dma-mapping.h 24.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3
#ifndef _LINUX_DMA_MAPPING_H
#define _LINUX_DMA_MAPPING_H
L
Linus Torvalds 已提交
4

5
#include <linux/sizes.h>
6
#include <linux/string.h>
L
Linus Torvalds 已提交
7 8
#include <linux/device.h>
#include <linux/err.h>
9
#include <linux/dma-debug.h>
10
#include <linux/dma-direction.h>
11
#include <linux/scatterlist.h>
12
#include <linux/bug.h>
13
#include <linux/mem_encrypt.h>
L
Linus Torvalds 已提交
14

15 16
/**
 * List of possible attributes associated with a DMA mapping. The semantics
17
 * of each attribute should be defined in Documentation/core-api/dma-attributes.rst.
18
 */
19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
/*
 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
 * may be weakly ordered, that is that reads and writes may pass each other.
 */
#define DMA_ATTR_WEAK_ORDERING		(1UL << 1)
/*
 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
 * buffered to improve performance.
 */
#define DMA_ATTR_WRITE_COMBINE		(1UL << 2)
/*
 * DMA_ATTR_NON_CONSISTENT: Lets the platform to choose to return either
 * consistent or non-consistent memory as it sees fit.
 */
#define DMA_ATTR_NON_CONSISTENT		(1UL << 3)
/*
 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
 * virtual mapping for the allocated buffer.
 */
#define DMA_ATTR_NO_KERNEL_MAPPING	(1UL << 4)
/*
 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
 * the CPU cache for the given buffer assuming that it has been already
 * transferred to 'device' domain.
 */
#define DMA_ATTR_SKIP_CPU_SYNC		(1UL << 5)
/*
 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
 * in physical memory.
 */
#define DMA_ATTR_FORCE_CONTIGUOUS	(1UL << 6)
/*
 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
 * that it's probably not worth the time to try to allocate memory to in a way
 * that gives better TLB efficiency.
 */
#define DMA_ATTR_ALLOC_SINGLE_PAGES	(1UL << 7)
57 58 59 60 61
/*
 * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
 * allocation failure reports (similarly to __GFP_NOWARN).
 */
#define DMA_ATTR_NO_WARN	(1UL << 8)
62

63 64 65 66 67 68 69
/*
 * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully
 * accessible at an elevated privilege level (and ideally inaccessible or
 * at least read-only at lesser-privileged levels).
 */
#define DMA_ATTR_PRIVILEGED		(1UL << 9)

70
struct dma_map_ops {
71 72
	void* (*alloc)(struct device *dev, size_t size,
				dma_addr_t *dma_handle, gfp_t gfp,
73
				unsigned long attrs);
74 75
	void (*free)(struct device *dev, size_t size,
			      void *vaddr, dma_addr_t dma_handle,
76
			      unsigned long attrs);
77
	int (*mmap)(struct device *, struct vm_area_struct *,
78 79
			  void *, dma_addr_t, size_t,
			  unsigned long attrs);
80

81
	int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *,
82
			   dma_addr_t, size_t, unsigned long attrs);
83

