dma-mapping.h 22.1 KB
Newer Older
1 2
#ifndef _LINUX_DMA_MAPPING_H
#define _LINUX_DMA_MAPPING_H
L
Linus Torvalds 已提交
3

4
#include <linux/sizes.h>
5
#include <linux/string.h>
L
Linus Torvalds 已提交
6 7
#include <linux/device.h>
#include <linux/err.h>
8
#include <linux/dma-debug.h>
9
#include <linux/dma-direction.h>
10
#include <linux/scatterlist.h>
11 12
#include <linux/kmemcheck.h>
#include <linux/bug.h>
L
Linus Torvalds 已提交
13

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/**
 * List of possible attributes associated with a DMA mapping. The semantics
 * of each attribute should be defined in Documentation/DMA-attributes.txt.
 *
 * DMA_ATTR_WRITE_BARRIER: DMA to a memory region with this attribute
 * forces all pending DMA writes to complete.
 */
#define DMA_ATTR_WRITE_BARRIER		(1UL << 0)
/*
 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
 * may be weakly ordered, that is that reads and writes may pass each other.
 */
#define DMA_ATTR_WEAK_ORDERING		(1UL << 1)
/*
 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
 * buffered to improve performance.
 */
#define DMA_ATTR_WRITE_COMBINE		(1UL << 2)
/*
 * DMA_ATTR_NON_CONSISTENT: Lets the platform to choose to return either
 * consistent or non-consistent memory as it sees fit.
 */
#define DMA_ATTR_NON_CONSISTENT		(1UL << 3)
/*
 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
 * virtual mapping for the allocated buffer.
 */
#define DMA_ATTR_NO_KERNEL_MAPPING	(1UL << 4)
/*
 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
 * the CPU cache for the given buffer assuming that it has been already
 * transferred to 'device' domain.
 */
#define DMA_ATTR_SKIP_CPU_SYNC		(1UL << 5)
/*
 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
 * in physical memory.
 */
#define DMA_ATTR_FORCE_CONTIGUOUS	(1UL << 6)
/*
 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
 * that it's probably not worth the time to try to allocate memory to in a way
 * that gives better TLB efficiency.
 */
#define DMA_ATTR_ALLOC_SINGLE_PAGES	(1UL << 7)

60 61 62 63 64 65
/*
 * A dma_addr_t can hold any valid DMA or bus address for the platform.
 * It can be given to a device to use as a DMA source or target.  A CPU cannot
 * reference a dma_addr_t directly because there may be translation between
 * its physical address space and the bus address space.
 */
66
struct dma_map_ops {
67 68
	void* (*alloc)(struct device *dev, size_t size,
				dma_addr_t *dma_handle, gfp_t gfp,
69
				unsigned long attrs);
70 71
	void (*free)(struct device *dev, size_t size,
			      void *vaddr, dma_addr_t dma_handle,
72
			      unsigned long attrs);
73
	int (*mmap)(struct device *, struct vm_area_struct *,
74 75
			  void *, dma_addr_t, size_t,
			  unsigned long attrs);
76

77
	int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *,
78
			   dma_addr_t, size_t, unsigned long attrs);
79

