);
}

static const struct irq_domain_ops chip_domain_ops = {
	.map	= irq_map,
	.unmap	= irq_unmap,
};

static void lan78xx_irq_mask(struct irq_data *irqd)
{
	struct irq_domain_data *data = irq_data_get_irq_chip_data(irqd);

	data->irqenable &= ~BIT(irqd_to_hwirq(irqd));
}

static void lan78xx_irq_unmask(struct irq_data *irqd)
{
	struct irq_domain_data *data = irq_data_get_irq_chip_data(irqd);

	data->irqenable |= BIT(irqd_to_hwirq(irqd));
}

static void lan78xx_irq_bus_lock(struct irq_data *irqd)
{
	struct irq_domain_data *data = irq_data_get_irq_chip_data(irqd);

	mutex_lock(&data->irq_lock);
}

static void lan78xx_irq_bus_sync_unlock(struct irq_data *irqd)
{
	struct irq_domain_data *data = irq_data_get_irq_chip_data(irqd);
	struct lan78xx_net *dev =
			container_of(data, struct lan78xx_net, domain_data);
	u32 buf;
	int ret;

	/* call register access here because irq_bus_lock & irq_bus_sync_unlock
	 * are only two callbacks executed in non-atomic contex.
	 */
	ret = lan78xx_read_reg(dev, INT_EP_CTL, &buf);
	if (buf != data->irqenable)
		ret = lan78xx_write_reg(dev, INT_EP_CTL, data->irqenable);

	mutex_unlock(&data->irq_lock);
}

static struct irq_chip lan78xx_irqchip = {
	.name			= "lan78xx-irqs",
	.irq_mask		= lan78xx_irq_mask,
	.irq_unmask		= lan78xx_irq_unmask,
	.irq_bus_lock		= lan78xx_irq_bus_lock,
	.irq_bus_sync_unlock	= lan78xx_irq_bus_sync_unlock,
};

static int lan78xx_setup_irq_domain(struct lan78xx_net *dev)
{
	struct device_node *of_node;
	struct irq_domain *irqdomain;
	unsigned int irqmap = 0;
	u32 buf;
	int ret = 0;

	of_node = dev->udev->dev.parent->of_node;

	mutex_init(&dev->domain_data.irq_lock);

	lan78xx_read_reg(dev, INT_EP_CTL, &buf);
	dev->domain_data.irqenable = buf;

	dev->domain_data.irqchip = &lan78xx_irqchip;
	dev->domain_data.irq_handler = handle_simple_irq;

	irqdomain = irq_domain_add_simple(of_node, MAX_INT_EP, 0,
					  &chip_domain_ops, &dev->domain_data);
	if (irqdomain) {
		/* create mapping for PHY interrupt */
		irqmap = irq_create_mapping(irqdomain, INT_EP_PHY);
		if (!irqmap) {
			irq_domain_remove(irqdomain);

			irqdomain = NULL;
			ret = -EINVAL;
		}
	} else {
		ret = -EINVAL;
	}

	dev->domain_data.irqdomain = irqdomain;
	dev->domain_data.phyirq = irqmap;

	return ret;
}

static void lan78xx_remove_irq_domain(struct lan78xx_net *dev)
{
	if (dev->domain_data.phyirq > 0) {
		irq_dispose_mapping(dev->domain_data.phyirq);

		if (dev->domain_data.irqdomain)
			irq_domain_remove(dev->domain_data.irqdomain);
	}
	dev->domain_data.phyirq = 0;
	dev->domain_data.irqdomain = NULL;
}

2020 2021 2022 2023 2024 2025 2026
static int lan8835_fixup(struct phy_device *phydev)
{
	int buf;
	int ret;
	struct lan78xx_net *dev = netdev_priv(phydev->attached_dev);

	/* LED2/PME_N/IRQ_N/RGMII_ID pin to IRQ_N mode */
2027
	buf = phy_read_mmd(phydev, MDIO_MMD_PCS, 0x8010);
2028 2029
	buf &= ~0x1800;
	buf |= 0x0800;
2030
	phy_write_mmd(phydev, MDIO_MMD_PCS, 0x8010, buf);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

	/* RGMII MAC TXC Delay Enable */
	ret = lan78xx_write_reg(dev, MAC_RGMII_ID,
				MAC_RGMII_ID_TXC_DELAY_EN_);

	/* RGMII TX DLL Tune Adjust */
	ret = lan78xx_write_reg(dev, RGMII_TX_BYP_DLL, 0x3D00);

	dev->interface = PHY_INTERFACE_MODE_RGMII_TXID;

	return 1;
}

static int ksz9031rnx_fixup(struct phy_device *phydev)
{
	struct lan78xx_net *dev = netdev_priv(phydev->attached_dev);

	/* Micrel9301RNX PHY configuration */
	/* RGMII Control Signal Pad Skew */
2050
	phy_write_mmd(phydev, MDIO_MMD_WIS, 4, 0x0077);
2051
	/* RGMII RX Data Pad Skew */
2052
	phy_write_mmd(phydev, MDIO_MMD_WIS, 5, 0x7777);
2053
	/* RGMII RX Clock Pad Skew */
2054
	phy_write_mmd(phydev, MDIO_MMD_WIS, 8, 0x1FF);
2055 2056 2057 2058 2059 2060

	dev->interface = PHY_INTERFACE_MODE_RGMII_RXID;

	return 1;
}

2061
static struct phy_device *lan7801_phy_init(struct lan78xx_net *dev)
2062
{
2063
	u32 buf;
2064
	int ret;
2065 2066 2067 2068 2069
	struct fixed_phy_status fphy_status = {
		.link = 1,
		.speed = SPEED_1000,
		.duplex = DUPLEX_FULL,
	};
2070
	struct phy_device *phydev;
2071

2072 2073
	phydev = phy_find_first(dev->mdiobus);
	if (!phydev) {
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
		netdev_dbg(dev->net, "PHY Not Found!! Registering Fixed PHY\n");
		phydev = fixed_phy_register(PHY_POLL, &fphy_status, -1,
					    NULL);
		if (IS_ERR(phydev)) {
			netdev_err(dev->net, "No PHY/fixed_PHY found\n");
			return NULL;
		}
		netdev_dbg(dev->net, "Registered FIXED PHY\n");
		dev->interface = PHY_INTERFACE_MODE_RGMII;
		ret = lan78xx_write_reg(dev, MAC_RGMII_ID,
					MAC_RGMII_ID_TXC_DELAY_EN_);
		ret = lan78xx_write_reg(dev, RGMII_TX_BYP_DLL, 0x3D00);
		ret = lan78xx_read_reg(dev, HW_CFG, &buf);
		buf |= HW_CFG_CLK125_EN_;
		buf |= HW_CFG_REFCLK25_EN_;
		ret = lan78xx_write_reg(dev, HW_CFG, buf);
	} else {
2091 2092
		if (!phydev->drv) {
			netdev_err(dev->net, "no PHY driver found\n");
2093
			return NULL;
2094 2095 2096 2097 2098 2099
		}
		dev->interface = PHY_INTERFACE_MODE_RGMII;
		/* external PHY fixup for KSZ9031RNX */
		ret = phy_register_fixup_for_uid(PHY_KSZ9031RNX, 0xfffffff0,
						 ksz9031rnx_fixup);
		if (ret < 0) {
2100
			netdev_err(dev->net, "Failed to register fixup for PHY_KSZ9031RNX\n");
2101
			return NULL;
2102 2103 2104 2105 2106
		}
		/* external PHY fixup for LAN8835 */
		ret = phy_register_fixup_for_uid(PHY_LAN8835, 0xfffffff0,
						 lan8835_fixup);
		if (ret < 0) {
2107
			netdev_err(dev->net, "Failed to register fixup for PHY_LAN8835\n");
2108
			return NULL;
2109 2110 2111 2112
		}
		/* add more external PHY fixup here if needed */

		phydev->is_internal = false;
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	}
	return phydev;
}

static int lan78xx_phy_init(struct lan78xx_net *dev)
{
	int ret;
	u32 mii_adv;
	struct phy_device *phydev;

	switch (dev->chipid) {
	case ID_REV_CHIP_ID_7801_:
		phydev = lan7801_phy_init(dev);
		if (!phydev) {
			netdev_err(dev->net, "lan7801: PHY Init Failed");
			return -EIO;
		}
		break;

	case ID_REV_CHIP_ID_7800_:
	case ID_REV_CHIP_ID_7850_:
		phydev = phy_find_first(dev->mdiobus);
		if (!phydev) {
			netdev_err(dev->net, "no PHY found\n");
			return -EIO;
		}
		phydev->is_internal = true;
		dev->interface = PHY_INTERFACE_MODE_GMII;
		break;

	default:
		netdev_err(dev->net, "Unknown CHIP ID found\n");
		return -EIO;
2146 2147
	}

2148 2149 2150 2151 2152 2153
	/* if phyirq is not set, use polling mode in phylib */
	if (dev->domain_data.phyirq > 0)
		phydev->irq = dev->domain_data.phyirq;
	else
		phydev->irq = 0;
	netdev_dbg(dev->net, "phydev->irq = %d\n", phydev->irq);
2154

2155 2156 2157
	/* set to AUTOMDIX */
	phydev->mdix = ETH_TP_MDI_AUTO;

2158 2159
	ret = phy_connect_direct(dev->net, phydev,
				 lan78xx_link_status_change,
2160
				 dev->interface);
2161 2162 2163
	if (ret) {
		netdev_err(dev->net, "can't attach PHY to %s\n",
			   dev->mdiobus->id);
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
		if (dev->chipid == ID_REV_CHIP_ID_7801_) {
			if (phy_is_pseudo_fixed_link(phydev)) {
				fixed_phy_unregister(phydev);
			} else {
				phy_unregister_fixup_for_uid(PHY_KSZ9031RNX,
							     0xfffffff0);
				phy_unregister_fixup_for_uid(PHY_LAN8835,
							     0xfffffff0);
			}
		}
2174 2175
		return -EIO;
	}
2176

2177 2178
	/* MAC doesn't support 1000T Half */
	phydev->supported &= ~SUPPORTED_1000baseT_Half;
2179

2180 2181 2182 2183 2184 2185
	/* support both flow controls */
	dev->fc_request_control = (FLOW_CTRL_RX | FLOW_CTRL_TX);
	phydev->advertising &= ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause);
	mii_adv = (u32)mii_advertise_flowctrl(dev->fc_request_control);
	phydev->advertising |= mii_adv_to_ethtool_adv_t(mii_adv);

