hid-mcp2221.c 26.4 KB
Newer Older
1 2 3 4 5 6
// SPDX-License-Identifier: GPL-2.0-only
/*
 * MCP2221A - Microchip USB to I2C Host Protocol Bridge
 *
 * Copyright (c) 2020, Rishi Gupta <gupt21@gmail.com>
 *
7
 * Datasheet: https://ww1.microchip.com/downloads/en/DeviceDoc/20005565B.pdf
8 9 10 11 12
 */

#include <linux/module.h>
#include <linux/err.h>
#include <linux/mutex.h>
13
#include <linux/bitfield.h>
14 15 16 17 18
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/hid.h>
#include <linux/hidraw.h>
#include <linux/i2c.h>
19
#include <linux/gpio/driver.h>
20
#include <linux/iio/iio.h>
21 22 23 24 25 26 27 28 29 30 31 32
#include "hid-ids.h"

/* Commands codes in a raw output report */
enum {
	MCP2221_I2C_WR_DATA = 0x90,
	MCP2221_I2C_WR_NO_STOP = 0x94,
	MCP2221_I2C_RD_DATA = 0x91,
	MCP2221_I2C_RD_RPT_START = 0x93,
	MCP2221_I2C_GET_DATA = 0x40,
	MCP2221_I2C_PARAM_OR_STATUS	= 0x10,
	MCP2221_I2C_SET_SPEED = 0x20,
	MCP2221_I2C_CANCEL = 0x10,
33 34
	MCP2221_GPIO_SET = 0x50,
	MCP2221_GPIO_GET = 0x51,
35 36 37
	MCP2221_SET_SRAM_SETTINGS = 0x60,
	MCP2221_GET_SRAM_SETTINGS = 0x61,
	MCP2221_READ_FLASH_DATA = 0xb0,
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
};

/* Response codes in a raw input report */
enum {
	MCP2221_SUCCESS = 0x00,
	MCP2221_I2C_ENG_BUSY = 0x01,
	MCP2221_I2C_START_TOUT = 0x12,
	MCP2221_I2C_STOP_TOUT = 0x62,
	MCP2221_I2C_WRADDRL_TOUT = 0x23,
	MCP2221_I2C_WRDATA_TOUT = 0x44,
	MCP2221_I2C_WRADDRL_NACK = 0x25,
	MCP2221_I2C_MASK_ADDR_NACK = 0x40,
	MCP2221_I2C_WRADDRL_SEND = 0x21,
	MCP2221_I2C_ADDR_NACK = 0x25,
	MCP2221_I2C_READ_COMPL = 0x55,
53 54
	MCP2221_ALT_F_NOT_GPIOV = 0xEE,
	MCP2221_ALT_F_NOT_GPIOD = 0xEF,
55 56
};

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/* MCP GPIO direction encoding */
enum {
	MCP2221_DIR_OUT = 0x00,
	MCP2221_DIR_IN = 0x01,
};

#define MCP_NGPIO	4

/* MCP GPIO set command layout */
struct mcp_set_gpio {
	u8 cmd;
	u8 dummy;
	struct {
		u8 change_value;
		u8 value;
		u8 change_direction;
		u8 direction;
	} gpio[MCP_NGPIO];
} __packed;

/* MCP GPIO get command layout */
struct mcp_get_gpio {
	u8 cmd;
	u8 dummy;
	struct {
		u8 direction;
		u8 value;
	} gpio[MCP_NGPIO];
} __packed;

87 88 89 90 91 92 93 94 95 96
/*
 * There is no way to distinguish responses. Therefore next command
 * is sent only after response to previous has been received. Mutex
 * lock is used for this purpose mainly.
 */
struct mcp2221 {
	struct hid_device *hdev;
	struct i2c_adapter adapter;
	struct mutex lock;
	struct completion wait_in_report;
97
	struct delayed_work init_work;
98 99 100 101 102
	u8 *rxbuf;
	u8 txbuf[64];
	int rxbuf_idx;
	int status;
	u8 cur_i2c_clk_div;
103 104 105
	struct gpio_chip *gc;
	u8 gp_idx;
	u8 gpio_dir;
106 107 108 109 110 111 112 113 114 115 116 117
	u8 mode[4];
#if IS_REACHABLE(CONFIG_IIO)
	struct iio_chan_spec iio_channels[3];
	u16 adc_values[3];
	u8 adc_scale;
	u8 dac_value;
	u16 dac_scale;
#endif
};

struct mcp2221_iio {
	struct mcp2221 *mcp;
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
};

/*
 * Default i2c bus clock frequency 400 kHz. Modify this if you
 * want to set some other frequency (min 50 kHz - max 400 kHz).
 */
static uint i2c_clk_freq = 400;