84 85 86
	dma_addr_t (*map_page)(struct device *dev, struct page *page,
			       unsigned long offset, size_t size,
			       enum dma_data_direction dir,
87
			       unsigned long attrs);
88 89
	void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
			   size_t size, enum dma_data_direction dir,
90
			   unsigned long attrs);
91 92 93 94
	/*
	 * map_sg returns 0 on error and a value > 0 on success.
	 * It should never return a value < 0.
	 */
95 96
	int (*map_sg)(struct device *dev, struct scatterlist *sg,
		      int nents, enum dma_data_direction dir,
97
		      unsigned long attrs);
98 99 100
	void (*unmap_sg)(struct device *dev,
			 struct scatterlist *sg, int nents,
			 enum dma_data_direction dir,
101
			 unsigned long attrs);
102 103 104 105 106 107
	dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr,
			       size_t size, enum dma_data_direction dir,
			       unsigned long attrs);
	void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle,
			   size_t size, enum dma_data_direction dir,
			   unsigned long attrs);
108 109 110 111 112 113 114 115 116 117 118 119
	void (*sync_single_for_cpu)(struct device *dev,
				    dma_addr_t dma_handle, size_t size,
				    enum dma_data_direction dir);
	void (*sync_single_for_device)(struct device *dev,
				       dma_addr_t dma_handle, size_t size,
				       enum dma_data_direction dir);
	void (*sync_sg_for_cpu)(struct device *dev,
				struct scatterlist *sg, int nents,
				enum dma_data_direction dir);
	void (*sync_sg_for_device)(struct device *dev,
				   struct scatterlist *sg, int nents,
				   enum dma_data_direction dir);
120 121
	void (*cache_sync)(struct device *dev, void *vaddr, size_t size,
			enum dma_data_direction direction);
122
	int (*dma_supported)(struct device *dev, u64 mask);
123
	u64 (*get_required_mask)(struct device *dev);
124
	size_t (*max_mapping_size)(struct device *dev);
125
	unsigned long (*get_merge_boundary)(struct device *dev);
126 127
};

128 129 130 131 132 133 134 135 136 137
/*
 * A dma_addr_t can hold any valid DMA or bus address for the platform.  It can
 * be given to a device to use as a DMA source or target.  It is specific to a
 * given device and there may be a translation between the CPU physical address
 * space and the bus address space.
 *
 * DMA_MAPPING_ERROR is the magic error code if a mapping failed.  It should not
 * be used directly in drivers, but checked for using dma_mapping_error()
 * instead.
 */
138 139
#define DMA_MAPPING_ERROR		(~(dma_addr_t)0)

B
Bart Van Assche 已提交
140
extern const struct dma_map_ops dma_virt_ops;
141
extern const struct dma_map_ops dma_dummy_ops;
142

A
Andrew Morton 已提交
143
#define DMA_BIT_MASK(n)	(((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
144

145
#ifdef CONFIG_DMA_DECLARE_COHERENT
146 147 148 149
/*
 * These three functions are only for dma allocator.
 * Don't use them in device drivers.
 */
150
int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
151
				       dma_addr_t *dma_handle, void **ret);
152
int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr);
153

154
int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
155
			    void *cpu_addr, size_t size, int *ret);
156

157
void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size, dma_addr_t *dma_handle);
158 159 160 161
int dma_release_from_global_coherent(int order, void *vaddr);
int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr,
				  size_t size, int *ret);

162
#else
163 164 165 166
#define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0)
#define dma_release_from_dev_coherent(dev, order, vaddr) (0)
#define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0)

167
static inline void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
						   dma_addr_t *dma_handle)
{
	return NULL;
}

static inline int dma_release_from_global_coherent(int order, void *vaddr)
{
	return 0;
}

static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma,
						void *cpu_addr, size_t size,
						int *ret)
{
	return 0;
}
184
#endif /* CONFIG_DMA_DECLARE_COHERENT */
185

186 187 188
#ifdef CONFIG_HAS_DMA
#include <asm/dma-mapping.h>

189
#ifdef CONFIG_DMA_OPS
190 191
static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
{
192
	if (dev->dma_ops)
193
		return dev->dma_ops;
194
	return get_arch_dma_ops(dev->bus);
195 196 197 198 199 200 201
}

static inline void set_dma_ops(struct device *dev,
			       const struct dma_map_ops *dma_ops)
{
	dev->dma_ops = dma_ops;
}
202 203 204 205 206 207 208 209 210 211
#else /* CONFIG_DMA_OPS */
static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
{
	return NULL;
}
static inline void set_dma_ops(struct device *dev,
			       const struct dma_map_ops *dma_ops)
{
}
#endif /* CONFIG_DMA_OPS */
212