80 81 82
	dma_addr_t (*map_page)(struct device *dev, struct page *page,
			       unsigned long offset, size_t size,
			       enum dma_data_direction dir,
83
			       unsigned long attrs);
84 85
	void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
			   size_t size, enum dma_data_direction dir,
86
			   unsigned long attrs);
87 88 89 90
	/*
	 * map_sg returns 0 on error and a value > 0 on success.
	 * It should never return a value < 0.
	 */
91 92
	int (*map_sg)(struct device *dev, struct scatterlist *sg,
		      int nents, enum dma_data_direction dir,
93
		      unsigned long attrs);
94 95 96
	void (*unmap_sg)(struct device *dev,
			 struct scatterlist *sg, int nents,
			 enum dma_data_direction dir,
97
			 unsigned long attrs);
98 99 100 101 102 103
	dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr,
			       size_t size, enum dma_data_direction dir,
			       unsigned long attrs);
	void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle,
			   size_t size, enum dma_data_direction dir,
			   unsigned long attrs);
104 105 106 107 108 109 110 111 112 113 114 115 116 117
	void (*sync_single_for_cpu)(struct device *dev,
				    dma_addr_t dma_handle, size_t size,
				    enum dma_data_direction dir);
	void (*sync_single_for_device)(struct device *dev,
				       dma_addr_t dma_handle, size_t size,
				       enum dma_data_direction dir);
	void (*sync_sg_for_cpu)(struct device *dev,
				struct scatterlist *sg, int nents,
				enum dma_data_direction dir);
	void (*sync_sg_for_device)(struct device *dev,
				   struct scatterlist *sg, int nents,
				   enum dma_data_direction dir);
	int (*mapping_error)(struct device *dev, dma_addr_t dma_addr);
	int (*dma_supported)(struct device *dev, u64 mask);
118
	int (*set_dma_mask)(struct device *dev, u64 mask);
119 120 121
#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
	u64 (*get_required_mask)(struct device *dev);
#endif
122 123 124
	int is_phys;
};

125 126
extern struct dma_map_ops dma_noop_ops;

A
Andrew Morton 已提交
127
#define DMA_BIT_MASK(n)	(((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
128

129 130
#define DMA_MASK_NONE	0x0ULL

131 132 133 134 135 136 137
static inline int valid_dma_direction(int dma_direction)
{
	return ((dma_direction == DMA_BIDIRECTIONAL) ||
		(dma_direction == DMA_TO_DEVICE) ||
		(dma_direction == DMA_FROM_DEVICE));
}

138 139 140 141 142
static inline int is_device_dma_capable(struct device *dev)
{
	return dev->dma_mask != NULL && *dev->dma_mask != DMA_MASK_NONE;
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
/*
 * These three functions are only for dma allocator.
 * Don't use them in device drivers.
 */
int dma_alloc_from_coherent(struct device *dev, ssize_t size,
				       dma_addr_t *dma_handle, void **ret);
int dma_release_from_coherent(struct device *dev, int order, void *vaddr);

int dma_mmap_from_coherent(struct device *dev, struct vm_area_struct *vma,
			    void *cpu_addr, size_t size, int *ret);
#else
#define dma_alloc_from_coherent(dev, size, handle, ret) (0)
#define dma_release_from_coherent(dev, order, vaddr) (0)
#define dma_mmap_from_coherent(dev, vma, vaddr, order, ret) (0)
#endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */

160
#ifdef CONFIG_HAS_DMA
L
Linus Torvalds 已提交
161
#include <asm/dma-mapping.h>
162
#else
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/*
 * Define the dma api to allow compilation but not linking of
 * dma dependent code.  Code that depends on the dma-mapping
 * API needs to set 'depends on HAS_DMA' in its Kconfig
 */
extern struct dma_map_ops bad_dma_ops;
static inline struct dma_map_ops *get_dma_ops(struct device *dev)
{
	return &bad_dma_ops;
}
#endif

static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
					      size_t size,
					      enum dma_data_direction dir,
178
					      unsigned long attrs)
179 180 181 182 183 184 185
{
	struct dma_map_ops *ops = get_dma_ops(dev);
	dma_addr_t addr;

	kmemcheck_mark_initialized(ptr, size);
	BUG_ON(!valid_dma_direction(dir));
	addr = ops->map_page(dev, virt_to_page(ptr),
186
			     offset_in_page(ptr), size,
187 188
			     dir, attrs);
	debug_dma_map_page(dev, virt_to_page(ptr),
189
			   offset_in_page(ptr), size,
190 191 192 193 194 195 196
			   dir, addr, true);
	return addr;
}

static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
					  size_t size,
					  enum dma_data_direction dir,
197
					  unsigned long attrs)
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
{
	struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (ops->unmap_page)
		ops->unmap_page(dev, addr, size, dir, attrs);
	debug_dma_unmap_page(dev, addr, size, dir, true);
}