/* Synchronously send output report to the device */
static int mcp_send_report(struct mcp2221 *mcp,
					u8 *out_report, size_t len)
{
	u8 *buf;
	int ret;

	buf = kmemdup(out_report, len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* mcp2221 uses interrupt endpoint for out reports */
	ret = hid_hw_output_report(mcp->hdev, buf, len);
	kfree(buf);

	if (ret < 0)
		return ret;
	return 0;
}

/*
 * Send o/p report to the device and wait for i/p report to be
 * received from the device. If the device does not respond,
 * we timeout.
 */
static int mcp_send_data_req_status(struct mcp2221 *mcp,
			u8 *out_report, int len)
{
	int ret;
	unsigned long t;

	reinit_completion(&mcp->wait_in_report);

	ret = mcp_send_report(mcp, out_report, len);
	if (ret)
		return ret;

	t = wait_for_completion_timeout(&mcp->wait_in_report,
							msecs_to_jiffies(4000));
	if (!t)
		return -ETIMEDOUT;

	return mcp->status;
}

/* Check pass/fail for actual communication with i2c slave */
static int mcp_chk_last_cmd_status(struct mcp2221 *mcp)
{
	memset(mcp->txbuf, 0, 8);
	mcp->txbuf[0] = MCP2221_I2C_PARAM_OR_STATUS;

	return mcp_send_data_req_status(mcp, mcp->txbuf, 8);
}

/* Cancels last command releasing i2c bus just in case occupied */
static int mcp_cancel_last_cmd(struct mcp2221 *mcp)
{
	memset(mcp->txbuf, 0, 8);
	mcp->txbuf[0] = MCP2221_I2C_PARAM_OR_STATUS;
	mcp->txbuf[2] = MCP2221_I2C_CANCEL;

	return mcp_send_data_req_status(mcp, mcp->txbuf, 8);
}

static int mcp_set_i2c_speed(struct mcp2221 *mcp)
{
	int ret;

	memset(mcp->txbuf, 0, 8);
	mcp->txbuf[0] = MCP2221_I2C_PARAM_OR_STATUS;
	mcp->txbuf[3] = MCP2221_I2C_SET_SPEED;
	mcp->txbuf[4] = mcp->cur_i2c_clk_div;

	ret = mcp_send_data_req_status(mcp, mcp->txbuf, 8);
	if (ret) {
		/* Small delay is needed here */
		usleep_range(980, 1000);
		mcp_cancel_last_cmd(mcp);
	}

	return 0;
}

/*
 * An output report can contain minimum 1 and maximum 60 user data
 * bytes. If the number of data bytes is more then 60, we send it
 * in chunks of 60 bytes. Last chunk may contain exactly 60 or less
 * bytes. Total number of bytes is informed in very first report to
 * mcp2221, from that point onwards it first collect all the data
 * from host and then send to i2c slave device.
 */
static int mcp_i2c_write(struct mcp2221 *mcp,
				struct i2c_msg *msg, int type, u8 last_status)
{
	int ret, len, idx, sent;

	idx = 0;
	sent  = 0;
	if (msg->len < 60)
		len = msg->len;
	else
		len = 60;

	do {
		mcp->txbuf[0] = type;
		mcp->txbuf[1] = msg->len & 0xff;
		mcp->txbuf[2] = msg->len >> 8;
		mcp->txbuf[3] = (u8)(msg->addr << 1);

		memcpy(&mcp->txbuf[4], &msg->buf[idx], len);

		ret = mcp_send_data_req_status(mcp, mcp->txbuf, len + 4);
		if (ret)
			return ret;

		usleep_range(980, 1000);

		if (last_status) {
			ret = mcp_chk_last_cmd_status(mcp);
			if (ret)
				return ret;
		}

		sent = sent + len;
		if (sent >= msg->len)
			break;

		idx = idx + len;
		if ((msg->len - sent) < 60)
			len = msg->len - sent;
		else
			len = 60;

		/*
		 * Testing shows delay is needed between successive writes
		 * otherwise next write fails on first-try from i2c core.
		 * This value is obtained through automated stress testing.
		 */
		usleep_range(980, 1000);
	} while (len > 0);

	return ret;
}

/*
 * Device reads all data (0 - 65535 bytes) from i2c slave device and
 * stores it in device itself. This data is read back from device to
 * host in multiples of 60 bytes using input reports.
 */
static int mcp_i2c_smbus_read(struct mcp2221 *mcp,
				struct i2c_msg *msg, int type, u16 smbus_addr,
				u8 smbus_len, u8 *smbus_buf)
{
	int ret;
	u16 total_len;

	mcp->txbuf[0] = type;
	if (msg) {
		mcp->txbuf[1] = msg->len & 0xff;
		mcp->txbuf[2] = msg->len >> 8;
		mcp->txbuf[3] = (u8)(msg->addr << 1);
		total_len = msg->len;
		mcp->rxbuf = msg->buf;
	} else {
		mcp->txbuf[1] = smbus_len;
		mcp->txbuf[2] = 0;
		mcp->txbuf[3] = (u8)(smbus_addr << 1);
		total_len = smbus_len;
		mcp->rxbuf = smbus_buf;
	}

	ret = mcp_send_data_req_status(mcp, mcp->txbuf, 4);
	if (ret)
		return ret;

	mcp->rxbuf_idx = 0;

	do {
		memset(mcp->txbuf, 0, 4);
		mcp->txbuf[0] = MCP2221_I2C_GET_DATA;

		ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
		if (ret)
			return ret;

		ret = mcp_chk_last_cmd_status(mcp);
		if (ret)
			return ret;

		usleep_range(980, 1000);
	} while (mcp->rxbuf_idx < total_len);

	return ret;
}

static int mcp_i2c_xfer(struct i2c_adapter *adapter,
				struct i2c_msg msgs[], int num)
{
	int ret;
	struct mcp2221 *mcp = i2c_get_adapdata(adapter);

	hid_hw_power(mcp->hdev, PM_HINT_FULLON);

	mutex_lock(&mcp->lock);

	/* Setting speed before every transaction is required for mcp2221 */
	ret = mcp_set_i2c_speed(mcp);
	if (ret)
		goto exit;

	if (num == 1) {
		if (msgs->flags & I2C_M_RD) {
			ret = mcp_i2c_smbus_read(mcp, msgs, MCP2221_I2C_RD_DATA,
							0, 0, NULL);
		} else {
			ret = mcp_i2c_write(mcp, msgs, MCP2221_I2C_WR_DATA, 1);
		}
		if (ret)
			goto exit;
		ret = num;
	} else if (num == 2) {
		/* Ex transaction; send reg address and read its contents */
		if (msgs[0].addr == msgs[1].addr &&
			!(msgs[0].flags & I2C_M_RD) &&
			 (msgs[1].flags & I2C_M_RD)) {

			ret = mcp_i2c_write(mcp, &msgs[0],
						MCP2221_I2C_WR_NO_STOP, 0);
			if (ret)
				goto exit;

			ret = mcp_i2c_smbus_read(mcp, &msgs[1],
						MCP2221_I2C_RD_RPT_START,
						0, 0, NULL);
			if (ret)
				goto exit;
			ret = num;
		} else {
			dev_err(&adapter->dev,
				"unsupported multi-msg i2c transaction\n");
			ret = -EOPNOTSUPP;
		}
	} else {
		dev_err(&adapter->dev,
			"unsupported multi-msg i2c transaction\n");
		ret = -EOPNOTSUPP;
	}

exit:
	hid_hw_power(mcp->hdev, PM_HINT_NORMAL);
	mutex_unlock(&mcp->lock);
	return ret;
}

static int mcp_smbus_write(struct mcp2221 *mcp, u16 addr,
				u8 command, u8 *buf, u8 len, int type,
				u8 last_status)
{
	int data_len, ret;

	mcp->txbuf[0] = type;
	mcp->txbuf[1] = len + 1; /* 1 is due to command byte itself */
	mcp->txbuf[2] = 0;
	mcp->txbuf[3] = (u8)(addr << 1);
	mcp->txbuf[4] = command;

	switch (len) {
	case 0:
		data_len = 5;
		break;
	case 1:
		mcp->txbuf[5] = buf[0];
		data_len = 6;
		break;
	case 2:
		mcp->txbuf[5] = buf[0];
		mcp->txbuf[6] = buf[1];
		data_len = 7;
		break;
	default:
406 407 408
		if (len > I2C_SMBUS_BLOCK_MAX)
			return -EINVAL;

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
		memcpy(&mcp->txbuf[5], buf, len);
		data_len = len + 5;
	}

	ret = mcp_send_data_req_status(mcp, mcp->txbuf, data_len);
	if (ret)
		return ret;

	if (last_status) {
		usleep_range(980, 1000);

		ret = mcp_chk_last_cmd_status(mcp);
		if (ret)
			return ret;
	}

	return ret;
}

static int mcp_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
				unsigned short flags, char read_write,
				u8 command, int size,
				union i2c_smbus_data *data)
{
	int ret;
	struct mcp2221 *mcp = i2c_get_adapdata(adapter);

	hid_hw_power(mcp->hdev, PM_HINT_FULLON);

	mutex_lock(&mcp->lock);

	ret = mcp_set_i2c_speed(mcp);
	if (ret)
		goto exit;

	switch (size) {

	case I2C_SMBUS_QUICK:
		if (read_write == I2C_SMBUS_READ)
			ret = mcp_i2c_smbus_read(mcp, NULL, MCP2221_I2C_RD_DATA,
						addr, 0, &data->byte);
		else
			ret = mcp_smbus_write(mcp, addr, command, NULL,
						0, MCP2221_I2C_WR_DATA, 1);
		break;
	case I2C_SMBUS_BYTE:
		if (read_write == I2C_SMBUS_READ)
			ret = mcp_i2c_smbus_read(mcp, NULL, MCP2221_I2C_RD_DATA,
						addr, 1, &data->byte);
		else
			ret = mcp_smbus_write(mcp, addr, command, NULL,
						0, MCP2221_I2C_WR_DATA, 1);
		break;
	case I2C_SMBUS_BYTE_DATA:
		if (read_write == I2C_SMBUS_READ) {
			ret = mcp_smbus_write(mcp, addr, command, NULL,
						0, MCP2221_I2C_WR_NO_STOP, 0);
			if (ret)
				goto exit;