213 214 215 216 217 218 219 220 221
static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	debug_dma_mapping_error(dev, dma_addr);

	if (dma_addr == DMA_MAPPING_ERROR)
		return -ENOMEM;
	return 0;
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
		size_t offset, size_t size, enum dma_data_direction dir,
		unsigned long attrs);
void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
		enum dma_data_direction dir, unsigned long attrs);
int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, unsigned long attrs);
void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
				      int nents, enum dma_data_direction dir,
				      unsigned long attrs);
dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs);
void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
		enum dma_data_direction dir, unsigned long attrs);
void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
		enum dma_data_direction dir);
void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
		size_t size, enum dma_data_direction dir);
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
		    int nelems, enum dma_data_direction dir);
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
		       int nelems, enum dma_data_direction dir);
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
		gfp_t flag, unsigned long attrs);
void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
		dma_addr_t dma_handle, unsigned long attrs);
void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
		gfp_t gfp, unsigned long attrs);
void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
		dma_addr_t dma_handle);
void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
		enum dma_data_direction dir);
int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
		void *cpu_addr, dma_addr_t dma_addr, size_t size,
		unsigned long attrs);
int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		void *cpu_addr, dma_addr_t dma_addr, size_t size,
		unsigned long attrs);
260
bool dma_can_mmap(struct device *dev);
261 262 263 264
int dma_supported(struct device *dev, u64 mask);
int dma_set_mask(struct device *dev, u64 mask);
int dma_set_coherent_mask(struct device *dev, u64 mask);
u64 dma_get_required_mask(struct device *dev);
265
size_t dma_max_mapping_size(struct device *dev);
266
bool dma_need_sync(struct device *dev, dma_addr_t dma_addr);
267
unsigned long dma_get_merge_boundary(struct device *dev);
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
#else /* CONFIG_HAS_DMA */
static inline dma_addr_t dma_map_page_attrs(struct device *dev,
		struct page *page, size_t offset, size_t size,
		enum dma_data_direction dir, unsigned long attrs)
{
	return DMA_MAPPING_ERROR;
}
static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
}
static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, unsigned long attrs)
{
	return 0;
}
static inline void dma_unmap_sg_attrs(struct device *dev,
		struct scatterlist *sg, int nents, enum dma_data_direction dir,
		unsigned long attrs)
{
}
static inline dma_addr_t dma_map_resource(struct device *dev,
		phys_addr_t phys_addr, size_t size, enum dma_data_direction dir,
		unsigned long attrs)
{
	return DMA_MAPPING_ERROR;
}
static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
}
static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
		size_t size, enum dma_data_direction dir)
{
}
static inline void dma_sync_single_for_device(struct device *dev,
		dma_addr_t addr, size_t size, enum dma_data_direction dir)
{
}
static inline void dma_sync_sg_for_cpu(struct device *dev,
		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
{
}
static inline void dma_sync_sg_for_device(struct device *dev,
		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
{
}
static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return -ENOMEM;
}
static inline void *dma_alloc_attrs(struct device *dev, size_t size,
		dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
{
	return NULL;
}
static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
		dma_addr_t dma_handle, unsigned long attrs)
{
}
static inline void *dmam_alloc_attrs(struct device *dev, size_t size,
		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
	return NULL;
}
static inline void dmam_free_coherent(struct device *dev, size_t size,
		void *vaddr, dma_addr_t dma_handle)
{
}
static inline void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
		enum dma_data_direction dir)
{
}
static inline int dma_get_sgtable_attrs(struct device *dev,
		struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr,
		size_t size, unsigned long attrs)
{
	return -ENXIO;
}
static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		void *cpu_addr, dma_addr_t dma_addr, size_t size,
		unsigned long attrs)
{
	return -ENXIO;
}
353 354 355 356
static inline bool dma_can_mmap(struct device *dev)
{
	return false;
}
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static inline int dma_supported(struct device *dev, u64 mask)
{
	return 0;
}
static inline int dma_set_mask(struct device *dev, u64 mask)
{
	return -EIO;
}
static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
{
	return -EIO;
}
static inline u64 dma_get_required_mask(struct device *dev)
{
	return 0;
}
373 374 375 376
static inline size_t dma_max_mapping_size(struct device *dev)
{
	return 0;
}
377 378 379 380
static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
{
	return false;
}
381 382 383 384
static inline unsigned long dma_get_merge_boundary(struct device *dev)
{
	return 0;
}
385 386
#endif /* CONFIG_HAS_DMA */