/*
 * dma_maps_sg_attrs returns 0 on error and > 0 on success.
 * It should never return a value < 0.
 */
static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
				   int nents, enum dma_data_direction dir,
213
				   unsigned long attrs)
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
{
	struct dma_map_ops *ops = get_dma_ops(dev);
	int i, ents;
	struct scatterlist *s;

	for_each_sg(sg, s, nents, i)
		kmemcheck_mark_initialized(sg_virt(s), s->length);
	BUG_ON(!valid_dma_direction(dir));
	ents = ops->map_sg(dev, sg, nents, dir, attrs);
	BUG_ON(ents < 0);
	debug_dma_map_sg(dev, sg, nents, ents, dir);

	return ents;
}

static inline void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
				      int nents, enum dma_data_direction dir,
231
				      unsigned long attrs)
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
{
	struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	debug_dma_unmap_sg(dev, sg, nents, dir);
	if (ops->unmap_sg)
		ops->unmap_sg(dev, sg, nents, dir, attrs);
}

static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
				      size_t offset, size_t size,
				      enum dma_data_direction dir)
{
	struct dma_map_ops *ops = get_dma_ops(dev);
	dma_addr_t addr;

	kmemcheck_mark_initialized(page_address(page) + offset, size);
	BUG_ON(!valid_dma_direction(dir));
250
	addr = ops->map_page(dev, page, offset, size, dir, 0);
251 252 253 254 255 256 257 258 259 260 261 262
	debug_dma_map_page(dev, page, offset, size, dir, addr, false);

	return addr;
}

static inline void dma_unmap_page(struct device *dev, dma_addr_t addr,
				  size_t size, enum dma_data_direction dir)
{
	struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (ops->unmap_page)
263
		ops->unmap_page(dev, addr, size, dir, 0);
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	debug_dma_unmap_page(dev, addr, size, dir, false);
}

static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
					   size_t size,
					   enum dma_data_direction dir)
{
	struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (ops->sync_single_for_cpu)
		ops->sync_single_for_cpu(dev, addr, size, dir);
	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
}

static inline void dma_sync_single_for_device(struct device *dev,
					      dma_addr_t addr, size_t size,
					      enum dma_data_direction dir)
{
	struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (ops->sync_single_for_device)
		ops->sync_single_for_device(dev, addr, size, dir);
	debug_dma_sync_single_for_device(dev, addr, size, dir);
}

static inline void dma_sync_single_range_for_cpu(struct device *dev,
						 dma_addr_t addr,
						 unsigned long offset,
						 size_t size,
						 enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (ops->sync_single_for_cpu)
		ops->sync_single_for_cpu(dev, addr + offset, size, dir);
	debug_dma_sync_single_range_for_cpu(dev, addr, offset, size, dir);
}

static inline void dma_sync_single_range_for_device(struct device *dev,
						    dma_addr_t addr,
						    unsigned long offset,
						    size_t size,
						    enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (ops->sync_single_for_device)
		ops->sync_single_for_device(dev, addr + offset, size, dir);
	debug_dma_sync_single_range_for_device(dev, addr, offset, size, dir);
}

static inline void
dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
		    int nelems, enum dma_data_direction dir)
{
	struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (ops->sync_sg_for_cpu)
		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
}

static inline void
dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
		       int nelems, enum dma_data_direction dir)
{
	struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (ops->sync_sg_for_device)
		ops->sync_sg_for_device(dev, sg, nelems, dir);
	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);

}

344 345 346 347
#define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
#define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
#define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
#define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
			   void *cpu_addr, dma_addr_t dma_addr, size_t size);

void *dma_common_contiguous_remap(struct page *page, size_t size,
			unsigned long vm_flags,
			pgprot_t prot, const void *caller);

void *dma_common_pages_remap(struct page **pages, size_t size,
			unsigned long vm_flags, pgprot_t prot,
			const void *caller);
void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags);

/**
 * dma_mmap_attrs - map a coherent DMA allocation into user space
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @vma: vm_area_struct describing requested user mapping
 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
 * @handle: device-view address returned from dma_alloc_attrs
 * @size: size of memory originally requested in dma_alloc_attrs
 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
 *
 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs
 * into user space.  The coherent DMA buffer must not be freed by the
 * driver until the user space mapping has been released.
 */
static inline int
dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr,
376
	       dma_addr_t dma_addr, size_t size, unsigned long attrs)
377 378 379 380 381 382 383 384
{
	struct dma_map_ops *ops = get_dma_ops(dev);
	BUG_ON(!ops);
	if (ops->mmap)
		return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
}