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	if (phydev->mdio.dev.of_node) {
		u32 reg;
		int len;

		len = of_property_count_elems_of_size(phydev->mdio.dev.of_node,
						      "microchip,led-modes",
						      sizeof(u32));
		if (len >= 0) {
			/* Ensure the appropriate LEDs are enabled */
			lan78xx_read_reg(dev, HW_CFG, &reg);
			reg &= ~(HW_CFG_LED0_EN_ |
				 HW_CFG_LED1_EN_ |
				 HW_CFG_LED2_EN_ |
				 HW_CFG_LED3_EN_);
			reg |= (len > 0) * HW_CFG_LED0_EN_ |
				(len > 1) * HW_CFG_LED1_EN_ |
				(len > 2) * HW_CFG_LED2_EN_ |
				(len > 3) * HW_CFG_LED3_EN_;
			lan78xx_write_reg(dev, HW_CFG, reg);
		}
	}

2208 2209
	genphy_config_aneg(phydev);

2210 2211
	dev->fc_autoneg = phydev->autoneg;

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	return 0;
}

static int lan78xx_set_rx_max_frame_length(struct lan78xx_net *dev, int size)
{
	int ret = 0;
	u32 buf;
	bool rxenabled;

	ret = lan78xx_read_reg(dev, MAC_RX, &buf);

	rxenabled = ((buf & MAC_RX_RXEN_) != 0);

	if (rxenabled) {
		buf &= ~MAC_RX_RXEN_;
		ret = lan78xx_write_reg(dev, MAC_RX, buf);
	}

	/* add 4 to size for FCS */
	buf &= ~MAC_RX_MAX_SIZE_MASK_;
	buf |= (((size + 4) << MAC_RX_MAX_SIZE_SHIFT_) & MAC_RX_MAX_SIZE_MASK_);

	ret = lan78xx_write_reg(dev, MAC_RX, buf);

	if (rxenabled) {
		buf |= MAC_RX_RXEN_;
		ret = lan78xx_write_reg(dev, MAC_RX, buf);
	}

	return 0;
}

static int unlink_urbs(struct lan78xx_net *dev, struct sk_buff_head *q)
{
	struct sk_buff *skb;
	unsigned long flags;
	int count = 0;

	spin_lock_irqsave(&q->lock, flags);
	while (!skb_queue_empty(q)) {
		struct skb_data	*entry;
		struct urb *urb;
		int ret;

		skb_queue_walk(q, skb) {
			entry = (struct skb_data *)skb->cb;
			if (entry->state != unlink_start)
				goto found;
		}
		break;
found:
		entry->state = unlink_start;
		urb = entry->urb;

		/* Get reference count of the URB to avoid it to be
		 * freed during usb_unlink_urb, which may trigger
		 * use-after-free problem inside usb_unlink_urb since
		 * usb_unlink_urb is always racing with .complete
		 * handler(include defer_bh).
		 */
		usb_get_urb(urb);
		spin_unlock_irqrestore(&q->lock, flags);
		/* during some PM-driven resume scenarios,
		 * these (async) unlinks complete immediately
		 */
		ret = usb_unlink_urb(urb);
		if (ret != -EINPROGRESS && ret != 0)
			netdev_dbg(dev->net, "unlink urb err, %d\n", ret);
		else
			count++;
		usb_put_urb(urb);
		spin_lock_irqsave(&q->lock, flags);
	}
	spin_unlock_irqrestore(&q->lock, flags);
	return count;
}

static int lan78xx_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct lan78xx_net *dev = netdev_priv(netdev);
	int ll_mtu = new_mtu + netdev->hard_header_len;
	int old_hard_mtu = dev->hard_mtu;
	int old_rx_urb_size = dev->rx_urb_size;
	int ret;

	/* no second zero-length packet read wanted after mtu-sized packets */
	if ((ll_mtu % dev->maxpacket) == 0)
		return -EDOM;

	ret = lan78xx_set_rx_max_frame_length(dev, new_mtu + ETH_HLEN);

	netdev->mtu = new_mtu;

	dev->hard_mtu = netdev->mtu + netdev->hard_header_len;
	if (dev->rx_urb_size == old_hard_mtu) {
		dev->rx_urb_size = dev->hard_mtu;
		if (dev->rx_urb_size > old_rx_urb_size) {
			if (netif_running(dev->net)) {
				unlink_urbs(dev, &dev->rxq);
				tasklet_schedule(&dev->bh);
			}
		}
	}

	return 0;
}

2319
static int lan78xx_set_mac_addr(struct net_device *netdev, void *p)
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
{
	struct lan78xx_net *dev = netdev_priv(netdev);
	struct sockaddr *addr = p;
	u32 addr_lo, addr_hi;
	int ret;

	if (netif_running(netdev))
		return -EBUSY;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	ether_addr_copy(netdev->dev_addr, addr->sa_data);

	addr_lo = netdev->dev_addr[0] |
		  netdev->dev_addr[1] << 8 |
		  netdev->dev_addr[2] << 16 |
		  netdev->dev_addr[3] << 24;
	addr_hi = netdev->dev_addr[4] |
		  netdev->dev_addr[5] << 8;

	ret = lan78xx_write_reg(dev, RX_ADDRL, addr_lo);
	ret = lan78xx_write_reg(dev, RX_ADDRH, addr_hi);

	return 0;
}

/* Enable or disable Rx checksum offload engine */
static int lan78xx_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	struct lan78xx_net *dev = netdev_priv(netdev);
	struct lan78xx_priv *pdata = (struct lan78xx_priv *)(dev->data[0]);
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&pdata->rfe_ctl_lock, flags);

	if (features & NETIF_F_RXCSUM) {
		pdata->rfe_ctl |= RFE_CTL_TCPUDP_COE_ | RFE_CTL_IP_COE_;
		pdata->rfe_ctl |= RFE_CTL_ICMP_COE_ | RFE_CTL_IGMP_COE_;
	} else {
		pdata->rfe_ctl &= ~(RFE_CTL_TCPUDP_COE_ | RFE_CTL_IP_COE_);
		pdata->rfe_ctl &= ~(RFE_CTL_ICMP_COE_ | RFE_CTL_IGMP_COE_);
	}

	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		pdata->rfe_ctl |= RFE_CTL_VLAN_FILTER_;
	else
		pdata->rfe_ctl &= ~RFE_CTL_VLAN_FILTER_;

	spin_unlock_irqrestore(&pdata->rfe_ctl_lock, flags);

	ret = lan78xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl);

	return 0;
}

static void lan78xx_deferred_vlan_write(struct work_struct *param)
{
	struct lan78xx_priv *pdata =
			container_of(param, struct lan78xx_priv, set_vlan);
	struct lan78xx_net *dev = pdata->dev;

	lan78xx_dataport_write(dev, DP_SEL_RSEL_VLAN_DA_, 0,
			       DP_SEL_VHF_VLAN_LEN, pdata->vlan_table);
}

static int lan78xx_vlan_rx_add_vid(struct net_device *netdev,
				   __be16 proto, u16 vid)
{
	struct lan78xx_net *dev = netdev_priv(netdev);
	struct lan78xx_priv *pdata = (struct lan78xx_priv *)(dev->data[0]);
	u16 vid_bit_index;
	u16 vid_dword_index;

	vid_dword_index = (vid >> 5) & 0x7F;
	vid_bit_index = vid & 0x1F;

	pdata->vlan_table[vid_dword_index] |= (1 << vid_bit_index);

	/* defer register writes to a sleepable context */
	schedule_work(&pdata->set_vlan);

	return 0;
}

static int lan78xx_vlan_rx_kill_vid(struct net_device *netdev,
				    __be16 proto, u16 vid)
{
	struct lan78xx_net *dev = netdev_priv(netdev);
	struct lan78xx_priv *pdata = (struct lan78xx_priv *)(dev->data[0]);
	u16 vid_bit_index;
	u16 vid_dword_index;

	vid_dword_index = (vid >> 5) & 0x7F;
	vid_bit_index = vid & 0x1F;

	pdata->vlan_table[vid_dword_index] &= ~(1 << vid_bit_index);

	/* defer register writes to a sleepable context */
	schedule_work(&pdata->set_vlan);

	return 0;
}

static void lan78xx_init_ltm(struct lan78xx_net *dev)
{
	int ret;
	u32 buf;
	u32 regs[6] = { 0 };

	ret = lan78xx_read_reg(dev, USB_CFG1, &buf);
	if (buf & USB_CFG1_LTM_ENABLE_) {
		u8 temp[2];
		/* Get values from EEPROM first */
		if (lan78xx_read_eeprom(dev, 0x3F, 2, temp) == 0) {
			if (temp[0] == 24) {
				ret = lan78xx_read_raw_eeprom(dev,
							      temp[1] * 2,
							      24,
							      (u8 *)regs);
				if (ret < 0)
					return;
			}
		} else if (lan78xx_read_otp(dev, 0x3F, 2, temp) == 0) {
			if (temp[0] == 24) {
				ret = lan78xx_read_raw_otp(dev,
							   temp[1] * 2,
							   24,
							   (u8 *)regs);
				if (ret < 0)
					return;
			}
		}
	}

	lan78xx_write_reg(dev, LTM_BELT_IDLE0, regs[0]);
	lan78xx_write_reg(dev, LTM_BELT_IDLE1, regs[1]);
	lan78xx_write_reg(dev, LTM_BELT_ACT0, regs[2]);
	lan78xx_write_reg(dev, LTM_BELT_ACT1, regs[3]);
	lan78xx_write_reg(dev, LTM_INACTIVE0, regs[4]);
	lan78xx_write_reg(dev, LTM_INACTIVE1, regs[5]);
}

static int lan78xx_reset(struct lan78xx_net *dev)
{
	struct lan78xx_priv *pdata = (struct lan78xx_priv *)(dev->data[0]);
	u32 buf;
	int ret = 0;
	unsigned long timeout;
2471
	u8 sig;
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489

	ret = lan78xx_read_reg(dev, HW_CFG, &buf);
	buf |= HW_CFG_LRST_;
	ret = lan78xx_write_reg(dev, HW_CFG, buf);

	timeout = jiffies + HZ;
	do {
		mdelay(1);
		ret = lan78xx_read_reg(dev, HW_CFG, &buf);
		if (time_after(jiffies, timeout)) {
			netdev_warn(dev->net,
				    "timeout on completion of LiteReset");
			return -EIO;
		}
	} while (buf & HW_CFG_LRST_);

	lan78xx_init_mac_address(dev);