387 388 389 390 391 392 393 394 395 396 397 398
static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
{
	return dma_alloc_attrs(dev, size, dma_handle, gfp,
			DMA_ATTR_NON_CONSISTENT);
}
static inline void dma_free_noncoherent(struct device *dev, size_t size,
		void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir)
{
	dma_free_attrs(dev, size, vaddr, dma_handle, DMA_ATTR_NON_CONSISTENT);
}

399 400 401
static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
402 403 404 405
	/* DMA must never operate on areas that might be remapped. */
	if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr),
			  "rejecting DMA map of vmalloc memory\n"))
		return DMA_MAPPING_ERROR;
406 407 408 409 410 411 412 413 414 415 416
	debug_dma_map_single(dev, ptr, size);
	return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr),
			size, dir, attrs);
}

static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return dma_unmap_page_attrs(dev, addr, size, dir, attrs);
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430
static inline void dma_sync_single_range_for_cpu(struct device *dev,
		dma_addr_t addr, unsigned long offset, size_t size,
		enum dma_data_direction dir)
{
	return dma_sync_single_for_cpu(dev, addr + offset, size, dir);
}

static inline void dma_sync_single_range_for_device(struct device *dev,
		dma_addr_t addr, unsigned long offset, size_t size,
		enum dma_data_direction dir)
{
	return dma_sync_single_for_device(dev, addr + offset, size, dir);
}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
/**
 * dma_map_sgtable - Map the given buffer for DMA
 * @dev:	The device for which to perform the DMA operation
 * @sgt:	The sg_table object describing the buffer
 * @dir:	DMA direction
 * @attrs:	Optional DMA attributes for the map operation
 *
 * Maps a buffer described by a scatterlist stored in the given sg_table
 * object for the @dir DMA operation by the @dev device. After success the
 * ownership for the buffer is transferred to the DMA domain.  One has to
 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
 * ownership of the buffer back to the CPU domain before touching the
 * buffer by the CPU.
 *
 * Returns 0 on success or -EINVAL on error during mapping the buffer.
 */
static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
		enum dma_data_direction dir, unsigned long attrs)
{
	int nents;

	nents = dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
	if (nents <= 0)
		return -EINVAL;
	sgt->nents = nents;
	return 0;
}

/**
 * dma_unmap_sgtable - Unmap the given buffer for DMA
 * @dev:	The device for which to perform the DMA operation
 * @sgt:	The sg_table object describing the buffer
 * @dir:	DMA direction
 * @attrs:	Optional DMA attributes for the unmap operation
 *
 * Unmaps a buffer described by a scatterlist stored in the given sg_table
 * object for the @dir DMA operation by the @dev device. After this function
 * the ownership of the buffer is transferred back to the CPU domain.
 */
static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt,
		enum dma_data_direction dir, unsigned long attrs)
{
	dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
}

/**
 * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access
 * @dev:	The device for which to perform the DMA operation
 * @sgt:	The sg_table object describing the buffer
 * @dir:	DMA direction
 *
 * Performs the needed cache synchronization and moves the ownership of the
 * buffer back to the CPU domain, so it is safe to perform any access to it
 * by the CPU. Before doing any further DMA operations, one has to transfer
 * the ownership of the buffer back to the DMA domain by calling the
 * dma_sync_sgtable_for_device().
 */
static inline void dma_sync_sgtable_for_cpu(struct device *dev,
		struct sg_table *sgt, enum dma_data_direction dir)
{
	dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir);
}

/**
 * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA
 * @dev:	The device for which to perform the DMA operation
 * @sgt:	The sg_table object describing the buffer
 * @dir:	DMA direction
 *
 * Performs the needed cache synchronization and moves the ownership of the
 * buffer back to the DMA domain, so it is safe to perform the DMA operation.
 * Once finished, one has to call dma_sync_sgtable_for_cpu() or
 * dma_unmap_sgtable().
 */
static inline void dma_sync_sgtable_for_device(struct device *dev,
		struct sg_table *sgt, enum dma_data_direction dir)
{
	dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir);
}