385
#define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
386 387 388 389 390 391 392

int
dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
		       void *cpu_addr, dma_addr_t dma_addr, size_t size);

static inline int
dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr,
393 394
		      dma_addr_t dma_addr, size_t size,
		      unsigned long attrs)
395 396 397 398 399 400 401 402 403
{
	struct dma_map_ops *ops = get_dma_ops(dev);
	BUG_ON(!ops);
	if (ops->get_sgtable)
		return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
					attrs);
	return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size);
}

404
#define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
405 406 407 408 409 410 411

#ifndef arch_dma_alloc_attrs
#define arch_dma_alloc_attrs(dev, flag)	(true)
#endif

static inline void *dma_alloc_attrs(struct device *dev, size_t size,
				       dma_addr_t *dma_handle, gfp_t flag,
412
				       unsigned long attrs)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
{
	struct dma_map_ops *ops = get_dma_ops(dev);
	void *cpu_addr;

	BUG_ON(!ops);

	if (dma_alloc_from_coherent(dev, size, dma_handle, &cpu_addr))
		return cpu_addr;

	if (!arch_dma_alloc_attrs(&dev, &flag))
		return NULL;
	if (!ops->alloc)
		return NULL;

	cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
	return cpu_addr;
}

static inline void dma_free_attrs(struct device *dev, size_t size,
				     void *cpu_addr, dma_addr_t dma_handle,
434
				     unsigned long attrs)
435 436 437 438 439 440 441 442 443
{
	struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!ops);
	WARN_ON(irqs_disabled());

	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

444
	if (!ops->free || !cpu_addr)
445 446 447 448 449 450 451 452 453
		return;

	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
	ops->free(dev, size, cpu_addr, dma_handle, attrs);
}

static inline void *dma_alloc_coherent(struct device *dev, size_t size,
		dma_addr_t *dma_handle, gfp_t flag)
{
454
	return dma_alloc_attrs(dev, size, dma_handle, flag, 0);
455 456 457 458 459
}

static inline void dma_free_coherent(struct device *dev, size_t size,
		void *cpu_addr, dma_addr_t dma_handle)
{
460
	return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
461 462 463 464 465
}

static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
		dma_addr_t *dma_handle, gfp_t gfp)
{
466 467
	return dma_alloc_attrs(dev, size, dma_handle, gfp,
			       DMA_ATTR_NON_CONSISTENT);
468 469 470 471 472
}

static inline void dma_free_noncoherent(struct device *dev, size_t size,
		void *cpu_addr, dma_addr_t dma_handle)
{
473 474
	dma_free_attrs(dev, size, cpu_addr, dma_handle,
		       DMA_ATTR_NON_CONSISTENT);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
}

static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	debug_dma_mapping_error(dev, dma_addr);

	if (get_dma_ops(dev)->mapping_error)
		return get_dma_ops(dev)->mapping_error(dev, dma_addr);

#ifdef DMA_ERROR_CODE
	return dma_addr == DMA_ERROR_CODE;
#else
	return 0;
#endif
}

#ifndef HAVE_ARCH_DMA_SUPPORTED
static inline int dma_supported(struct device *dev, u64 mask)
{
	struct dma_map_ops *ops = get_dma_ops(dev);

	if (!ops)
		return 0;
	if (!ops->dma_supported)
		return 1;
	return ops->dma_supported(dev, mask);
}
#endif

#ifndef HAVE_ARCH_DMA_SET_MASK
static inline int dma_set_mask(struct device *dev, u64 mask)
{
	struct dma_map_ops *ops = get_dma_ops(dev);

	if (ops->set_dma_mask)
		return ops->set_dma_mask(dev, mask);

	if (!dev->dma_mask || !dma_supported(dev, mask))
		return -EIO;
	*dev->dma_mask = mask;
	return 0;
}
517
#endif
L
Linus Torvalds 已提交
518