2490 2491
	/* save DEVID for later usage */
	ret = lan78xx_read_reg(dev, ID_REV, &buf);
2492 2493
	dev->chipid = (buf & ID_REV_CHIP_ID_MASK_) >> 16;
	dev->chiprev = buf & ID_REV_CHIP_REV_MASK_;
2494

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
	/* Respond to the IN token with a NAK */
	ret = lan78xx_read_reg(dev, USB_CFG0, &buf);
	buf |= USB_CFG_BIR_;
	ret = lan78xx_write_reg(dev, USB_CFG0, buf);

	/* Init LTM */
	lan78xx_init_ltm(dev);

	if (dev->udev->speed == USB_SPEED_SUPER) {
		buf = DEFAULT_BURST_CAP_SIZE / SS_USB_PKT_SIZE;
		dev->rx_urb_size = DEFAULT_BURST_CAP_SIZE;
		dev->rx_qlen = 4;
		dev->tx_qlen = 4;
	} else if (dev->udev->speed == USB_SPEED_HIGH) {
		buf = DEFAULT_BURST_CAP_SIZE / HS_USB_PKT_SIZE;
		dev->rx_urb_size = DEFAULT_BURST_CAP_SIZE;
		dev->rx_qlen = RX_MAX_QUEUE_MEMORY / dev->rx_urb_size;
		dev->tx_qlen = RX_MAX_QUEUE_MEMORY / dev->hard_mtu;
	} else {
		buf = DEFAULT_BURST_CAP_SIZE / FS_USB_PKT_SIZE;
		dev->rx_urb_size = DEFAULT_BURST_CAP_SIZE;
		dev->rx_qlen = 4;
2517
		dev->tx_qlen = 4;
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	}

	ret = lan78xx_write_reg(dev, BURST_CAP, buf);
	ret = lan78xx_write_reg(dev, BULK_IN_DLY, DEFAULT_BULK_IN_DELAY);

	ret = lan78xx_read_reg(dev, HW_CFG, &buf);
	buf |= HW_CFG_MEF_;
	ret = lan78xx_write_reg(dev, HW_CFG, buf);

	ret = lan78xx_read_reg(dev, USB_CFG0, &buf);
	buf |= USB_CFG_BCE_;
	ret = lan78xx_write_reg(dev, USB_CFG0, buf);

	/* set FIFO sizes */
	buf = (MAX_RX_FIFO_SIZE - 512) / 512;
	ret = lan78xx_write_reg(dev, FCT_RX_FIFO_END, buf);

	buf = (MAX_TX_FIFO_SIZE - 512) / 512;
	ret = lan78xx_write_reg(dev, FCT_TX_FIFO_END, buf);

	ret = lan78xx_write_reg(dev, INT_STS, INT_STS_CLEAR_ALL_);
	ret = lan78xx_write_reg(dev, FLOW, 0);
	ret = lan78xx_write_reg(dev, FCT_FLOW, 0);

	/* Don't need rfe_ctl_lock during initialisation */
	ret = lan78xx_read_reg(dev, RFE_CTL, &pdata->rfe_ctl);
	pdata->rfe_ctl |= RFE_CTL_BCAST_EN_ | RFE_CTL_DA_PERFECT_;
	ret = lan78xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl);

	/* Enable or disable checksum offload engines */
	lan78xx_set_features(dev->net, dev->net->features);

	lan78xx_set_multicast(dev->net);

	/* reset PHY */
	ret = lan78xx_read_reg(dev, PMT_CTL, &buf);
	buf |= PMT_CTL_PHY_RST_;
	ret = lan78xx_write_reg(dev, PMT_CTL, buf);

	timeout = jiffies + HZ;
	do {
		mdelay(1);
		ret = lan78xx_read_reg(dev, PMT_CTL, &buf);
		if (time_after(jiffies, timeout)) {
			netdev_warn(dev->net, "timeout waiting for PHY Reset");
			return -EIO;
		}
2565
	} while ((buf & PMT_CTL_PHY_RST_) || !(buf & PMT_CTL_READY_));
2566 2567

	ret = lan78xx_read_reg(dev, MAC_CR, &buf);
2568 2569 2570
	/* LAN7801 only has RGMII mode */
	if (dev->chipid == ID_REV_CHIP_ID_7801_)
		buf &= ~MAC_CR_GMII_EN_;
2571 2572 2573 2574 2575 2576 2577 2578 2579

	if (dev->chipid == ID_REV_CHIP_ID_7800_) {
		ret = lan78xx_read_raw_eeprom(dev, 0, 1, &sig);
		if (!ret && sig != EEPROM_INDICATOR) {
			/* Implies there is no external eeprom. Set mac speed */
			netdev_info(dev->net, "No External EEPROM. Setting MAC Speed\n");
			buf |= MAC_CR_AUTO_DUPLEX_ | MAC_CR_AUTO_SPEED_;
		}
	}
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	ret = lan78xx_write_reg(dev, MAC_CR, buf);

	ret = lan78xx_read_reg(dev, MAC_TX, &buf);
	buf |= MAC_TX_TXEN_;
	ret = lan78xx_write_reg(dev, MAC_TX, buf);

	ret = lan78xx_read_reg(dev, FCT_TX_CTL, &buf);
	buf |= FCT_TX_CTL_EN_;
	ret = lan78xx_write_reg(dev, FCT_TX_CTL, buf);

	ret = lan78xx_set_rx_max_frame_length(dev, dev->net->mtu + ETH_HLEN);

	ret = lan78xx_read_reg(dev, MAC_RX, &buf);
	buf |= MAC_RX_RXEN_;
	ret = lan78xx_write_reg(dev, MAC_RX, buf);

	ret = lan78xx_read_reg(dev, FCT_RX_CTL, &buf);
	buf |= FCT_RX_CTL_EN_;
	ret = lan78xx_write_reg(dev, FCT_RX_CTL, buf);

	return 0;
}

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
static void lan78xx_init_stats(struct lan78xx_net *dev)
{
	u32 *p;
	int i;

	/* initialize for stats update
	 * some counters are 20bits and some are 32bits
	 */
	p = (u32 *)&dev->stats.rollover_max;
	for (i = 0; i < (sizeof(dev->stats.rollover_max) / (sizeof(u32))); i++)
		p[i] = 0xFFFFF;

	dev->stats.rollover_max.rx_unicast_byte_count = 0xFFFFFFFF;
	dev->stats.rollover_max.rx_broadcast_byte_count = 0xFFFFFFFF;
	dev->stats.rollover_max.rx_multicast_byte_count = 0xFFFFFFFF;
	dev->stats.rollover_max.eee_rx_lpi_transitions = 0xFFFFFFFF;
	dev->stats.rollover_max.eee_rx_lpi_time = 0xFFFFFFFF;
	dev->stats.rollover_max.tx_unicast_byte_count = 0xFFFFFFFF;
	dev->stats.rollover_max.tx_broadcast_byte_count = 0xFFFFFFFF;
	dev->stats.rollover_max.tx_multicast_byte_count = 0xFFFFFFFF;
	dev->stats.rollover_max.eee_tx_lpi_transitions = 0xFFFFFFFF;
	dev->stats.rollover_max.eee_tx_lpi_time = 0xFFFFFFFF;

2626
	set_bit(EVENT_STAT_UPDATE, &dev->flags);
2627 2628
}

2629 2630 2631 2632 2633 2634 2635 2636 2637
static int lan78xx_open(struct net_device *net)
{
	struct lan78xx_net *dev = netdev_priv(net);
	int ret;

	ret = usb_autopm_get_interface(dev->intf);
	if (ret < 0)
		goto out;

A
Alexander Graf 已提交
2638 2639 2640
	phy_start(net->phydev);

	netif_dbg(dev, ifup, dev->net, "phy initialised successfully");
2641

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	/* for Link Check */
	if (dev->urb_intr) {
		ret = usb_submit_urb(dev->urb_intr, GFP_KERNEL);
		if (ret < 0) {
			netif_err(dev, ifup, dev->net,
				  "intr submit %d\n", ret);
			goto done;
		}
	}

2652 2653
	lan78xx_init_stats(dev);

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	set_bit(EVENT_DEV_OPEN, &dev->flags);

	netif_start_queue(net);

	dev->link_on = false;

	lan78xx_defer_kevent(dev, EVENT_LINK_RESET);
done:
	usb_autopm_put_interface(dev->intf);

out:
	return ret;
}

static void lan78xx_terminate_urbs(struct lan78xx_net *dev)
{
	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(unlink_wakeup);
	DECLARE_WAITQUEUE(wait, current);
	int temp;

	/* ensure there are no more active urbs */
	add_wait_queue(&unlink_wakeup, &wait);
	set_current_state(TASK_UNINTERRUPTIBLE);
	dev->wait = &unlink_wakeup;
	temp = unlink_urbs(dev, &dev->txq) + unlink_urbs(dev, &dev->rxq);

	/* maybe wait for deletions to finish. */
	while (!skb_queue_empty(&dev->rxq) &&
	       !skb_queue_empty(&dev->txq) &&
	       !skb_queue_empty(&dev->done)) {
		schedule_timeout(msecs_to_jiffies(UNLINK_TIMEOUT_MS));
		set_current_state(TASK_UNINTERRUPTIBLE);
		netif_dbg(dev, ifdown, dev->net,
			  "waited for %d urb completions\n", temp);
	}
	set_current_state(TASK_RUNNING);
	dev->wait = NULL;
	remove_wait_queue(&unlink_wakeup, &wait);
}

2694
static int lan78xx_stop(struct net_device *net)
2695 2696 2697
{
	struct lan78xx_net		*dev = netdev_priv(net);

2698 2699 2700
	if (timer_pending(&dev->stat_monitor))
		del_timer_sync(&dev->stat_monitor);

A
Alexander Graf 已提交
2701 2702
	if (net->phydev)
		phy_stop(net->phydev);
2703

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	clear_bit(EVENT_DEV_OPEN, &dev->flags);
	netif_stop_queue(net);

	netif_info(dev, ifdown, dev->net,
		   "stop stats: rx/tx %lu/%lu, errs %lu/%lu\n",
		   net->stats.rx_packets, net->stats.tx_packets,
		   net->stats.rx_errors, net->stats.tx_errors);

	lan78xx_terminate_urbs(dev);

	usb_kill_urb(dev->urb_intr);

	skb_queue_purge(&dev->rxq_pause);