			ret = mcp_i2c_smbus_read(mcp, NULL,
						MCP2221_I2C_RD_RPT_START,
						addr, 1, &data->byte);
		} else {
			ret = mcp_smbus_write(mcp, addr, command, &data->byte,
						1, MCP2221_I2C_WR_DATA, 1);
		}
		break;
	case I2C_SMBUS_WORD_DATA:
		if (read_write == I2C_SMBUS_READ) {
			ret = mcp_smbus_write(mcp, addr, command, NULL,
						0, MCP2221_I2C_WR_NO_STOP, 0);
			if (ret)
				goto exit;

			ret = mcp_i2c_smbus_read(mcp, NULL,
						MCP2221_I2C_RD_RPT_START,
						addr, 2, (u8 *)&data->word);
		} else {
			ret = mcp_smbus_write(mcp, addr, command,
						(u8 *)&data->word, 2,
						MCP2221_I2C_WR_DATA, 1);
		}
		break;
	case I2C_SMBUS_BLOCK_DATA:
		if (read_write == I2C_SMBUS_READ) {
			ret = mcp_smbus_write(mcp, addr, command, NULL,
						0, MCP2221_I2C_WR_NO_STOP, 1);
			if (ret)
				goto exit;

			mcp->rxbuf_idx = 0;
			mcp->rxbuf = data->block;
			mcp->txbuf[0] = MCP2221_I2C_GET_DATA;
			ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
			if (ret)
				goto exit;
		} else {
			if (!data->block[0]) {
				ret = -EINVAL;
				goto exit;
			}
			ret = mcp_smbus_write(mcp, addr, command, data->block,
						data->block[0] + 1,
						MCP2221_I2C_WR_DATA, 1);
		}
		break;
	case I2C_SMBUS_I2C_BLOCK_DATA:
		if (read_write == I2C_SMBUS_READ) {
			ret = mcp_smbus_write(mcp, addr, command, NULL,
						0, MCP2221_I2C_WR_NO_STOP, 1);
			if (ret)
				goto exit;

			mcp->rxbuf_idx = 0;
			mcp->rxbuf = data->block;
			mcp->txbuf[0] = MCP2221_I2C_GET_DATA;
			ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
			if (ret)
				goto exit;
		} else {
			if (!data->block[0]) {
				ret = -EINVAL;
				goto exit;
			}
			ret = mcp_smbus_write(mcp, addr, command,
						&data->block[1], data->block[0],
						MCP2221_I2C_WR_DATA, 1);
		}
		break;
	case I2C_SMBUS_PROC_CALL:
		ret = mcp_smbus_write(mcp, addr, command,
						(u8 *)&data->word,
						2, MCP2221_I2C_WR_NO_STOP, 0);
		if (ret)
			goto exit;

		ret = mcp_i2c_smbus_read(mcp, NULL,
						MCP2221_I2C_RD_RPT_START,
						addr, 2, (u8 *)&data->word);
		break;
	case I2C_SMBUS_BLOCK_PROC_CALL:
		ret = mcp_smbus_write(mcp, addr, command, data->block,
						data->block[0] + 1,
						MCP2221_I2C_WR_NO_STOP, 0);
		if (ret)
			goto exit;

		ret = mcp_i2c_smbus_read(mcp, NULL,
						MCP2221_I2C_RD_RPT_START,
						addr, I2C_SMBUS_BLOCK_MAX,
						data->block);
		break;
	default:
		dev_err(&mcp->adapter.dev,
			"unsupported smbus transaction size:%d\n", size);
		ret = -EOPNOTSUPP;
	}

exit:
	hid_hw_power(mcp->hdev, PM_HINT_NORMAL);
	mutex_unlock(&mcp->lock);
	return ret;
}

static u32 mcp_i2c_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C |
			I2C_FUNC_SMBUS_READ_BLOCK_DATA |
			I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
			(I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_PEC);
}

static const struct i2c_algorithm mcp_i2c_algo = {
	.master_xfer = mcp_i2c_xfer,
	.smbus_xfer = mcp_smbus_xfer,
	.functionality = mcp_i2c_func,
};

588
#if IS_REACHABLE(CONFIG_GPIOLIB)
589 590 591 592 593 594 595 596
static int mcp_gpio_get(struct gpio_chip *gc,
				unsigned int offset)
{
	int ret;
	struct mcp2221 *mcp = gpiochip_get_data(gc);

	mcp->txbuf[0] = MCP2221_GPIO_GET;