519 520
static inline u64 dma_get_mask(struct device *dev)
{
521
	if (dev && dev->dma_mask && *dev->dma_mask)
522
		return *dev->dma_mask;
523
	return DMA_BIT_MASK(32);
524 525
}

526
#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
527 528
int dma_set_coherent_mask(struct device *dev, u64 mask);
#else
529 530 531 532 533 534 535
static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
{
	if (!dma_supported(dev, mask))
		return -EIO;
	dev->coherent_dma_mask = mask;
	return 0;
}
536
#endif
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551
/*
 * Set both the DMA mask and the coherent DMA mask to the same thing.
 * Note that we don't check the return value from dma_set_coherent_mask()
 * as the DMA API guarantees that the coherent DMA mask can be set to
 * the same or smaller than the streaming DMA mask.
 */
static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
{
	int rc = dma_set_mask(dev, mask);
	if (rc == 0)
		dma_set_coherent_mask(dev, mask);
	return rc;
}

552 553 554 555 556 557 558 559 560 561
/*
 * Similar to the above, except it deals with the case where the device
 * does not have dev->dma_mask appropriately setup.
 */
static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
{
	dev->dma_mask = &dev->coherent_dma_mask;
	return dma_set_mask_and_coherent(dev, mask);
}

L
Linus Torvalds 已提交
562 563
extern u64 dma_get_required_mask(struct device *dev);

564
#ifndef arch_setup_dma_ops
565
static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base,
566
				      u64 size, const struct iommu_ops *iommu,
567 568 569 570 571
				      bool coherent) { }
#endif

#ifndef arch_teardown_dma_ops
static inline void arch_teardown_dma_ops(struct device *dev) { }
572 573
#endif

574 575
static inline unsigned int dma_get_max_seg_size(struct device *dev)
{
576 577 578
	if (dev->dma_parms && dev->dma_parms->max_segment_size)
		return dev->dma_parms->max_segment_size;
	return SZ_64K;
579 580 581 582 583 584 585 586
}

static inline unsigned int dma_set_max_seg_size(struct device *dev,
						unsigned int size)
{
	if (dev->dma_parms) {
		dev->dma_parms->max_segment_size = size;
		return 0;
587 588
	}
	return -EIO;
589 590
}

591 592
static inline unsigned long dma_get_seg_boundary(struct device *dev)
{
593 594 595
	if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
		return dev->dma_parms->segment_boundary_mask;
	return DMA_BIT_MASK(32);
596 597 598 599 600 601 602
}

static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
{
	if (dev->dma_parms) {
		dev->dma_parms->segment_boundary_mask = mask;
		return 0;
603 604
	}
	return -EIO;
605 606
}

607 608 609 610 611 612 613
#ifndef dma_max_pfn
static inline unsigned long dma_max_pfn(struct device *dev)
{
	return *dev->dma_mask >> PAGE_SHIFT;
}
#endif

614 615 616
static inline void *dma_zalloc_coherent(struct device *dev, size_t size,
					dma_addr_t *dma_handle, gfp_t flag)
{
617 618
	void *ret = dma_alloc_coherent(dev, size, dma_handle,
				       flag | __GFP_ZERO);
619 620 621
	return ret;
}

622
#ifdef CONFIG_HAS_DMA
623 624 625 626 627 628 629
static inline int dma_get_cache_alignment(void)
{
#ifdef ARCH_DMA_MINALIGN
	return ARCH_DMA_MINALIGN;
#endif
	return 1;
}
630
#endif
631

L
Linus Torvalds 已提交
632 633 634 635 636 637
/* flags for the coherent memory api */
#define	DMA_MEMORY_MAP			0x01
#define DMA_MEMORY_IO			0x02
#define DMA_MEMORY_INCLUDES_CHILDREN	0x04
#define DMA_MEMORY_EXCLUSIVE		0x08