	/* deferred work (task, timer, softirq) must also stop.
	 * can't flush_scheduled_work() until we drop rtnl (later),
	 * else workers could deadlock; so make workers a NOP.
	 */
	dev->flags = 0;
	cancel_delayed_work_sync(&dev->wq);
	tasklet_kill(&dev->bh);

	usb_autopm_put_interface(dev->intf);

	return 0;
}

static int lan78xx_linearize(struct sk_buff *skb)
{
	return skb_linearize(skb);
}

static struct sk_buff *lan78xx_tx_prep(struct lan78xx_net *dev,
				       struct sk_buff *skb, gfp_t flags)
{
	u32 tx_cmd_a, tx_cmd_b;

2741
	if (skb_cow_head(skb, TX_OVERHEAD)) {
2742
		dev_kfree_skb_any(skb);
2743
		return NULL;
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	}

	if (lan78xx_linearize(skb) < 0)
		return NULL;

	tx_cmd_a = (u32)(skb->len & TX_CMD_A_LEN_MASK_) | TX_CMD_A_FCS_;

	if (skb->ip_summed == CHECKSUM_PARTIAL)
		tx_cmd_a |= TX_CMD_A_IPE_ | TX_CMD_A_TPE_;

	tx_cmd_b = 0;
	if (skb_is_gso(skb)) {
		u16 mss = max(skb_shinfo(skb)->gso_size, TX_CMD_B_MSS_MIN_);

		tx_cmd_b = (mss << TX_CMD_B_MSS_SHIFT_) & TX_CMD_B_MSS_MASK_;

		tx_cmd_a |= TX_CMD_A_LSO_;
	}

	if (skb_vlan_tag_present(skb)) {
		tx_cmd_a |= TX_CMD_A_IVTG_;
		tx_cmd_b |= skb_vlan_tag_get(skb) & TX_CMD_B_VTAG_MASK_;
	}

	skb_push(skb, 4);
	cpu_to_le32s(&tx_cmd_b);
	memcpy(skb->data, &tx_cmd_b, 4);

	skb_push(skb, 4);
	cpu_to_le32s(&tx_cmd_a);
	memcpy(skb->data, &tx_cmd_a, 4);

	return skb;
}

static enum skb_state defer_bh(struct lan78xx_net *dev, struct sk_buff *skb,
			       struct sk_buff_head *list, enum skb_state state)
{
	unsigned long flags;
	enum skb_state old_state;
	struct skb_data *entry = (struct skb_data *)skb->cb;

	spin_lock_irqsave(&list->lock, flags);
	old_state = entry->state;
	entry->state = state;

	__skb_unlink(skb, list);
	spin_unlock(&list->lock);
	spin_lock(&dev->done.lock);

	__skb_queue_tail(&dev->done, skb);
	if (skb_queue_len(&dev->done) == 1)
		tasklet_schedule(&dev->bh);
	spin_unlock_irqrestore(&dev->done.lock, flags);

	return old_state;
}

static void tx_complete(struct urb *urb)
{
	struct sk_buff *skb = (struct sk_buff *)urb->context;
	struct skb_data *entry = (struct skb_data *)skb->cb;
	struct lan78xx_net *dev = entry->dev;

	if (urb->status == 0) {
2809
		dev->net->stats.tx_packets += entry->num_of_packet;
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
		dev->net->stats.tx_bytes += entry->length;
	} else {
		dev->net->stats.tx_errors++;

		switch (urb->status) {
		case -EPIPE:
			lan78xx_defer_kevent(dev, EVENT_TX_HALT);
			break;

		/* software-driven interface shutdown */
		case -ECONNRESET:
		case -ESHUTDOWN:
			break;

		case -EPROTO:
		case -ETIME:
		case -EILSEQ:
			netif_stop_queue(dev->net);
			break;
		default:
			netif_dbg(dev, tx_err, dev->net,
				  "tx err %d\n", entry->urb->status);
			break;
		}
	}

	usb_autopm_put_interface_async(dev->intf);

2838
	defer_bh(dev, skb, &dev->txq, tx_done);
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
}

static void lan78xx_queue_skb(struct sk_buff_head *list,
			      struct sk_buff *newsk, enum skb_state state)
{
	struct skb_data *entry = (struct skb_data *)newsk->cb;

	__skb_queue_tail(list, newsk);
	entry->state = state;
}

2850 2851
static netdev_tx_t
lan78xx_start_xmit(struct sk_buff *skb, struct net_device *net)
2852 2853
{
	struct lan78xx_net *dev = netdev_priv(net);
2854
	struct sk_buff *skb2 = NULL;
2855

2856
	if (skb) {
2857
		skb_tx_timestamp(skb);
2858 2859
		skb2 = lan78xx_tx_prep(dev, skb, GFP_ATOMIC);
	}
2860

2861 2862
	if (skb2) {
		skb_queue_tail(&dev->txq_pend, skb2);
2863

2864 2865 2866
		/* throttle TX patch at slower than SUPER SPEED USB */
		if ((dev->udev->speed < USB_SPEED_SUPER) &&
		    (skb_queue_len(&dev->txq_pend) > 10))
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
			netif_stop_queue(net);
	} else {
		netif_dbg(dev, tx_err, dev->net,
			  "lan78xx_tx_prep return NULL\n");
		dev->net->stats.tx_errors++;
		dev->net->stats.tx_dropped++;
	}

	tasklet_schedule(&dev->bh);

	return NETDEV_TX_OK;
}

2880 2881
static int
lan78xx_get_endpoints(struct lan78xx_net *dev, struct usb_interface *intf)
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
{
	int tmp;
	struct usb_host_interface *alt = NULL;
	struct usb_host_endpoint *in = NULL, *out = NULL;
	struct usb_host_endpoint *status = NULL;

	for (tmp = 0; tmp < intf->num_altsetting; tmp++) {
		unsigned ep;

		in = NULL;
		out = NULL;
		status = NULL;
		alt = intf->altsetting + tmp;

		for (ep = 0; ep < alt->desc.bNumEndpoints; ep++) {
			struct usb_host_endpoint *e;
			int intr = 0;

			e = alt->endpoint + ep;
			switch (e->desc.bmAttributes) {
			case USB_ENDPOINT_XFER_INT:
				if (!usb_endpoint_dir_in(&e->desc))
					continue;
				intr = 1;
				/* FALLTHROUGH */
			case USB_ENDPOINT_XFER_BULK:
				break;
			default:
				continue;
			}
			if (usb_endpoint_dir_in(&e->desc)) {
				if (!intr && !in)
					in = e;
				else if (intr && !status)
					status = e;
			} else {
				if (!out)
					out = e;
			}
		}
		if (in && out)
			break;
	}
	if (!alt || !in || !out)
		return -EINVAL;

	dev->pipe_in = usb_rcvbulkpipe(dev->udev,
				       in->desc.bEndpointAddress &
				       USB_ENDPOINT_NUMBER_MASK);
	dev->pipe_out = usb_sndbulkpipe(dev->udev,
					out->desc.bEndpointAddress &
					USB_ENDPOINT_NUMBER_MASK);
	dev->ep_intr = status;

	return 0;
}

static int lan78xx_bind(struct lan78xx_net *dev, struct usb_interface *intf)
{
	struct lan78xx_priv *pdata = NULL;
	int ret;
	int i;

	ret = lan78xx_get_endpoints(dev, intf);

	dev->data[0] = (unsigned long)kzalloc(sizeof(*pdata), GFP_KERNEL);

	pdata = (struct lan78xx_priv *)(dev->data[0]);
	if (!pdata) {
		netdev_warn(dev->net, "Unable to allocate lan78xx_priv");
		return -ENOMEM;
	}

	pdata->dev = dev;

	spin_lock_init(&pdata->rfe_ctl_lock);
	mutex_init(&pdata->dataport_mutex);

	INIT_WORK(&pdata->set_multicast, lan78xx_deferred_multicast_write);

	for (i = 0; i < DP_SEL_VHF_VLAN_LEN; i++)
		pdata->vlan_table[i] = 0;

	INIT_WORK(&pdata->set_vlan, lan78xx_deferred_vlan_write);

	dev->net->features = 0;

	if (DEFAULT_TX_CSUM_ENABLE)
		dev->net->features |= NETIF_F_HW_CSUM;

	if (DEFAULT_RX_CSUM_ENABLE)
		dev->net->features |= NETIF_F_RXCSUM;

	if (DEFAULT_TSO_CSUM_ENABLE)
		dev->net->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_SG;

	dev->net->hw_features = dev->net->features;

2980 2981 2982 2983
	ret = lan78xx_setup_irq_domain(dev);
	if (ret < 0) {
		netdev_warn(dev->net,
			    "lan78xx_setup_irq_domain() failed : %d", ret);
2984
		goto out1;
2985 2986
	}

2987 2988 2989
	dev->net->hard_header_len += TX_OVERHEAD;
	dev->hard_mtu = dev->net->mtu + dev->net->hard_header_len;

2990 2991
	/* Init all registers */
	ret = lan78xx_reset(dev);
2992 2993 2994 2995
	if (ret) {
		netdev_warn(dev->net, "Registers INIT FAILED....");
		goto out2;
	}
2996

2997
	ret = lan78xx_mdio_init(dev);
2998 2999 3000 3001
	if (ret) {
		netdev_warn(dev->net, "MDIO INIT FAILED.....");
		goto out2;
	}
3002

3003 3004 3005 3006
	dev->net->flags |= IFF_MULTICAST;

	pdata->wol = WAKE_MAGIC;

3007
	return ret;
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017

out2:
	lan78xx_remove_irq_domain(dev);

out1:
	netdev_warn(dev->net, "Bind routine FAILED");
	cancel_work_sync(&pdata->set_multicast);
	cancel_work_sync(&pdata->set_vlan);
	kfree(pdata);
	return ret;
3018 3019 3020 3021 3022 3023
}

static void lan78xx_unbind(struct lan78xx_net *dev, struct usb_interface *intf)
{
	struct lan78xx_priv *pdata = (struct lan78xx_priv *)(dev->data[0]);

3024 3025
	lan78xx_remove_irq_domain(dev);

3026 3027
	lan78xx_remove_mdio(dev);

3028
	if (pdata) {
3029 3030
		cancel_work_sync(&pdata->set_multicast);
		cancel_work_sync(&pdata->set_vlan);
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
		netif_dbg(dev, ifdown, dev->net, "free pdata");
		kfree(pdata);
		pdata = NULL;
		dev->data[0] = 0;
	}
}

static void lan78xx_rx_csum_offload(struct lan78xx_net *dev,
				    struct sk_buff *skb,
				    u32 rx_cmd_a, u32 rx_cmd_b)
{
	if (!(dev->net->features & NETIF_F_RXCSUM) ||
	    unlikely(rx_cmd_a & RX_CMD_A_ICSM_)) {
		skb->ip_summed = CHECKSUM_NONE;
	} else {
		skb->csum = ntohs((u16)(rx_cmd_b >> RX_CMD_B_CSUM_SHIFT_));
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
}