597
	mcp->gp_idx = offsetof(struct mcp_get_gpio, gpio[offset].value);
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

	mutex_lock(&mcp->lock);
	ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
	mutex_unlock(&mcp->lock);

	return ret;
}

static void mcp_gpio_set(struct gpio_chip *gc,
				unsigned int offset, int value)
{
	struct mcp2221 *mcp = gpiochip_get_data(gc);

	memset(mcp->txbuf, 0, 18);
	mcp->txbuf[0] = MCP2221_GPIO_SET;

614
	mcp->gp_idx = offsetof(struct mcp_set_gpio, gpio[offset].value);
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	mcp->txbuf[mcp->gp_idx - 1] = 1;
	mcp->txbuf[mcp->gp_idx] = !!value;

	mutex_lock(&mcp->lock);
	mcp_send_data_req_status(mcp, mcp->txbuf, 18);
	mutex_unlock(&mcp->lock);
}

static int mcp_gpio_dir_set(struct mcp2221 *mcp,
				unsigned int offset, u8 val)
{
	memset(mcp->txbuf, 0, 18);
	mcp->txbuf[0] = MCP2221_GPIO_SET;

630
	mcp->gp_idx = offsetof(struct mcp_set_gpio, gpio[offset].direction);
631 632 633 634 635 636 637 638 639 640 641 642 643 644

	mcp->txbuf[mcp->gp_idx - 1] = 1;
	mcp->txbuf[mcp->gp_idx] = val;

	return mcp_send_data_req_status(mcp, mcp->txbuf, 18);
}

static int mcp_gpio_direction_input(struct gpio_chip *gc,
				unsigned int offset)
{
	int ret;
	struct mcp2221 *mcp = gpiochip_get_data(gc);

	mutex_lock(&mcp->lock);
645
	ret = mcp_gpio_dir_set(mcp, offset, MCP2221_DIR_IN);
646 647 648 649 650 651 652 653 654 655 656 657
	mutex_unlock(&mcp->lock);

	return ret;
}

static int mcp_gpio_direction_output(struct gpio_chip *gc,
				unsigned int offset, int value)
{
	int ret;
	struct mcp2221 *mcp = gpiochip_get_data(gc);

	mutex_lock(&mcp->lock);
658
	ret = mcp_gpio_dir_set(mcp, offset, MCP2221_DIR_OUT);
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	mutex_unlock(&mcp->lock);

	/* Can't configure as output, bailout early */
	if (ret)
		return ret;

	mcp_gpio_set(gc, offset, value);

	return 0;
}

static int mcp_gpio_get_direction(struct gpio_chip *gc,
				unsigned int offset)
{
	int ret;
	struct mcp2221 *mcp = gpiochip_get_data(gc);

	mcp->txbuf[0] = MCP2221_GPIO_GET;

678
	mcp->gp_idx = offsetof(struct mcp_get_gpio, gpio[offset].direction);
679 680 681 682 683 684 685 686

	mutex_lock(&mcp->lock);
	ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
	mutex_unlock(&mcp->lock);

	if (ret)
		return ret;

687
	if (mcp->gpio_dir == MCP2221_DIR_IN)
688 689 690 691
		return GPIO_LINE_DIRECTION_IN;

	return GPIO_LINE_DIRECTION_OUT;
}
692
#endif
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
/* Gives current state of i2c engine inside mcp2221 */
static int mcp_get_i2c_eng_state(struct mcp2221 *mcp,
				u8 *data, u8 idx)
{
	int ret;

	switch (data[idx]) {
	case MCP2221_I2C_WRADDRL_NACK:
	case MCP2221_I2C_WRADDRL_SEND:
		ret = -ENXIO;
		break;
	case MCP2221_I2C_START_TOUT:
	case MCP2221_I2C_STOP_TOUT:
	case MCP2221_I2C_WRADDRL_TOUT:
	case MCP2221_I2C_WRDATA_TOUT:
		ret = -ETIMEDOUT;
		break;
	case MCP2221_I2C_ENG_BUSY:
		ret = -EAGAIN;
		break;
	case MCP2221_SUCCESS:
		ret = 0x00;
		break;
	default:
		ret = -EIO;
	}

	return ret;
}

/*
 * MCP2221 uses interrupt endpoint for input reports. This function
 * is called by HID layer when it receives i/p report from mcp2221,
 * which is actually a response to the previously sent command.
 *
 * MCP2221A firmware specific return codes are parsed and 0 or
 * appropriate negative error code is returned. Delayed response
 * results in timeout error and stray reponses results in -EIO.
 */
static int mcp2221_raw_event(struct hid_device *hdev,
				struct hid_report *report, u8 *data, int size)
{
736
	u8 *buf;
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	struct mcp2221 *mcp = hid_get_drvdata(hdev);

	switch (data[0]) {

	case MCP2221_I2C_WR_DATA:
	case MCP2221_I2C_WR_NO_STOP:
	case MCP2221_I2C_RD_DATA:
	case MCP2221_I2C_RD_RPT_START:
		switch (data[1]) {
		case MCP2221_SUCCESS:
			mcp->status = 0;
			break;
		default:
			mcp->status = mcp_get_i2c_eng_state(mcp, data, 2);
		}
		complete(&mcp->wait_in_report);
		break;

