core-card.c 15.0 KB
Newer Older
1 2
/*
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

S
Stefan Richter 已提交
19
#include <linux/bug.h>
20 21
#include <linux/completion.h>
#include <linux/crc-itu-t.h>
22
#include <linux/device.h>
23
#include <linux/errno.h>
24 25
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
26 27
#include <linux/jiffies.h>
#include <linux/kernel.h>
28
#include <linux/kref.h>
S
Stefan Richter 已提交
29
#include <linux/list.h>
30
#include <linux/module.h>
31
#include <linux/mutex.h>
S
Stefan Richter 已提交
32 33 34 35 36 37
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <linux/workqueue.h>

#include <asm/atomic.h>
#include <asm/byteorder.h>
38

39
#include "core.h"
40

41
int fw_compute_block_crc(u32 *block)
42
{
43 44 45 46 47 48 49
	__be32 be32_block[256];
	int i, length;

	length = (*block >> 16) & 0xff;
	for (i = 0; i < length; i++)
		be32_block[i] = cpu_to_be32(block[i + 1]);
	*block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
50

51
	return length;
52 53
}

54
static DEFINE_MUTEX(card_mutex);
55 56 57 58 59
static LIST_HEAD(card_list);

static LIST_HEAD(descriptor_list);
static int descriptor_count;

60 61 62 63 64 65 66 67 68 69 70 71 72 73
#define BIB_CRC(v)		((v) <<  0)
#define BIB_CRC_LENGTH(v)	((v) << 16)
#define BIB_INFO_LENGTH(v)	((v) << 24)

#define BIB_LINK_SPEED(v)	((v) <<  0)
#define BIB_GENERATION(v)	((v) <<  4)
#define BIB_MAX_ROM(v)		((v) <<  8)
#define BIB_MAX_RECEIVE(v)	((v) << 12)
#define BIB_CYC_CLK_ACC(v)	((v) << 16)
#define BIB_PMC			((1) << 27)
#define BIB_BMC			((1) << 28)
#define BIB_ISC			((1) << 29)
#define BIB_CMC			((1) << 30)
#define BIB_IMC			((1) << 31)
74

75
static u32 *generate_config_rom(struct fw_card *card, size_t *config_rom_length)
76 77 78 79 80
{
	struct fw_descriptor *desc;
	static u32 config_rom[256];
	int i, j, length;

81 82
	/*
	 * Initialize contents of config rom buffer.  On the OHCI
83 84 85
	 * controller, block reads to the config rom accesses the host
	 * memory, but quadlet read access the hardware bus info block
	 * registers.  That's just crack, but it means we should make
J
Jay Fenlason 已提交
86
	 * sure the contents of bus info block in host memory matches
87 88
	 * the version stored in the OHCI registers.
	 */
89

90
	memset(config_rom, 0, sizeof(config_rom));
91
	config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
92 93 94
	config_rom[1] = 0x31333934;

	config_rom[2] =
95 96 97 98 99
		BIB_LINK_SPEED(card->link_speed) |
		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
		BIB_MAX_ROM(2) |
		BIB_MAX_RECEIVE(card->max_receive) |
		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
100 101 102 103 104 105 106 107 108 109 110
	config_rom[3] = card->guid >> 32;
	config_rom[4] = card->guid;

	/* Generate root directory. */
	i = 5;
	config_rom[i++] = 0;
	config_rom[i++] = 0x0c0083c0; /* node capabilities */
	j = i + descriptor_count;

	/* Generate root directory entries for descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
111 112
		if (desc->immediate > 0)
			config_rom[i++] = desc->immediate;
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
		config_rom[i] = desc->key | (j - i);
		i++;
		j += desc->length;
	}

	/* Update root directory length. */
	config_rom[5] = (i - 5 - 1) << 16;

	/* End of root directory, now copy in descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
		memcpy(&config_rom[i], desc->data, desc->length * 4);
		i += desc->length;
	}

	/* Calculate CRCs for all blocks in the config rom.  This
	 * assumes that CRC length and info length are identical for
	 * the bus info block, which is always the case for this
	 * implementation. */
131 132
	for (i = 0; i < j; i += length + 1)
		length = fw_compute_block_crc(config_rom + i);
133 134 135 136 137 138

	*config_rom_length = j;

	return config_rom;
}

139
static void update_config_roms(void)
140 141 142 143 144 145 146 147 148 149 150
{
	struct fw_card *card;
	u32 *config_rom;
	size_t length;

	list_for_each_entry (card, &card_list, link) {
		config_rom = generate_config_rom(card, &length);
		card->driver->set_config_rom(card, config_rom, length);
	}
}