511 512 513 514
#define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
#define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
#define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
#define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
515 516
#define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0)
#define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0)
517 518
#define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
#define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
519

520
extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
521 522
		void *cpu_addr, dma_addr_t dma_addr, size_t size,
		unsigned long attrs);
523

524
struct page **dma_common_find_pages(void *cpu_addr);
525 526 527 528
void *dma_common_contiguous_remap(struct page *page, size_t size,
			pgprot_t prot, const void *caller);

void *dma_common_pages_remap(struct page **pages, size_t size,
529 530
			pgprot_t prot, const void *caller);
void dma_common_free_remap(void *cpu_addr, size_t size);
531

532 533 534
struct page *dma_alloc_from_pool(struct device *dev, size_t size,
		void **cpu_addr, gfp_t flags,
		bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t));
535
bool dma_free_from_pool(struct device *dev, void *start, size_t size);
536 537

int
538 539
dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr,
		dma_addr_t dma_addr, size_t size, unsigned long attrs);
540 541

static inline void *dma_alloc_coherent(struct device *dev, size_t size,
542
		dma_addr_t *dma_handle, gfp_t gfp)
543
{
544 545 546

	return dma_alloc_attrs(dev, size, dma_handle, gfp,
			(gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
547 548 549 550 551
}

static inline void dma_free_coherent(struct device *dev, size_t size,
		void *cpu_addr, dma_addr_t dma_handle)
{
552
	return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
553 554
}

L
Linus Torvalds 已提交
555

556 557
static inline u64 dma_get_mask(struct device *dev)
{
558
	if (dev->dma_mask && *dev->dma_mask)
559
		return *dev->dma_mask;
560
	return DMA_BIT_MASK(32);
561 562
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576
/*
 * Set both the DMA mask and the coherent DMA mask to the same thing.
 * Note that we don't check the return value from dma_set_coherent_mask()
 * as the DMA API guarantees that the coherent DMA mask can be set to
 * the same or smaller than the streaming DMA mask.
 */
static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
{
	int rc = dma_set_mask(dev, mask);
	if (rc == 0)
		dma_set_coherent_mask(dev, mask);
	return rc;
}

577 578 579 580 581 582 583 584 585 586
/*
 * Similar to the above, except it deals with the case where the device
 * does not have dev->dma_mask appropriately setup.
 */
static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
{
	dev->dma_mask = &dev->coherent_dma_mask;
	return dma_set_mask_and_coherent(dev, mask);
}

587 588 589 590 591 592 593 594 595 596
/**
 * dma_addressing_limited - return if the device is addressing limited
 * @dev:	device to check
 *
 * Return %true if the devices DMA mask is too small to address all memory in
 * the system, else %false.  Lack of addressing bits is the prime reason for
 * bounce buffering, but might not be the only one.
 */
static inline bool dma_addressing_limited(struct device *dev)
{
597
	return min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
598
			    dma_get_required_mask(dev);
599 600
}

601 602 603 604
#ifdef CONFIG_ARCH_HAS_SETUP_DMA_OPS
void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
		const struct iommu_ops *iommu, bool coherent);
#else
605
static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base,
606 607 608 609
		u64 size, const struct iommu_ops *iommu, bool coherent)
{
}
#endif /* CONFIG_ARCH_HAS_SETUP_DMA_OPS */
610

611 612 613 614 615 616 617
#ifdef CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS
void arch_teardown_dma_ops(struct device *dev);
#else
static inline void arch_teardown_dma_ops(struct device *dev)
{
}
#endif /* CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS */
618

619 620
static inline unsigned int dma_get_max_seg_size(struct device *dev)
{
621 622 623
	if (dev->dma_parms && dev->dma_parms->max_segment_size)
		return dev->dma_parms->max_segment_size;
	return SZ_64K;
624 625
}

626
static inline int dma_set_max_seg_size(struct device *dev, unsigned int size)
627 628 629 630
{
	if (dev->dma_parms) {
		dev->dma_parms->max_segment_size = size;
		return 0;
631 632
	}
	return -EIO;
633 634
}