	case MCP2221_I2C_PARAM_OR_STATUS:
		switch (data[1]) {
		case MCP2221_SUCCESS:
			if ((mcp->txbuf[3] == MCP2221_I2C_SET_SPEED) &&
				(data[3] != MCP2221_I2C_SET_SPEED)) {
				mcp->status = -EAGAIN;
				break;
			}
			if (data[20] & MCP2221_I2C_MASK_ADDR_NACK) {
				mcp->status = -ENXIO;
				break;
			}
			mcp->status = mcp_get_i2c_eng_state(mcp, data, 8);
768 769 770
#if IS_REACHABLE(CONFIG_IIO)
			memcpy(&mcp->adc_values, &data[50], sizeof(mcp->adc_values));
#endif
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
			break;
		default:
			mcp->status = -EIO;
		}
		complete(&mcp->wait_in_report);
		break;

	case MCP2221_I2C_GET_DATA:
		switch (data[1]) {
		case MCP2221_SUCCESS:
			if (data[2] == MCP2221_I2C_ADDR_NACK) {
				mcp->status = -ENXIO;
				break;
			}
			if (!mcp_get_i2c_eng_state(mcp, data, 2)
				&& (data[3] == 0)) {
				mcp->status = 0;
				break;
			}
			if (data[3] == 127) {
				mcp->status = -EIO;
				break;
			}
			if (data[2] == MCP2221_I2C_READ_COMPL) {
				buf = mcp->rxbuf;
				memcpy(&buf[mcp->rxbuf_idx], &data[4], data[3]);
				mcp->rxbuf_idx = mcp->rxbuf_idx + data[3];
				mcp->status = 0;
				break;
			}
			mcp->status = -EIO;
			break;
		default:
			mcp->status = -EIO;
		}
		complete(&mcp->wait_in_report);
		break;

809 810 811 812 813 814 815 816
	case MCP2221_GPIO_GET:
		switch (data[1]) {
		case MCP2221_SUCCESS:
			if ((data[mcp->gp_idx] == MCP2221_ALT_F_NOT_GPIOV) ||
				(data[mcp->gp_idx + 1] == MCP2221_ALT_F_NOT_GPIOD)) {
				mcp->status = -ENOENT;
			} else {
				mcp->status = !!data[mcp->gp_idx];
817
				mcp->gpio_dir = data[mcp->gp_idx + 1];
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
			}
			break;
		default:
			mcp->status = -EAGAIN;
		}
		complete(&mcp->wait_in_report);
		break;

	case MCP2221_GPIO_SET:
		switch (data[1]) {
		case MCP2221_SUCCESS:
			if ((data[mcp->gp_idx] == MCP2221_ALT_F_NOT_GPIOV) ||
				(data[mcp->gp_idx - 1] == MCP2221_ALT_F_NOT_GPIOV)) {
				mcp->status = -ENOENT;
			} else {
				mcp->status = 0;
			}
			break;
		default:
			mcp->status = -EAGAIN;
		}
		complete(&mcp->wait_in_report);
		break;

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	case MCP2221_SET_SRAM_SETTINGS:
		switch (data[1]) {
		case MCP2221_SUCCESS:
			mcp->status = 0;
			break;
		default:
			mcp->status = -EAGAIN;
		}
		complete(&mcp->wait_in_report);
		break;

	case MCP2221_GET_SRAM_SETTINGS:
		switch (data[1]) {
		case MCP2221_SUCCESS:
			memcpy(&mcp->mode, &data[22], 4);
#if IS_REACHABLE(CONFIG_IIO)
			mcp->dac_value = data[6] & GENMASK(4, 0);
#endif
			mcp->status = 0;
			break;
		default:
			mcp->status = -EAGAIN;
		}
		complete(&mcp->wait_in_report);
		break;

	case MCP2221_READ_FLASH_DATA:
		switch (data[1]) {
		case MCP2221_SUCCESS:
			mcp->status = 0;

			/* Only handles CHIP SETTINGS subpage currently */
			if (mcp->txbuf[1] != 0) {
				mcp->status = -EIO;
				break;
			}

#if IS_REACHABLE(CONFIG_IIO)
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
			{
				u8 tmp;
				/* DAC scale value */
				tmp = FIELD_GET(GENMASK(7, 6), data[6]);
				if ((data[6] & BIT(5)) && tmp)
					mcp->dac_scale = tmp + 4;
				else
					mcp->dac_scale = 5;

				/* ADC scale value */
				tmp = FIELD_GET(GENMASK(4, 3), data[7]);
				if ((data[7] & BIT(2)) && tmp)
					mcp->adc_scale = tmp - 1;
				else
					mcp->adc_scale = 0;
			}
896 897 898 899 900 901 902 903 904
#endif

			break;
		default:
			mcp->status = -EAGAIN;
		}
		complete(&mcp->wait_in_report);
		break;