151
int fw_core_add_descriptor(struct fw_descriptor *desc)
152 153 154
{
	size_t i;

155 156
	/*
	 * Check descriptor is valid; the length of all blocks in the
157
	 * descriptor has to add up to exactly the length of the
158 159
	 * block.
	 */
160 161 162 163 164
	i = 0;
	while (i < desc->length)
		i += (desc->data[i] >> 16) + 1;

	if (i != desc->length)
165
		return -EINVAL;
166

167
	mutex_lock(&card_mutex);
168

169
	list_add_tail(&desc->link, &descriptor_list);
170
	descriptor_count++;
171 172
	if (desc->immediate > 0)
		descriptor_count++;
173 174
	update_config_roms();

175
	mutex_unlock(&card_mutex);
176 177 178

	return 0;
}
J
Jay Fenlason 已提交
179
EXPORT_SYMBOL(fw_core_add_descriptor);
180

181
void fw_core_remove_descriptor(struct fw_descriptor *desc)
182
{
183
	mutex_lock(&card_mutex);
184 185 186

	list_del(&desc->link);
	descriptor_count--;
187 188
	if (desc->immediate > 0)
		descriptor_count--;
189 190
	update_config_roms();

191
	mutex_unlock(&card_mutex);
192
}
J
Jay Fenlason 已提交
193
EXPORT_SYMBOL(fw_core_remove_descriptor);
194

195
static void allocate_broadcast_channel(struct fw_card *card, int generation)
196
{
197 198 199 200 201
	int channel, bandwidth = 0;

	fw_iso_resource_manage(card, generation, 1ULL << 31,
			       &channel, &bandwidth, true);
	if (channel == 31) {
202 203
		card->broadcast_channel_allocated = true;
		device_for_each_child(card->device, (void *)(long)generation,
204
				      fw_device_set_broadcast_channel);
205 206 207
	}
}

208 209 210 211
static const char gap_count_table[] = {
	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
};

212
void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
213 214 215 216 217 218 219 220 221
{
	int scheduled;

	fw_card_get(card);
	scheduled = schedule_delayed_work(&card->work, delay);
	if (!scheduled)
		fw_card_put(card);
}

222
static void fw_card_bm_work(struct work_struct *work)
223
{
224
	struct fw_card *card = container_of(work, struct fw_card, work.work);
225 226
	struct fw_device *root_device;
	struct fw_node *root_node;
227
	unsigned long flags;
228 229
	int root_id, new_root_id, irm_id, local_id;
	int gap_count, generation, grace, rcode;
230
	bool do_reset = false;
231 232
	bool root_device_is_running;
	bool root_device_is_cmc;
J
Jay Fenlason 已提交
233
	__be32 lock_data[2];
234 235

	spin_lock_irqsave(&card->lock, flags);
236

237
	if (card->local_node == NULL) {
238
		spin_unlock_irqrestore(&card->lock, flags);
239
		goto out_put_card;
240
	}
241 242

	generation = card->generation;
243 244
	root_node = card->root_node;
	fw_node_get(root_node);
245
	root_device = root_node->data;
246 247 248
	root_device_is_running = root_device &&
			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
	root_device_is_cmc = root_device && root_device->cmc;
249 250 251
	root_id  = root_node->node_id;
	irm_id   = card->irm_node->node_id;
	local_id = card->local_node->node_id;
252 253 254

	grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));

255
	if (is_next_generation(generation, card->bm_generation) ||
256
	    (card->bm_generation != generation && grace)) {
257 258
		/*
		 * This first step is to figure out who is IRM and
259 260 261 262 263 264 265
		 * then try to become bus manager.  If the IRM is not
		 * well defined (e.g. does not have an active link
		 * layer or does not responds to our lock request, we
		 * will have to do a little vigilante bus management.
		 * In that case, we do a goto into the gap count logic
		 * so that when we do the reset, we still optimize the
		 * gap count.  That could well save a reset in the
266 267
		 * next generation.
		 */
268

269 270
		if (!card->irm_node->link_on) {
			new_root_id = local_id;
271 272 273 274 275
			fw_notify("IRM has link off, making local node (%02x) root.\n",
				  new_root_id);
			goto pick_me;
		}

J
Jay Fenlason 已提交
276
		lock_data[0] = cpu_to_be32(0x3f);
277
		lock_data[1] = cpu_to_be32(local_id);
278 279 280

		spin_unlock_irqrestore(&card->lock, flags);

J
Jay Fenlason 已提交
281 282 283 284
		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
				irm_id, generation, SCODE_100,
				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
				lock_data, sizeof(lock_data));
285