638 639 640 641 642 643 644
#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
				dma_addr_t device_addr, size_t size, int flags);
void dma_release_declared_memory(struct device *dev);
void *dma_mark_declared_memory_occupied(struct device *dev,
					dma_addr_t device_addr, size_t size);
#else
L
Linus Torvalds 已提交
645
static inline int
646
dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
L
Linus Torvalds 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
			    dma_addr_t device_addr, size_t size, int flags)
{
	return 0;
}

static inline void
dma_release_declared_memory(struct device *dev)
{
}

static inline void *
dma_mark_declared_memory_occupied(struct device *dev,
				  dma_addr_t device_addr, size_t size)
{
	return ERR_PTR(-EBUSY);
}
663
#endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
L
Linus Torvalds 已提交
664

T
Tejun Heo 已提交
665 666 667 668 669 670 671 672 673 674 675
/*
 * Managed DMA API
 */
extern void *dmam_alloc_coherent(struct device *dev, size_t size,
				 dma_addr_t *dma_handle, gfp_t gfp);
extern void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
			       dma_addr_t dma_handle);
extern void *dmam_alloc_noncoherent(struct device *dev, size_t size,
				    dma_addr_t *dma_handle, gfp_t gfp);
extern void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
				  dma_addr_t dma_handle);
676
#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
677 678
extern int dmam_declare_coherent_memory(struct device *dev,
					phys_addr_t phys_addr,
T
Tejun Heo 已提交
679 680 681
					dma_addr_t device_addr, size_t size,
					int flags);
extern void dmam_release_declared_memory(struct device *dev);
682
#else /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
T
Tejun Heo 已提交
683
static inline int dmam_declare_coherent_memory(struct device *dev,
684
				phys_addr_t phys_addr, dma_addr_t device_addr,
T
Tejun Heo 已提交
685 686 687 688
				size_t size, gfp_t gfp)
{
	return 0;
}
L
Linus Torvalds 已提交
689

T
Tejun Heo 已提交
690 691 692
static inline void dmam_release_declared_memory(struct device *dev)
{
}
693
#endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
L
Linus Torvalds 已提交
694

695 696
static inline void *dma_alloc_wc(struct device *dev, size_t size,
				 dma_addr_t *dma_addr, gfp_t gfp)
697
{
698 699
	return dma_alloc_attrs(dev, size, dma_addr, gfp,
			       DMA_ATTR_WRITE_COMBINE);
700
}
701 702 703
#ifndef dma_alloc_writecombine
#define dma_alloc_writecombine dma_alloc_wc
#endif
704

705 706
static inline void dma_free_wc(struct device *dev, size_t size,
			       void *cpu_addr, dma_addr_t dma_addr)
707
{
708 709
	return dma_free_attrs(dev, size, cpu_addr, dma_addr,
			      DMA_ATTR_WRITE_COMBINE);
710
}
711 712 713
#ifndef dma_free_writecombine
#define dma_free_writecombine dma_free_wc
#endif
714

715 716 717 718
static inline int dma_mmap_wc(struct device *dev,
			      struct vm_area_struct *vma,
			      void *cpu_addr, dma_addr_t dma_addr,
			      size_t size)
719
{
720 721
	return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
			      DMA_ATTR_WRITE_COMBINE);
722
}
723 724 725
#ifndef dma_mmap_writecombine
#define dma_mmap_writecombine dma_mmap_wc
#endif
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
#ifdef CONFIG_NEED_DMA_MAP_STATE
#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)        dma_addr_t ADDR_NAME
#define DEFINE_DMA_UNMAP_LEN(LEN_NAME)          __u32 LEN_NAME
#define dma_unmap_addr(PTR, ADDR_NAME)           ((PTR)->ADDR_NAME)
#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  (((PTR)->ADDR_NAME) = (VAL))
#define dma_unmap_len(PTR, LEN_NAME)             ((PTR)->LEN_NAME)
#define dma_unmap_len_set(PTR, LEN_NAME, VAL)    (((PTR)->LEN_NAME) = (VAL))
#else
#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
#define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
#define dma_unmap_addr(PTR, ADDR_NAME)           (0)
#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  do { } while (0)
#define dma_unmap_len(PTR, LEN_NAME)             (0)
#define dma_unmap_len_set(PTR, LEN_NAME, VAL)    do { } while (0)
#endif

T
Tejun Heo 已提交
743
#endif