905 906 907 908 909 910 911 912
	default:
		mcp->status = -EIO;
		complete(&mcp->wait_in_report);
	}

	return 1;
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926
/* Device resource managed function for HID unregistration */
static void mcp2221_hid_unregister(void *ptr)
{
	struct hid_device *hdev = ptr;

	hid_hw_close(hdev);
	hid_hw_stop(hdev);
}

/* This is needed to be sure hid_hw_stop() isn't called twice by the subsystem */
static void mcp2221_remove(struct hid_device *hdev)
{
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
#if IS_REACHABLE(CONFIG_IIO)
static int mcp2221_read_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *channel, int *val,
			    int *val2, long mask)
{
	struct mcp2221_iio *priv = iio_priv(indio_dev);
	struct mcp2221 *mcp = priv->mcp;
	int ret;

	if (mask == IIO_CHAN_INFO_SCALE) {
		if (channel->output)
			*val = 1 << mcp->dac_scale;
		else
			*val = 1 << mcp->adc_scale;

		return IIO_VAL_INT;
	}

	mutex_lock(&mcp->lock);

	if (channel->output) {
		*val = mcp->dac_value;
		ret = IIO_VAL_INT;
	} else {
		/* Read ADC values */
		ret = mcp_chk_last_cmd_status(mcp);

		if (!ret) {
955
			*val = le16_to_cpu((__force __le16) mcp->adc_values[channel->address]);
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
			if (*val >= BIT(10))
				ret =  -EINVAL;
			else
				ret = IIO_VAL_INT;
		}
	}

	mutex_unlock(&mcp->lock);

	return ret;
}

static int mcp2221_write_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan,
			     int val, int val2, long mask)
{
	struct mcp2221_iio *priv = iio_priv(indio_dev);
	struct mcp2221 *mcp = priv->mcp;
	int ret;

	if (val < 0 || val >= BIT(5))
		return -EINVAL;

	mutex_lock(&mcp->lock);

	memset(mcp->txbuf, 0, 12);
	mcp->txbuf[0] = MCP2221_SET_SRAM_SETTINGS;
	mcp->txbuf[4] = BIT(7) | val;

	ret = mcp_send_data_req_status(mcp, mcp->txbuf, 12);
	if (!ret)
		mcp->dac_value = val;

	mutex_unlock(&mcp->lock);

	return ret;
}

static const struct iio_info mcp2221_info = {
	.read_raw = &mcp2221_read_raw,
	.write_raw = &mcp2221_write_raw,
};

static int mcp_iio_channels(struct mcp2221 *mcp)
{
	int idx, cnt = 0;
	bool dac_created = false;

	/* GP0 doesn't have ADC/DAC alternative function */
	for (idx = 1; idx < MCP_NGPIO; idx++) {
		struct iio_chan_spec *chan = &mcp->iio_channels[cnt];

		switch (mcp->mode[idx]) {
		case 2:
			chan->address = idx - 1;
			chan->channel = cnt++;
			break;
		case 3:
			/* GP1 doesn't have DAC alternative function */
			if (idx == 1 || dac_created)
				continue;
			/* DAC1 and DAC2 outputs are connected to the same DAC */
			dac_created = true;
			chan->output = 1;
			cnt++;
			break;
		default:
			continue;
		};

		chan->type = IIO_VOLTAGE;
		chan->indexed = 1;
		chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
		chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
		chan->scan_index = -1;
	}

	return cnt;
}

static void mcp_init_work(struct work_struct *work)
{
	struct iio_dev *indio_dev;
	struct mcp2221 *mcp = container_of(work, struct mcp2221, init_work.work);
	struct mcp2221_iio *data;
	static int retries = 5;
	int ret, num_channels;

	hid_hw_power(mcp->hdev, PM_HINT_FULLON);
	mutex_lock(&mcp->lock);

	mcp->txbuf[0] = MCP2221_GET_SRAM_SETTINGS;
	ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);

	if (ret == -EAGAIN)
		goto reschedule_task;

	num_channels = mcp_iio_channels(mcp);
	if (!num_channels)
		goto unlock;

	mcp->txbuf[0] = MCP2221_READ_FLASH_DATA;
	mcp->txbuf[1] = 0;
	ret = mcp_send_data_req_status(mcp, mcp->txbuf, 2);

	if (ret == -EAGAIN)
		goto reschedule_task;

	indio_dev = devm_iio_device_alloc(&mcp->hdev->dev, sizeof(*data));
	if (!indio_dev)
		goto unlock;

	data = iio_priv(indio_dev);
	data->mcp = mcp;

	indio_dev->name = "mcp2221";
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &mcp2221_info;
	indio_dev->channels = mcp->iio_channels;
	indio_dev->num_channels = num_channels;

	devm_iio_device_register(&mcp->hdev->dev, indio_dev);

unlock:
	mutex_unlock(&mcp->lock);
	hid_hw_power(mcp->hdev, PM_HINT_NORMAL);

	return;

reschedule_task:
	mutex_unlock(&mcp->lock);
	hid_hw_power(mcp->hdev, PM_HINT_NORMAL);

	if (!retries--)
		return;