635 636
static inline unsigned long dma_get_seg_boundary(struct device *dev)
{
637 638
	if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
		return dev->dma_parms->segment_boundary_mask;
639
	return ULONG_MAX;
640 641
}

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/**
 * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units
 * @dev: device to guery the boundary for
 * @page_shift: ilog() of the IOMMU page size
 *
 * Return the segment boundary in IOMMU page units (which may be different from
 * the CPU page size) for the passed in device.
 *
 * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for
 * non-DMA API callers.
 */
static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev,
		unsigned int page_shift)
{
	if (!dev)
		return (U32_MAX >> page_shift) + 1;
	return (dma_get_seg_boundary(dev) >> page_shift) + 1;
}

661 662 663 664 665
static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
{
	if (dev->dma_parms) {
		dev->dma_parms->segment_boundary_mask = mask;
		return 0;
666 667
	}
	return -EIO;
668 669
}

670 671 672 673 674 675 676 677
static inline int dma_get_cache_alignment(void)
{
#ifdef ARCH_DMA_MINALIGN
	return ARCH_DMA_MINALIGN;
#endif
	return 1;
}

678
#ifdef CONFIG_DMA_DECLARE_COHERENT
679
int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
680
				dma_addr_t device_addr, size_t size);
681
#else
L
Linus Torvalds 已提交
682
static inline int
683
dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
684
			    dma_addr_t device_addr, size_t size)
L
Linus Torvalds 已提交
685
{
686
	return -ENOSYS;
L
Linus Torvalds 已提交
687
}
688
#endif /* CONFIG_DMA_DECLARE_COHERENT */
L
Linus Torvalds 已提交
689

690 691 692 693 694 695 696
static inline void *dmam_alloc_coherent(struct device *dev, size_t size,
		dma_addr_t *dma_handle, gfp_t gfp)
{
	return dmam_alloc_attrs(dev, size, dma_handle, gfp,
			(gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
}

697 698
static inline void *dma_alloc_wc(struct device *dev, size_t size,
				 dma_addr_t *dma_addr, gfp_t gfp)
699
{
700
	unsigned long attrs = DMA_ATTR_WRITE_COMBINE;
701 702 703 704 705

	if (gfp & __GFP_NOWARN)
		attrs |= DMA_ATTR_NO_WARN;

	return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs);
706 707
}

708 709
static inline void dma_free_wc(struct device *dev, size_t size,
			       void *cpu_addr, dma_addr_t dma_addr)
710
{
711 712
	return dma_free_attrs(dev, size, cpu_addr, dma_addr,
			      DMA_ATTR_WRITE_COMBINE);
713 714
}

715 716 717 718
static inline int dma_mmap_wc(struct device *dev,
			      struct vm_area_struct *vma,
			      void *cpu_addr, dma_addr_t dma_addr,
			      size_t size)
719
{
720 721
	return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
			      DMA_ATTR_WRITE_COMBINE);
722
}
723

724
#ifdef CONFIG_NEED_DMA_MAP_STATE
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)        dma_addr_t ADDR_NAME
#define DEFINE_DMA_UNMAP_LEN(LEN_NAME)          __u32 LEN_NAME
#define dma_unmap_addr(PTR, ADDR_NAME)           ((PTR)->ADDR_NAME)
#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  (((PTR)->ADDR_NAME) = (VAL))
#define dma_unmap_len(PTR, LEN_NAME)             ((PTR)->LEN_NAME)
#define dma_unmap_len_set(PTR, LEN_NAME, VAL)    (((PTR)->LEN_NAME) = (VAL))
#else
#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
#define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
#define dma_unmap_addr(PTR, ADDR_NAME)           (0)
#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  do { } while (0)
#define dma_unmap_len(PTR, LEN_NAME)             (0)
#define dma_unmap_len_set(PTR, LEN_NAME, VAL)    do { } while (0)
#endif

740 741 742 743 744 745 746 747
/*
 * Legacy interface to set up the dma offset map.  Drivers really should not
 * actually use it, but we have a few legacy cases left.
 */
int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
		dma_addr_t dma_start, u64 size);

#endif /* _LINUX_DMA_MAPPING_H */