3051
static void lan78xx_skb_return(struct lan78xx_net *dev, struct sk_buff *skb)
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
{
	int		status;

	if (test_bit(EVENT_RX_PAUSED, &dev->flags)) {
		skb_queue_tail(&dev->rxq_pause, skb);
		return;
	}

	dev->net->stats.rx_packets++;
	dev->net->stats.rx_bytes += skb->len;

3063 3064
	skb->protocol = eth_type_trans(skb, dev->net);

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	netif_dbg(dev, rx_status, dev->net, "< rx, len %zu, type 0x%x\n",
		  skb->len + sizeof(struct ethhdr), skb->protocol);
	memset(skb->cb, 0, sizeof(struct skb_data));

	if (skb_defer_rx_timestamp(skb))
		return;

	status = netif_rx(skb);
	if (status != NET_RX_SUCCESS)
		netif_dbg(dev, rx_err, dev->net,
			  "netif_rx status %d\n", status);
}

static int lan78xx_rx(struct lan78xx_net *dev, struct sk_buff *skb)
{
	if (skb->len < dev->net->hard_header_len)
		return 0;

	while (skb->len > 0) {
		u32 rx_cmd_a, rx_cmd_b, align_count, size;
		u16 rx_cmd_c;
		struct sk_buff *skb2;
		unsigned char *packet;

		memcpy(&rx_cmd_a, skb->data, sizeof(rx_cmd_a));
		le32_to_cpus(&rx_cmd_a);
		skb_pull(skb, sizeof(rx_cmd_a));

		memcpy(&rx_cmd_b, skb->data, sizeof(rx_cmd_b));
		le32_to_cpus(&rx_cmd_b);
		skb_pull(skb, sizeof(rx_cmd_b));

		memcpy(&rx_cmd_c, skb->data, sizeof(rx_cmd_c));
		le16_to_cpus(&rx_cmd_c);
		skb_pull(skb, sizeof(rx_cmd_c));

		packet = skb->data;

		/* get the packet length */
		size = (rx_cmd_a & RX_CMD_A_LEN_MASK_);
		align_count = (4 - ((size + RXW_PADDING) % 4)) % 4;

		if (unlikely(rx_cmd_a & RX_CMD_A_RED_)) {
			netif_dbg(dev, rx_err, dev->net,
				  "Error rx_cmd_a=0x%08x", rx_cmd_a);
		} else {
			/* last frame in this batch */
			if (skb->len == size) {
				lan78xx_rx_csum_offload(dev, skb,
							rx_cmd_a, rx_cmd_b);

				skb_trim(skb, skb->len - 4); /* remove fcs */
				skb->truesize = size + sizeof(struct sk_buff);

				return 1;
			}

			skb2 = skb_clone(skb, GFP_ATOMIC);
			if (unlikely(!skb2)) {
				netdev_warn(dev->net, "Error allocating skb");
				return 0;
			}

			skb2->len = size;
			skb2->data = packet;
			skb_set_tail_pointer(skb2, size);

			lan78xx_rx_csum_offload(dev, skb2, rx_cmd_a, rx_cmd_b);

			skb_trim(skb2, skb2->len - 4); /* remove fcs */
			skb2->truesize = size + sizeof(struct sk_buff);

			lan78xx_skb_return(dev, skb2);
		}

		skb_pull(skb, size);

		/* padding bytes before the next frame starts */
		if (skb->len)
			skb_pull(skb, align_count);
	}

	return 1;
}

static inline void rx_process(struct lan78xx_net *dev, struct sk_buff *skb)
{
	if (!lan78xx_rx(dev, skb)) {
		dev->net->stats.rx_errors++;
		goto done;
	}

	if (skb->len) {
		lan78xx_skb_return(dev, skb);
		return;
	}

	netif_dbg(dev, rx_err, dev->net, "drop\n");
	dev->net->stats.rx_errors++;
done:
	skb_queue_tail(&dev->done, skb);
}

static void rx_complete(struct urb *urb);

static int rx_submit(struct lan78xx_net *dev, struct urb *urb, gfp_t flags)
{
	struct sk_buff *skb;
	struct skb_data *entry;
	unsigned long lockflags;
	size_t size = dev->rx_urb_size;
	int ret = 0;

	skb = netdev_alloc_skb_ip_align(dev->net, size);
	if (!skb) {
		usb_free_urb(urb);
		return -ENOMEM;
	}

	entry = (struct skb_data *)skb->cb;
	entry->urb = urb;
	entry->dev = dev;
	entry->length = 0;

	usb_fill_bulk_urb(urb, dev->udev, dev->pipe_in,
			  skb->data, size, rx_complete, skb);

	spin_lock_irqsave(&dev->rxq.lock, lockflags);

	if (netif_device_present(dev->net) &&
	    netif_running(dev->net) &&
	    !test_bit(EVENT_RX_HALT, &dev->flags) &&
	    !test_bit(EVENT_DEV_ASLEEP, &dev->flags)) {
		ret = usb_submit_urb(urb, GFP_ATOMIC);
		switch (ret) {
		case 0:
			lan78xx_queue_skb(&dev->rxq, skb, rx_start);
			break;
		case -EPIPE:
			lan78xx_defer_kevent(dev, EVENT_RX_HALT);
			break;
		case -ENODEV:
			netif_dbg(dev, ifdown, dev->net, "device gone\n");
			netif_device_detach(dev->net);
			break;
		case -EHOSTUNREACH:
			ret = -ENOLINK;
			break;
		default:
			netif_dbg(dev, rx_err, dev->net,
				  "rx submit, %d\n", ret);
			tasklet_schedule(&dev->bh);
		}
	} else {
		netif_dbg(dev, ifdown, dev->net, "rx: stopped\n");
		ret = -ENOLINK;
	}
	spin_unlock_irqrestore(&dev->rxq.lock, lockflags);
	if (ret) {
		dev_kfree_skb_any(skb);
		usb_free_urb(urb);
	}
	return ret;
}

static void rx_complete(struct urb *urb)
{
	struct sk_buff	*skb = (struct sk_buff *)urb->context;
	struct skb_data	*entry = (struct skb_data *)skb->cb;
	struct lan78xx_net *dev = entry->dev;
	int urb_status = urb->status;
	enum skb_state state;

	skb_put(skb, urb->actual_length);
	state = rx_done;
	entry->urb = NULL;

	switch (urb_status) {
	case 0:
		if (skb->len < dev->net->hard_header_len) {
			state = rx_cleanup;
			dev->net->stats.rx_errors++;
			dev->net->stats.rx_length_errors++;
			netif_dbg(dev, rx_err, dev->net,
				  "rx length %d\n", skb->len);
		}
		usb_mark_last_busy(dev->udev);
		break;
	case -EPIPE:
		dev->net->stats.rx_errors++;
		lan78xx_defer_kevent(dev, EVENT_RX_HALT);
		/* FALLTHROUGH */
	case -ECONNRESET:				/* async unlink */
	case -ESHUTDOWN:				/* hardware gone */
		netif_dbg(dev, ifdown, dev->net,
			  "rx shutdown, code %d\n", urb_status);
		state = rx_cleanup;
		entry->urb = urb;
		urb = NULL;
		break;
	case -EPROTO:
	case -ETIME:
	case -EILSEQ:
		dev->net->stats.rx_errors++;
		state = rx_cleanup;
		entry->urb = urb;
		urb = NULL;
		break;

	/* data overrun ... flush fifo? */
	case -EOVERFLOW:
		dev->net->stats.rx_over_errors++;
		/* FALLTHROUGH */

	default:
		state = rx_cleanup;
		dev->net->stats.rx_errors++;
		netif_dbg(dev, rx_err, dev->net, "rx status %d\n", urb_status);
		break;
	}

	state = defer_bh(dev, skb, &dev->rxq, state);

	if (urb) {
		if (netif_running(dev->net) &&
		    !test_bit(EVENT_RX_HALT, &dev->flags) &&
		    state != unlink_start) {
			rx_submit(dev, urb, GFP_ATOMIC);
			return;
		}
		usb_free_urb(urb);
	}
	netif_dbg(dev, rx_err, dev->net, "no read resubmitted\n");
}

static void lan78xx_tx_bh(struct lan78xx_net *dev)
{
	int length;
	struct urb *urb = NULL;
	struct skb_data *entry;
	unsigned long flags;
	struct sk_buff_head *tqp = &dev->txq_pend;
	struct sk_buff *skb, *skb2;
	int ret;
	int count, pos;
	int skb_totallen, pkt_cnt;

	skb_totallen = 0;
	pkt_cnt = 0;
3314 3315
	count = 0;
	length = 0;
3316 3317 3318 3319 3320 3321
	for (skb = tqp->next; pkt_cnt < tqp->qlen; skb = skb->next) {
		if (skb_is_gso(skb)) {
			if (pkt_cnt) {
				/* handle previous packets first */
				break;
			}
3322 3323
			count = 1;
			length = skb->len - TX_OVERHEAD;
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
			skb2 = skb_dequeue(tqp);
			goto gso_skb;
		}

		if ((skb_totallen + skb->len) > MAX_SINGLE_PACKET_SIZE)
			break;
		skb_totallen = skb->len + roundup(skb_totallen, sizeof(u32));
		pkt_cnt++;
	}

	/* copy to a single skb */
	skb = alloc_skb(skb_totallen, GFP_ATOMIC);
	if (!skb)
		goto drop;

	skb_put(skb, skb_totallen);

	for (count = pos = 0; count < pkt_cnt; count++) {
		skb2 = skb_dequeue(tqp);
		if (skb2) {
3344
			length += (skb2->len - TX_OVERHEAD);
3345 3346 3347 3348 3349 3350 3351 3352
			memcpy(skb->data + pos, skb2->data, skb2->len);
			pos += roundup(skb2->len, sizeof(u32));
			dev_kfree_skb(skb2);
		}
	}

gso_skb:
	urb = usb_alloc_urb(0, GFP_ATOMIC);
3353
	if (!urb)
3354 3355 3356 3357 3358 3359
		goto drop;

	entry = (struct skb_data *)skb->cb;
	entry->urb = urb;
	entry->dev = dev;
	entry->length = length;
3360
	entry->num_of_packet = count;
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393

	spin_lock_irqsave(&dev->txq.lock, flags);
	ret = usb_autopm_get_interface_async(dev->intf);
	if (ret < 0) {
		spin_unlock_irqrestore(&dev->txq.lock, flags);
		goto drop;
	}

	usb_fill_bulk_urb(urb, dev->udev, dev->pipe_out,
			  skb->data, skb->len, tx_complete, skb);

	if (length % dev->maxpacket == 0) {
		/* send USB_ZERO_PACKET */
		urb->transfer_flags |= URB_ZERO_PACKET;
	}