J
Jay Fenlason 已提交
286 287
		if (rcode == RCODE_GENERATION)
			/* Another bus reset, BM work has been rescheduled. */
288
			goto out;
289

J
Jay Fenlason 已提交
290
		if (rcode == RCODE_COMPLETE &&
291
		    lock_data[0] != cpu_to_be32(0x3f)) {
292 293 294 295 296

			/* Somebody else is BM.  Only act as IRM. */
			if (local_id == irm_id)
				allocate_broadcast_channel(card, generation);

297
			goto out;
298
		}
299 300

		spin_lock_irqsave(&card->lock, flags);
J
Jay Fenlason 已提交
301 302

		if (rcode != RCODE_COMPLETE) {
303 304
			/*
			 * The lock request failed, maybe the IRM
305 306
			 * isn't really IRM capable after all. Let's
			 * do a bus reset and pick the local node as
307 308
			 * root, and thus, IRM.
			 */
309
			new_root_id = local_id;
310 311 312 313 314
			fw_notify("BM lock failed, making local node (%02x) root.\n",
				  new_root_id);
			goto pick_me;
		}
	} else if (card->bm_generation != generation) {
315
		/*
316 317
		 * We weren't BM in the last generation, and the last
		 * bus reset is less than 125ms ago.  Reschedule this job.
318
		 */
319
		spin_unlock_irqrestore(&card->lock, flags);
320
		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
321
		goto out;
322 323
	}

324 325
	/*
	 * We're bus manager for this generation, so next step is to
326
	 * make sure we have an active cycle master and do gap count
327 328
	 * optimization.
	 */
329
	card->bm_generation = generation;
330

331
	if (root_device == NULL) {
332 333 334 335
		/*
		 * Either link_on is false, or we failed to read the
		 * config rom.  In either case, pick another root.
		 */
336
		new_root_id = local_id;
337
	} else if (!root_device_is_running) {
338 339 340 341
		/*
		 * If we haven't probed this device yet, bail out now
		 * and let's try again once that's done.
		 */
342
		spin_unlock_irqrestore(&card->lock, flags);
343
		goto out;
344
	} else if (root_device_is_cmc) {
345 346
		/*
		 * FIXME: I suppose we should set the cmstr bit in the
347 348
		 * STATE_CLEAR register of this node, as described in
		 * 1394-1995, 8.4.2.6.  Also, send out a force root
349 350
		 * packet for this node.
		 */
351
		new_root_id = root_id;
352
	} else {
353 354
		/*
		 * Current root has an active link layer and we
355
		 * successfully read the config rom, but it's not
356 357
		 * cycle master capable.
		 */
358
		new_root_id = local_id;
359 360
	}

361
 pick_me:
362 363 364 365 366
	/*
	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
	 * the typically much larger 1394b beta repeater delays though.
	 */
	if (!card->beta_repeaters_present &&
367 368
	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
		gap_count = gap_count_table[root_node->max_hops];
369 370 371
	else
		gap_count = 63;

372
	/*
373 374
	 * Finally, figure out if we should do a reset or not.  If we have
	 * done less than 5 resets with the same physical topology and we
375 376
	 * have either a new root or a new gap count setting, let's do it.
	 */
377

378 379
	if (card->bm_retries++ < 5 &&
	    (card->gap_count != gap_count || new_root_id != root_id))
380
		do_reset = true;
381 382 383

	spin_unlock_irqrestore(&card->lock, flags);

384 385
	if (do_reset) {
		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
386 387
			  card->index, new_root_id, gap_count);
		fw_send_phy_config(card, new_root_id, generation, gap_count);
388
		fw_core_initiate_bus_reset(card, 1);
389 390 391 392
		/* Will allocate broadcast channel after the reset. */
	} else {
		if (local_id == irm_id)
			allocate_broadcast_channel(card, generation);
393
	}
394

395 396
 out:
	fw_node_put(root_node);
397 398
 out_put_card:
	fw_card_put(card);
399 400
}

401
static void flush_timer_callback(unsigned long data)
402 403 404 405 406 407
{
	struct fw_card *card = (struct fw_card *)data;

	fw_flush_transactions(card);
}

408 409 410
void fw_card_initialize(struct fw_card *card,
			const struct fw_card_driver *driver,
			struct device *device)
411
{
412
	static atomic_t index = ATOMIC_INIT(-1);
413

414
	card->index = atomic_inc_return(&index);
415
	card->driver = driver;
416
	card->device = device;
417 418
	card->current_tlabel = 0;
	card->tlabel_mask = 0;
419
	card->color = 0;
420
	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
421