	/* Device is not ready to read SRAM or FLASH data, try again */
	schedule_delayed_work(&mcp->init_work, msecs_to_jiffies(100));
}
#endif

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
static int mcp2221_probe(struct hid_device *hdev,
					const struct hid_device_id *id)
{
	int ret;
	struct mcp2221 *mcp;

	mcp = devm_kzalloc(&hdev->dev, sizeof(*mcp), GFP_KERNEL);
	if (!mcp)
		return -ENOMEM;

	ret = hid_parse(hdev);
	if (ret) {
		hid_err(hdev, "can't parse reports\n");
		return ret;
	}

	ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
	if (ret) {
		hid_err(hdev, "can't start hardware\n");
		return ret;
	}

	ret = hid_hw_open(hdev);
	if (ret) {
		hid_err(hdev, "can't open device\n");
1122 1123
		hid_hw_stop(hdev);
		return ret;
1124 1125 1126 1127 1128 1129 1130
	}

	mutex_init(&mcp->lock);
	init_completion(&mcp->wait_in_report);
	hid_set_drvdata(hdev, mcp);
	mcp->hdev = hdev;

1131 1132 1133 1134
	ret = devm_add_action_or_reset(&hdev->dev, mcp2221_hid_unregister, hdev);
	if (ret)
		return ret;

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	/* Set I2C bus clock diviser */
	if (i2c_clk_freq > 400)
		i2c_clk_freq = 400;
	if (i2c_clk_freq < 50)
		i2c_clk_freq = 50;
	mcp->cur_i2c_clk_div = (12000000 / (i2c_clk_freq * 1000)) - 3;

	mcp->adapter.owner = THIS_MODULE;
	mcp->adapter.class = I2C_CLASS_HWMON;
	mcp->adapter.algo = &mcp_i2c_algo;
	mcp->adapter.retries = 1;
	mcp->adapter.dev.parent = &hdev->dev;
	snprintf(mcp->adapter.name, sizeof(mcp->adapter.name),
			"MCP2221 usb-i2c bridge on hidraw%d",
			((struct hidraw *)hdev->hidraw)->minor);

1151
	ret = devm_i2c_add_adapter(&hdev->dev, &mcp->adapter);
1152 1153
	if (ret) {
		hid_err(hdev, "can't add usb-i2c adapter: %d\n", ret);
1154
		return ret;
1155 1156 1157
	}
	i2c_set_adapdata(&mcp->adapter, mcp);

1158
#if IS_REACHABLE(CONFIG_GPIOLIB)
1159 1160
	/* Setup GPIO chip */
	mcp->gc = devm_kzalloc(&hdev->dev, sizeof(*mcp->gc), GFP_KERNEL);
1161 1162
	if (!mcp->gc)
		return -ENOMEM;
1163 1164 1165 1166 1167 1168 1169

	mcp->gc->label = "mcp2221_gpio";
	mcp->gc->direction_input = mcp_gpio_direction_input;
	mcp->gc->direction_output = mcp_gpio_direction_output;
	mcp->gc->get_direction = mcp_gpio_get_direction;
	mcp->gc->set = mcp_gpio_set;
	mcp->gc->get = mcp_gpio_get;
1170
	mcp->gc->ngpio = MCP_NGPIO;
1171 1172 1173 1174 1175 1176
	mcp->gc->base = -1;
	mcp->gc->can_sleep = 1;
	mcp->gc->parent = &hdev->dev;

	ret = devm_gpiochip_add_data(&hdev->dev, mcp->gc, mcp);
	if (ret)
1177
		return ret;
1178
#endif
1179

1180 1181 1182 1183 1184
#if IS_REACHABLE(CONFIG_IIO)
	INIT_DELAYED_WORK(&mcp->init_work, mcp_init_work);
	schedule_delayed_work(&mcp->init_work, msecs_to_jiffies(100));
#endif

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	return 0;
}

static const struct hid_device_id mcp2221_devices[] = {
	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_MCP2221) },
	{ }
};
MODULE_DEVICE_TABLE(hid, mcp2221_devices);

static struct hid_driver mcp2221_driver = {
	.name		= "mcp2221",
	.id_table	= mcp2221_devices,
	.probe		= mcp2221_probe,
	.remove		= mcp2221_remove,
	.raw_event	= mcp2221_raw_event,
};

/* Register with HID core */
module_hid_driver(mcp2221_driver);

MODULE_AUTHOR("Rishi Gupta <gupt21@gmail.com>");
MODULE_DESCRIPTION("MCP2221 Microchip HID USB to I2C master bridge");
MODULE_LICENSE("GPL v2");