#ifdef CONFIG_PM
	/* if this triggers the device is still a sleep */
	if (test_bit(EVENT_DEV_ASLEEP, &dev->flags)) {
		/* transmission will be done in resume */
		usb_anchor_urb(urb, &dev->deferred);
		/* no use to process more packets */
		netif_stop_queue(dev->net);
		usb_put_urb(urb);
		spin_unlock_irqrestore(&dev->txq.lock, flags);
		netdev_dbg(dev->net, "Delaying transmission for resumption\n");
		return;
	}
#endif

	ret = usb_submit_urb(urb, GFP_ATOMIC);
	switch (ret) {
	case 0:
3394
		netif_trans_update(dev->net);
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
		lan78xx_queue_skb(&dev->txq, skb, tx_start);
		if (skb_queue_len(&dev->txq) >= dev->tx_qlen)
			netif_stop_queue(dev->net);
		break;
	case -EPIPE:
		netif_stop_queue(dev->net);
		lan78xx_defer_kevent(dev, EVENT_TX_HALT);
		usb_autopm_put_interface_async(dev->intf);
		break;
	default:
		usb_autopm_put_interface_async(dev->intf);
		netif_dbg(dev, tx_err, dev->net,
			  "tx: submit urb err %d\n", ret);
		break;
	}

	spin_unlock_irqrestore(&dev->txq.lock, flags);

	if (ret) {
		netif_dbg(dev, tx_err, dev->net, "drop, code %d\n", ret);
drop:
		dev->net->stats.tx_dropped++;
		if (skb)
			dev_kfree_skb_any(skb);
		usb_free_urb(urb);
	} else
		netif_dbg(dev, tx_queued, dev->net,
			  "> tx, len %d, type 0x%x\n", length, skb->protocol);
}

static void lan78xx_rx_bh(struct lan78xx_net *dev)
{
	struct urb *urb;
	int i;

	if (skb_queue_len(&dev->rxq) < dev->rx_qlen) {
		for (i = 0; i < 10; i++) {
			if (skb_queue_len(&dev->rxq) >= dev->rx_qlen)
				break;
			urb = usb_alloc_urb(0, GFP_ATOMIC);
			if (urb)
				if (rx_submit(dev, urb, GFP_ATOMIC) == -ENOLINK)
					return;
		}

		if (skb_queue_len(&dev->rxq) < dev->rx_qlen)
			tasklet_schedule(&dev->bh);
	}
	if (skb_queue_len(&dev->txq) < dev->tx_qlen)
		netif_wake_queue(dev->net);
}

static void lan78xx_bh(unsigned long param)
{
	struct lan78xx_net *dev = (struct lan78xx_net *)param;
	struct sk_buff *skb;
	struct skb_data *entry;

	while ((skb = skb_dequeue(&dev->done))) {
		entry = (struct skb_data *)(skb->cb);
		switch (entry->state) {
		case rx_done:
			entry->state = rx_cleanup;
			rx_process(dev, skb);
			continue;
		case tx_done:
			usb_free_urb(entry->urb);
			dev_kfree_skb(skb);
			continue;
		case rx_cleanup:
			usb_free_urb(entry->urb);
			dev_kfree_skb(skb);
			continue;
		default:
			netdev_dbg(dev->net, "skb state %d\n", entry->state);
			return;
		}
	}

	if (netif_device_present(dev->net) && netif_running(dev->net)) {
3475 3476 3477 3478 3479 3480 3481
		/* reset update timer delta */
		if (timer_pending(&dev->stat_monitor) && (dev->delta != 1)) {
			dev->delta = 1;
			mod_timer(&dev->stat_monitor,
				  jiffies + STAT_UPDATE_TIMER);
		}

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
		if (!skb_queue_empty(&dev->txq_pend))
			lan78xx_tx_bh(dev);

		if (!timer_pending(&dev->delay) &&
		    !test_bit(EVENT_RX_HALT, &dev->flags))
			lan78xx_rx_bh(dev);
	}
}

static void lan78xx_delayedwork(struct work_struct *work)
{
	int status;
	struct lan78xx_net *dev;

	dev = container_of(work, struct lan78xx_net, wq.work);

	if (test_bit(EVENT_TX_HALT, &dev->flags)) {
		unlink_urbs(dev, &dev->txq);
		status = usb_autopm_get_interface(dev->intf);
		if (status < 0)
			goto fail_pipe;
		status = usb_clear_halt(dev->udev, dev->pipe_out);
		usb_autopm_put_interface(dev->intf);
		if (status < 0 &&
		    status != -EPIPE &&
		    status != -ESHUTDOWN) {
			if (netif_msg_tx_err(dev))
fail_pipe:
				netdev_err(dev->net,
					   "can't clear tx halt, status %d\n",
					   status);
		} else {
			clear_bit(EVENT_TX_HALT, &dev->flags);
			if (status != -ESHUTDOWN)
				netif_wake_queue(dev->net);
		}
	}
	if (test_bit(EVENT_RX_HALT, &dev->flags)) {
		unlink_urbs(dev, &dev->rxq);
		status = usb_autopm_get_interface(dev->intf);
		if (status < 0)
				goto fail_halt;
		status = usb_clear_halt(dev->udev, dev->pipe_in);
		usb_autopm_put_interface(dev->intf);
		if (status < 0 &&
		    status != -EPIPE &&
		    status != -ESHUTDOWN) {
			if (netif_msg_rx_err(dev))
fail_halt:
				netdev_err(dev->net,
					   "can't clear rx halt, status %d\n",
					   status);
		} else {
			clear_bit(EVENT_RX_HALT, &dev->flags);
			tasklet_schedule(&dev->bh);
		}
	}

	if (test_bit(EVENT_LINK_RESET, &dev->flags)) {
		int ret = 0;

		clear_bit(EVENT_LINK_RESET, &dev->flags);
		status = usb_autopm_get_interface(dev->intf);
		if (status < 0)
			goto skip_reset;
		if (lan78xx_link_reset(dev) < 0) {
			usb_autopm_put_interface(dev->intf);
skip_reset:
			netdev_info(dev->net, "link reset failed (%d)\n",
				    ret);
		} else {
			usb_autopm_put_interface(dev->intf);
		}
	}
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566

	if (test_bit(EVENT_STAT_UPDATE, &dev->flags)) {
		lan78xx_update_stats(dev);

		clear_bit(EVENT_STAT_UPDATE, &dev->flags);

		mod_timer(&dev->stat_monitor,
			  jiffies + (STAT_UPDATE_TIMER * dev->delta));

		dev->delta = min((dev->delta * 2), 50);
	}
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
}

static void intr_complete(struct urb *urb)
{
	struct lan78xx_net *dev = urb->context;
	int status = urb->status;

	switch (status) {
	/* success */
	case 0:
		lan78xx_status(dev, urb);
		break;

	/* software-driven interface shutdown */
	case -ENOENT:			/* urb killed */
	case -ESHUTDOWN:		/* hardware gone */
		netif_dbg(dev, ifdown, dev->net,
			  "intr shutdown, code %d\n", status);
		return;

	/* NOTE:  not throttling like RX/TX, since this endpoint
	 * already polls infrequently
	 */
	default:
		netdev_dbg(dev->net, "intr status %d\n", status);
		break;
	}

	if (!netif_running(dev->net))
		return;

	memset(urb->transfer_buffer, 0, urb->transfer_buffer_length);
	status = usb_submit_urb(urb, GFP_ATOMIC);
	if (status != 0)
		netif_err(dev, timer, dev->net,
			  "intr resubmit --> %d\n", status);
}

static void lan78xx_disconnect(struct usb_interface *intf)
{
	struct lan78xx_net		*dev;
	struct usb_device		*udev;
	struct net_device		*net;
3610
	struct phy_device		*phydev;
3611 3612 3613 3614 3615 3616 3617 3618

	dev = usb_get_intfdata(intf);
	usb_set_intfdata(intf, NULL);
	if (!dev)
		return;

	udev = interface_to_usbdev(intf);
	net = dev->net;
3619
	phydev = net->phydev;
A
Alexander Graf 已提交
3620 3621 3622 3623 3624 3625

	phy_unregister_fixup_for_uid(PHY_KSZ9031RNX, 0xfffffff0);
	phy_unregister_fixup_for_uid(PHY_LAN8835, 0xfffffff0);

	phy_disconnect(net->phydev);

3626 3627 3628
	if (phy_is_pseudo_fixed_link(phydev))
		fixed_phy_unregister(phydev);

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
	unregister_netdev(net);

	cancel_delayed_work_sync(&dev->wq);

	usb_scuttle_anchored_urbs(&dev->deferred);

	lan78xx_unbind(dev, intf);

	usb_kill_urb(dev->urb_intr);
	usb_free_urb(dev->urb_intr);

	free_netdev(net);
	usb_put_dev(udev);
}

3644
static void lan78xx_tx_timeout(struct net_device *net)
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
{
	struct lan78xx_net *dev = netdev_priv(net);

	unlink_urbs(dev, &dev->txq);
	tasklet_schedule(&dev->bh);
}

static const struct net_device_ops lan78xx_netdev_ops = {
	.ndo_open		= lan78xx_open,
	.ndo_stop		= lan78xx_stop,
	.ndo_start_xmit		= lan78xx_start_xmit,
	.ndo_tx_timeout		= lan78xx_tx_timeout,
	.ndo_change_mtu		= lan78xx_change_mtu,
	.ndo_set_mac_address	= lan78xx_set_mac_addr,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= lan78xx_ioctl,
	.ndo_set_rx_mode	= lan78xx_set_multicast,
	.ndo_set_features	= lan78xx_set_features,
	.ndo_vlan_rx_add_vid	= lan78xx_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= lan78xx_vlan_rx_kill_vid,
};