422 423
	kref_init(&card->kref);
	init_completion(&card->done);
424
	INIT_LIST_HEAD(&card->transaction_list);
425 426 427 428 429 430
	spin_lock_init(&card->lock);
	setup_timer(&card->flush_timer,
		    flush_timer_callback, (unsigned long)card);

	card->local_node = NULL;

431
	INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
432 433 434
}
EXPORT_SYMBOL(fw_card_initialize);

435 436
int fw_card_add(struct fw_card *card,
		u32 max_receive, u32 link_speed, u64 guid)
437 438 439
{
	u32 *config_rom;
	size_t length;
440
	int ret;
441 442 443 444 445

	card->max_receive = max_receive;
	card->link_speed = link_speed;
	card->guid = guid;

446
	mutex_lock(&card_mutex);
447
	config_rom = generate_config_rom(card, &length);
448
	list_add_tail(&card->link, &card_list);
449
	mutex_unlock(&card_mutex);
450

451 452
	ret = card->driver->enable(card, config_rom, length);
	if (ret < 0) {
453 454 455 456
		mutex_lock(&card_mutex);
		list_del(&card->link);
		mutex_unlock(&card_mutex);
	}
457 458

	return ret;
459 460 461 462
}
EXPORT_SYMBOL(fw_card_add);


463
/*
464 465 466 467 468
 * The next few functions implement a dummy driver that is used once a card
 * driver shuts down an fw_card.  This allows the driver to cleanly unload,
 * as all IO to the card will be handled (and failed) by the dummy driver
 * instead of calling into the module.  Only functions for iso context
 * shutdown still need to be provided by the card driver.
469
 */
470

471
static int dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
472 473 474 475 476
{
	BUG();
	return -1;
}

477 478
static int dummy_update_phy_reg(struct fw_card *card, int address,
				int clear_bits, int set_bits)
479 480 481 482
{
	return -ENODEV;
}

483 484
static int dummy_set_config_rom(struct fw_card *card,
				u32 *config_rom, size_t length)
485
{
486 487 488 489
	/*
	 * We take the card out of card_list before setting the dummy
	 * driver, so this should never get called.
	 */
490 491 492 493
	BUG();
	return -1;
}

494
static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
495
{
496
	packet->callback(packet, card, -ENODEV);
497 498
}

499
static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
500
{
501
	packet->callback(packet, card, -ENODEV);
502 503
}

504
static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
505 506 507 508
{
	return -ENOENT;
}

509 510
static int dummy_enable_phys_dma(struct fw_card *card,
				 int node_id, int generation)
511 512 513 514
{
	return -ENODEV;
}

515
static const struct fw_card_driver dummy_driver_template = {
516 517 518
	.enable          = dummy_enable,
	.update_phy_reg  = dummy_update_phy_reg,
	.set_config_rom  = dummy_set_config_rom,
519
	.send_request    = dummy_send_request,
520
	.cancel_packet   = dummy_cancel_packet,
521
	.send_response   = dummy_send_response,
522
	.enable_phys_dma = dummy_enable_phys_dma,
523 524
};

525
void fw_card_release(struct kref *kref)
526 527 528 529 530 531
{
	struct fw_card *card = container_of(kref, struct fw_card, kref);

	complete(&card->done);
}

532
void fw_core_remove_card(struct fw_card *card)
533
{
534 535
	struct fw_card_driver dummy_driver = dummy_driver_template;

536 537
	card->driver->update_phy_reg(card, 4,
				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
538 539
	fw_core_initiate_bus_reset(card, 1);

540
	mutex_lock(&card_mutex);
541
	list_del_init(&card->link);
542
	mutex_unlock(&card_mutex);
543

544 545 546
	/* Switch off most of the card driver interface. */
	dummy_driver.free_iso_context	= card->driver->free_iso_context;
	dummy_driver.stop_iso		= card->driver->stop_iso;
547 548 549
	card->driver = &dummy_driver;

	fw_destroy_nodes(card);
550 551 552 553

	/* Wait for all users, especially device workqueue jobs, to finish. */
	fw_card_put(card);
	wait_for_completion(&card->done);
554

555
	WARN_ON(!list_empty(&card->transaction_list));
556
	del_timer_sync(&card->flush_timer);
557 558 559
}
EXPORT_SYMBOL(fw_core_remove_card);

560
int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
561
{
562 563 564 565
	int reg = short_reset ? 5 : 1;
	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;

	return card->driver->update_phy_reg(card, reg, 0, bit);
566 567
}
EXPORT_SYMBOL(fw_core_initiate_bus_reset);