3667
static void lan78xx_stat_monitor(struct timer_list *t)
3668
{
3669
	struct lan78xx_net *dev = from_timer(dev, t, stat_monitor);
3670 3671 3672 3673

	lan78xx_defer_kevent(dev, EVENT_STAT_UPDATE);
}

3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
static int lan78xx_probe(struct usb_interface *intf,
			 const struct usb_device_id *id)
{
	struct lan78xx_net *dev;
	struct net_device *netdev;
	struct usb_device *udev;
	int ret;
	unsigned maxp;
	unsigned period;
	u8 *buf = NULL;

	udev = interface_to_usbdev(intf);
	udev = usb_get_dev(udev);

	netdev = alloc_etherdev(sizeof(struct lan78xx_net));
	if (!netdev) {
3690 3691 3692
		dev_err(&intf->dev, "Error: OOM\n");
		ret = -ENOMEM;
		goto out1;
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
	}

	/* netdev_printk() needs this */
	SET_NETDEV_DEV(netdev, &intf->dev);

	dev = netdev_priv(netdev);
	dev->udev = udev;
	dev->intf = intf;
	dev->net = netdev;
	dev->msg_enable = netif_msg_init(msg_level, NETIF_MSG_DRV
					| NETIF_MSG_PROBE | NETIF_MSG_LINK);

	skb_queue_head_init(&dev->rxq);
	skb_queue_head_init(&dev->txq);
	skb_queue_head_init(&dev->done);
	skb_queue_head_init(&dev->rxq_pause);
	skb_queue_head_init(&dev->txq_pend);
	mutex_init(&dev->phy_mutex);

	tasklet_init(&dev->bh, lan78xx_bh, (unsigned long)dev);
	INIT_DELAYED_WORK(&dev->wq, lan78xx_delayedwork);
	init_usb_anchor(&dev->deferred);

	netdev->netdev_ops = &lan78xx_netdev_ops;
	netdev->watchdog_timeo = TX_TIMEOUT_JIFFIES;
	netdev->ethtool_ops = &lan78xx_ethtool_ops;

3720
	dev->delta = 1;
3721
	timer_setup(&dev->stat_monitor, lan78xx_stat_monitor, 0);
3722 3723 3724

	mutex_init(&dev->stats.access_lock);

3725 3726 3727 3728 3729 3730 3731 3732
	ret = lan78xx_bind(dev, intf);
	if (ret < 0)
		goto out2;
	strcpy(netdev->name, "eth%d");

	if (netdev->mtu > (dev->hard_mtu - netdev->hard_header_len))
		netdev->mtu = dev->hard_mtu - netdev->hard_header_len;

3733 3734 3735
	/* MTU range: 68 - 9000 */
	netdev->max_mtu = MAX_SINGLE_PACKET_SIZE;

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
	dev->ep_blkin = (intf->cur_altsetting)->endpoint + 0;
	dev->ep_blkout = (intf->cur_altsetting)->endpoint + 1;
	dev->ep_intr = (intf->cur_altsetting)->endpoint + 2;

	dev->pipe_in = usb_rcvbulkpipe(udev, BULK_IN_PIPE);
	dev->pipe_out = usb_sndbulkpipe(udev, BULK_OUT_PIPE);

	dev->pipe_intr = usb_rcvintpipe(dev->udev,
					dev->ep_intr->desc.bEndpointAddress &
					USB_ENDPOINT_NUMBER_MASK);
	period = dev->ep_intr->desc.bInterval;

	maxp = usb_maxpacket(dev->udev, dev->pipe_intr, 0);
	buf = kmalloc(maxp, GFP_KERNEL);
	if (buf) {
		dev->urb_intr = usb_alloc_urb(0, GFP_KERNEL);
		if (!dev->urb_intr) {
3753
			ret = -ENOMEM;
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
			kfree(buf);
			goto out3;
		} else {
			usb_fill_int_urb(dev->urb_intr, dev->udev,
					 dev->pipe_intr, buf, maxp,
					 intr_complete, dev, period);
		}
	}

	dev->maxpacket = usb_maxpacket(dev->udev, dev->pipe_out, 1);

	/* driver requires remote-wakeup capability during autosuspend. */
	intf->needs_remote_wakeup = 1;

	ret = register_netdev(netdev);
	if (ret != 0) {
		netif_err(dev, probe, netdev, "couldn't register the device\n");
3771
		goto out3;
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
	}

	usb_set_intfdata(intf, dev);

	ret = device_set_wakeup_enable(&udev->dev, true);

	 /* Default delay of 2sec has more overhead than advantage.
	  * Set to 10sec as default.
	  */
	pm_runtime_set_autosuspend_delay(&udev->dev,
					 DEFAULT_AUTOSUSPEND_DELAY);

A
Alexander Graf 已提交
3784 3785 3786 3787
	ret = lan78xx_phy_init(dev);
	if (ret < 0)
		goto out4;

3788 3789
	return 0;

A
Alexander Graf 已提交
3790 3791
out4:
	unregister_netdev(netdev);
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
out3:
	lan78xx_unbind(dev, intf);
out2:
	free_netdev(netdev);
out1:
	usb_put_dev(udev);

	return ret;
}

static u16 lan78xx_wakeframe_crc16(const u8 *buf, int len)
{
	const u16 crc16poly = 0x8005;
	int i;
	u16 bit, crc, msb;
	u8 data;

	crc = 0xFFFF;
	for (i = 0; i < len; i++) {
		data = *buf++;
		for (bit = 0; bit < 8; bit++) {
			msb = crc >> 15;
			crc <<= 1;

			if (msb ^ (u16)(data & 1)) {
				crc ^= crc16poly;
				crc |= (u16)0x0001U;
			}
			data >>= 1;
		}
	}

	return crc;
}

static int lan78xx_set_suspend(struct lan78xx_net *dev, u32 wol)
{
	u32 buf;
	int ret;
	int mask_index;
	u16 crc;
	u32 temp_wucsr;
	u32 temp_pmt_ctl;
	const u8 ipv4_multicast[3] = { 0x01, 0x00, 0x5E };
	const u8 ipv6_multicast[3] = { 0x33, 0x33 };
	const u8 arp_type[2] = { 0x08, 0x06 };

	ret = lan78xx_read_reg(dev, MAC_TX, &buf);
	buf &= ~MAC_TX_TXEN_;
	ret = lan78xx_write_reg(dev, MAC_TX, buf);
	ret = lan78xx_read_reg(dev, MAC_RX, &buf);
	buf &= ~MAC_RX_RXEN_;
	ret = lan78xx_write_reg(dev, MAC_RX, buf);

	ret = lan78xx_write_reg(dev, WUCSR, 0);
	ret = lan78xx_write_reg(dev, WUCSR2, 0);
	ret = lan78xx_write_reg(dev, WK_SRC, 0xFFF1FF1FUL);

	temp_wucsr = 0;

	temp_pmt_ctl = 0;
	ret = lan78xx_read_reg(dev, PMT_CTL, &temp_pmt_ctl);
	temp_pmt_ctl &= ~PMT_CTL_RES_CLR_WKP_EN_;
	temp_pmt_ctl |= PMT_CTL_RES_CLR_WKP_STS_;

	for (mask_index = 0; mask_index < NUM_OF_WUF_CFG; mask_index++)
		ret = lan78xx_write_reg(dev, WUF_CFG(mask_index), 0);

	mask_index = 0;
	if (wol & WAKE_PHY) {
		temp_pmt_ctl |= PMT_CTL_PHY_WAKE_EN_;

		temp_pmt_ctl |= PMT_CTL_WOL_EN_;
		temp_pmt_ctl &= ~PMT_CTL_SUS_MODE_MASK_;
		temp_pmt_ctl |= PMT_CTL_SUS_MODE_0_;
	}
	if (wol & WAKE_MAGIC) {
		temp_wucsr |= WUCSR_MPEN_;

		temp_pmt_ctl |= PMT_CTL_WOL_EN_;
		temp_pmt_ctl &= ~PMT_CTL_SUS_MODE_MASK_;
		temp_pmt_ctl |= PMT_CTL_SUS_MODE_3_;
	}
	if (wol & WAKE_BCAST) {
		temp_wucsr |= WUCSR_BCST_EN_;

		temp_pmt_ctl |= PMT_CTL_WOL_EN_;
		temp_pmt_ctl &= ~PMT_CTL_SUS_MODE_MASK_;
		temp_pmt_ctl |= PMT_CTL_SUS_MODE_0_;
	}
	if (wol & WAKE_MCAST) {
		temp_wucsr |= WUCSR_WAKE_EN_;

		/* set WUF_CFG & WUF_MASK for IPv4 Multicast */
		crc = lan78xx_wakeframe_crc16(ipv4_multicast, 3);
		ret = lan78xx_write_reg(dev, WUF_CFG(mask_index),
					WUF_CFGX_EN_ |
					WUF_CFGX_TYPE_MCAST_ |
					(0 << WUF_CFGX_OFFSET_SHIFT_) |
					(crc & WUF_CFGX_CRC16_MASK_));

		ret = lan78xx_write_reg(dev, WUF_MASK0(mask_index), 7);
		ret = lan78xx_write_reg(dev, WUF_MASK1(mask_index), 0);
		ret = lan78xx_write_reg(dev, WUF_MASK2(mask_index), 0);
		ret = lan78xx_write_reg(dev, WUF_MASK3(mask_index), 0);
		mask_index++;

		/* for IPv6 Multicast */
		crc = lan78xx_wakeframe_crc16(ipv6_multicast, 2);
		ret = lan78xx_write_reg(dev, WUF_CFG(mask_index),
					WUF_CFGX_EN_ |
					WUF_CFGX_TYPE_MCAST_ |
					(0 << WUF_CFGX_OFFSET_SHIFT_) |
					(crc & WUF_CFGX_CRC16_MASK_));

		ret = lan78xx_write_reg(dev, WUF_MASK0(mask_index), 3);
		ret = lan78xx_write_reg(dev, WUF_MASK1(mask_index), 0);
		ret = lan78xx_write_reg(dev, WUF_MASK2(mask_index), 0);
		ret = lan78xx_write_reg(dev, WUF_MASK3(mask_index), 0);
		mask_index++;

		temp_pmt_ctl |= PMT_CTL_WOL_EN_;
		temp_pmt_ctl &= ~PMT_CTL_SUS_MODE_MASK_;
		temp_pmt_ctl |= PMT_CTL_SUS_MODE_0_;
	}
	if (wol & WAKE_UCAST) {
		temp_wucsr |= WUCSR_PFDA_EN_;

		temp_pmt_ctl |= PMT_CTL_WOL_EN_;
		temp_pmt_ctl &= ~PMT_CTL_SUS_MODE_MASK_;
		temp_pmt_ctl |= PMT_CTL_SUS_MODE_0_;
	}
	if (wol & WAKE_ARP) {
		temp_wucsr |= WUCSR_WAKE_EN_;

		/* set WUF_CFG & WUF_MASK
		 * for packettype (offset 12,13) = ARP (0x0806)
		 */
		crc = lan78xx_wakeframe_crc16(arp_type, 2);
		ret = lan78xx_write_reg(dev, WUF_CFG(mask_index),
					WUF_CFGX_EN_ |
					WUF_CFGX_TYPE_ALL_ |
					(0 << WUF_CFGX_OFFSET_SHIFT_) |
					(crc & WUF_CFGX_CRC16_MASK_));

		ret = lan78xx_write_reg(dev, WUF_MASK0(mask_index), 0x3000);
		ret = lan78xx_write_reg(dev, WUF_MASK1(mask_index), 0);
		ret = lan78xx_write_reg(dev, WUF_MASK2(mask_index), 0);
		ret = lan78xx_write_reg(dev, WUF_MASK3(mask_index), 0);
		mask_index++;

		temp_pmt_ctl |= PMT_CTL_WOL_EN_;
		temp_pmt_ctl &= ~PMT_CTL_SUS_MODE_MASK_;
		temp_pmt_ctl |= PMT_CTL_SUS_MODE_0_;
	}

	ret = lan78xx_write_reg(dev, WUCSR, temp_wucsr);

	/* when multiple WOL bits are set */
	if (hweight_long((unsigned long)wol) > 1) {
		temp_pmt_ctl |= PMT_CTL_WOL_EN_;
		temp_pmt_ctl &= ~PMT_CTL_SUS_MODE_MASK_;
		temp_pmt_ctl |= PMT_CTL_SUS_MODE_0_;
	}
	ret = lan78xx_write_reg(dev, PMT_CTL, temp_pmt_ctl);

	/* clear WUPS */
	ret = lan78xx_read_reg(dev, PMT_CTL, &buf);
	buf |= PMT_CTL_WUPS_MASK_;
	ret = lan78xx_write_reg(dev, PMT_CTL, buf);

	ret = lan78xx_read_reg(dev, MAC_RX, &buf);
	buf |= MAC_RX_RXEN_;
	ret = lan78xx_write_reg(dev, MAC_RX, buf);

	return 0;
}

3970
static int lan78xx_suspend(struct usb_interface *intf, pm_message_t message)
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
{
	struct lan78xx_net *dev = usb_get_intfdata(intf);
	struct lan78xx_priv *pdata = (struct lan78xx_priv *)(dev->data[0]);
	u32 buf;
	int ret;
	int event;

	event = message.event;

	if (!dev->suspend_count++) {
		spin_lock_irq(&dev->txq.lock);
		/* don't autosuspend while transmitting */
		if ((skb_queue_len(&dev->txq) ||
		     skb_queue_len(&dev->txq_pend)) &&
			PMSG_IS_AUTO(message)) {
			spin_unlock_irq(&dev->txq.lock);
			ret = -EBUSY;
			goto out;
		} else {
			set_bit(EVENT_DEV_ASLEEP, &dev->flags);
			spin_unlock_irq(&dev->txq.lock);
		}

		/* stop TX & RX */
		ret = lan78xx_read_reg(dev, MAC_TX, &buf);
		buf &= ~MAC_TX_TXEN_;
		ret = lan78xx_write_reg(dev, MAC_TX, buf);
		ret = lan78xx_read_reg(dev, MAC_RX, &buf);
		buf &= ~MAC_RX_RXEN_;
		ret = lan78xx_write_reg(dev, MAC_RX, buf);

		/* empty out the rx and queues */
		netif_device_detach(dev->net);
		lan78xx_terminate_urbs(dev);
		usb_kill_urb(dev->urb_intr);

		/* reattach */
		netif_device_attach(dev->net);
	}

	if (test_bit(EVENT_DEV_ASLEEP, &dev->flags)) {
4012 4013
		del_timer(&dev->stat_monitor);

4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
		if (PMSG_IS_AUTO(message)) {
			/* auto suspend (selective suspend) */
			ret = lan78xx_read_reg(dev, MAC_TX, &buf);
			buf &= ~MAC_TX_TXEN_;
			ret = lan78xx_write_reg(dev, MAC_TX, buf);
			ret = lan78xx_read_reg(dev, MAC_RX, &buf);
			buf &= ~MAC_RX_RXEN_;
			ret = lan78xx_write_reg(dev, MAC_RX, buf);

			ret = lan78xx_write_reg(dev, WUCSR, 0);
			ret = lan78xx_write_reg(dev, WUCSR2, 0);
			ret = lan78xx_write_reg(dev, WK_SRC, 0xFFF1FF1FUL);

			/* set goodframe wakeup */
			ret = lan78xx_read_reg(dev, WUCSR, &buf);

			buf |= WUCSR_RFE_WAKE_EN_;
			buf |= WUCSR_STORE_WAKE_;

			ret = lan78xx_write_reg(dev, WUCSR, buf);

			ret = lan78xx_read_reg(dev, PMT_CTL, &buf);

			buf &= ~PMT_CTL_RES_CLR_WKP_EN_;
			buf |= PMT_CTL_RES_CLR_WKP_STS_;

			buf |= PMT_CTL_PHY_WAKE_EN_;
			buf |= PMT_CTL_WOL_EN_;
			buf &= ~PMT_CTL_SUS_MODE_MASK_;
			buf |= PMT_CTL_SUS_MODE_3_;

			ret = lan78xx_write_reg(dev, PMT_CTL, buf);

			ret = lan78xx_read_reg(dev, PMT_CTL, &buf);

			buf |= PMT_CTL_WUPS_MASK_;

			ret = lan78xx_write_reg(dev, PMT_CTL, buf);

			ret = lan78xx_read_reg(dev, MAC_RX, &buf);
			buf |= MAC_RX_RXEN_;
			ret = lan78xx_write_reg(dev, MAC_RX, buf);
		} else {
			lan78xx_set_suspend(dev, pdata->wol);
		}
	}

4061
	ret = 0;
4062 4063 4064 4065
out:
	return ret;
}

4066
static int lan78xx_resume(struct usb_interface *intf)
4067 4068 4069 4070 4071 4072 4073
{
	struct lan78xx_net *dev = usb_get_intfdata(intf);
	struct sk_buff *skb;
	struct urb *res;
	int ret;
	u32 buf;

4074 4075 4076 4077 4078 4079
	if (!timer_pending(&dev->stat_monitor)) {
		dev->delta = 1;
		mod_timer(&dev->stat_monitor,
			  jiffies + STAT_UPDATE_TIMER);
	}

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
	if (!--dev->suspend_count) {
		/* resume interrupt URBs */
		if (dev->urb_intr && test_bit(EVENT_DEV_OPEN, &dev->flags))
				usb_submit_urb(dev->urb_intr, GFP_NOIO);

		spin_lock_irq(&dev->txq.lock);
		while ((res = usb_get_from_anchor(&dev->deferred))) {
			skb = (struct sk_buff *)res->context;
			ret = usb_submit_urb(res, GFP_ATOMIC);
			if (ret < 0) {
				dev_kfree_skb_any(skb);
				usb_free_urb(res);
				usb_autopm_put_interface_async(dev->intf);
			} else {
4094
				netif_trans_update(dev->net);
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
				lan78xx_queue_skb(&dev->txq, skb, tx_start);
			}
		}

		clear_bit(EVENT_DEV_ASLEEP, &dev->flags);
		spin_unlock_irq(&dev->txq.lock);

		if (test_bit(EVENT_DEV_OPEN, &dev->flags)) {
			if (!(skb_queue_len(&dev->txq) >= dev->tx_qlen))
				netif_start_queue(dev->net);
			tasklet_schedule(&dev->bh);
		}
	}

	ret = lan78xx_write_reg(dev, WUCSR2, 0);
	ret = lan78xx_write_reg(dev, WUCSR, 0);
	ret = lan78xx_write_reg(dev, WK_SRC, 0xFFF1FF1FUL);

	ret = lan78xx_write_reg(dev, WUCSR2, WUCSR2_NS_RCD_ |
					     WUCSR2_ARP_RCD_ |
					     WUCSR2_IPV6_TCPSYN_RCD_ |
					     WUCSR2_IPV4_TCPSYN_RCD_);

	ret = lan78xx_write_reg(dev, WUCSR, WUCSR_EEE_TX_WAKE_ |
					    WUCSR_EEE_RX_WAKE_ |
					    WUCSR_PFDA_FR_ |
					    WUCSR_RFE_WAKE_FR_ |
					    WUCSR_WUFR_ |
					    WUCSR_MPR_ |
					    WUCSR_BCST_FR_);

	ret = lan78xx_read_reg(dev, MAC_TX, &buf);
	buf |= MAC_TX_TXEN_;
	ret = lan78xx_write_reg(dev, MAC_TX, buf);

	return 0;
}

4133
static int lan78xx_reset_resume(struct usb_interface *intf)
4134 4135 4136 4137
{
	struct lan78xx_net *dev = usb_get_intfdata(intf);

	lan78xx_reset(dev);
4138

A
Alexander Graf 已提交
4139
	phy_start(dev->net->phydev);
4140

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
	return lan78xx_resume(intf);
}

static const struct usb_device_id products[] = {
	{
	/* LAN7800 USB Gigabit Ethernet Device */
	USB_DEVICE(LAN78XX_USB_VENDOR_ID, LAN7800_USB_PRODUCT_ID),
	},
	{
	/* LAN7850 USB Gigabit Ethernet Device */
	USB_DEVICE(LAN78XX_USB_VENDOR_ID, LAN7850_USB_PRODUCT_ID),
	},
4153 4154 4155 4156
	{
	/* LAN7801 USB Gigabit Ethernet Device */
	USB_DEVICE(LAN78XX_USB_VENDOR_ID, LAN7801_USB_PRODUCT_ID),
	},
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	{},
};
MODULE_DEVICE_TABLE(usb, products);

static struct usb_driver lan78xx_driver = {
	.name			= DRIVER_NAME,
	.id_table		= products,
	.probe			= lan78xx_probe,
	.disconnect		= lan78xx_disconnect,
	.suspend		= lan78xx_suspend,
	.resume			= lan78xx_resume,
	.reset_resume		= lan78xx_reset_resume,
	.supports_autosuspend	= 1,
	.disable_hub_initiated_lpm = 1,
};

module_usb_driver(lan78xx_driver);

MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");