bcache.h 31.7 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
K
Kent Overstreet 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
#ifndef _BCACHE_H
#define _BCACHE_H

/*
 * SOME HIGH LEVEL CODE DOCUMENTATION:
 *
 * Bcache mostly works with cache sets, cache devices, and backing devices.
 *
 * Support for multiple cache devices hasn't quite been finished off yet, but
 * it's about 95% plumbed through. A cache set and its cache devices is sort of
 * like a md raid array and its component devices. Most of the code doesn't care
 * about individual cache devices, the main abstraction is the cache set.
 *
 * Multiple cache devices is intended to give us the ability to mirror dirty
 * cached data and metadata, without mirroring clean cached data.
 *
 * Backing devices are different, in that they have a lifetime independent of a
 * cache set. When you register a newly formatted backing device it'll come up
 * in passthrough mode, and then you can attach and detach a backing device from
 * a cache set at runtime - while it's mounted and in use. Detaching implicitly
 * invalidates any cached data for that backing device.
 *
 * A cache set can have multiple (many) backing devices attached to it.
 *
 * There's also flash only volumes - this is the reason for the distinction
 * between struct cached_dev and struct bcache_device. A flash only volume
 * works much like a bcache device that has a backing device, except the
 * "cached" data is always dirty. The end result is that we get thin
 * provisioning with very little additional code.
 *
 * Flash only volumes work but they're not production ready because the moving
 * garbage collector needs more work. More on that later.
 *
 * BUCKETS/ALLOCATION:
 *
 * Bcache is primarily designed for caching, which means that in normal
 * operation all of our available space will be allocated. Thus, we need an
 * efficient way of deleting things from the cache so we can write new things to
 * it.
 *
 * To do this, we first divide the cache device up into buckets. A bucket is the
 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
 * works efficiently.
 *
 * Each bucket has a 16 bit priority, and an 8 bit generation associated with
 * it. The gens and priorities for all the buckets are stored contiguously and
 * packed on disk (in a linked list of buckets - aside from the superblock, all
 * of bcache's metadata is stored in buckets).
 *
 * The priority is used to implement an LRU. We reset a bucket's priority when
 * we allocate it or on cache it, and every so often we decrement the priority
 * of each bucket. It could be used to implement something more sophisticated,
 * if anyone ever gets around to it.
 *
 * The generation is used for invalidating buckets. Each pointer also has an 8
 * bit generation embedded in it; for a pointer to be considered valid, its gen
 * must match the gen of the bucket it points into.  Thus, to reuse a bucket all
 * we have to do is increment its gen (and write its new gen to disk; we batch
 * this up).
 *
 * Bcache is entirely COW - we never write twice to a bucket, even buckets that
 * contain metadata (including btree nodes).
 *
 * THE BTREE:
 *
 * Bcache is in large part design around the btree.
 *
 * At a high level, the btree is just an index of key -> ptr tuples.
 *
 * Keys represent extents, and thus have a size field. Keys also have a variable
 * number of pointers attached to them (potentially zero, which is handy for
 * invalidating the cache).
 *
 * The key itself is an inode:offset pair. The inode number corresponds to a
 * backing device or a flash only volume. The offset is the ending offset of the
 * extent within the inode - not the starting offset; this makes lookups
 * slightly more convenient.
 *
 * Pointers contain the cache device id, the offset on that device, and an 8 bit
 * generation number. More on the gen later.
 *
 * Index lookups are not fully abstracted - cache lookups in particular are
 * still somewhat mixed in with the btree code, but things are headed in that
 * direction.
 *
 * Updates are fairly well abstracted, though. There are two different ways of
 * updating the btree; insert and replace.
 *
 * BTREE_INSERT will just take a list of keys and insert them into the btree -
 * overwriting (possibly only partially) any extents they overlap with. This is
 * used to update the index after a write.
 *
 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
 * overwriting a key that matches another given key. This is used for inserting
 * data into the cache after a cache miss, and for background writeback, and for
 * the moving garbage collector.
 *
 * There is no "delete" operation; deleting things from the index is
 * accomplished by either by invalidating pointers (by incrementing a bucket's
 * gen) or by inserting a key with 0 pointers - which will overwrite anything
 * previously present at that location in the index.
 *
 * This means that there are always stale/invalid keys in the btree. They're
 * filtered out by the code that iterates through a btree node, and removed when
 * a btree node is rewritten.
 *
 * BTREE NODES:
 *
 * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
 * free smaller than a bucket - so, that's how big our btree nodes are.
 *
 * (If buckets are really big we'll only use part of the bucket for a btree node
 * - no less than 1/4th - but a bucket still contains no more than a single
 * btree node. I'd actually like to change this, but for now we rely on the
 * bucket's gen for deleting btree nodes when we rewrite/split a node.)
 *
 * Anyways, btree nodes are big - big enough to be inefficient with a textbook
 * btree implementation.
 *
 * The way this is solved is that btree nodes are internally log structured; we
 * can append new keys to an existing btree node without rewriting it. This
 * means each set of keys we write is sorted, but the node is not.
 *
 * We maintain this log structure in memory - keeping 1Mb of keys sorted would
 * be expensive, and we have to distinguish between the keys we have written and
 * the keys we haven't. So to do a lookup in a btree node, we have to search
 * each sorted set. But we do merge written sets together lazily, so the cost of
 * these extra searches is quite low (normally most of the keys in a btree node
 * will be in one big set, and then there'll be one or two sets that are much
 * smaller).
 *
 * This log structure makes bcache's btree more of a hybrid between a
 * conventional btree and a compacting data structure, with some of the
 * advantages of both.
 *
 * GARBAGE COLLECTION:
 *
 * We can't just invalidate any bucket - it might contain dirty data or
 * metadata. If it once contained dirty data, other writes might overwrite it
 * later, leaving no valid pointers into that bucket in the index.
 *
 * Thus, the primary purpose of garbage collection is to find buckets to reuse.
 * It also counts how much valid data it each bucket currently contains, so that
 * allocation can reuse buckets sooner when they've been mostly overwritten.
 *
 * It also does some things that are really internal to the btree
 * implementation. If a btree node contains pointers that are stale by more than
 * some threshold, it rewrites the btree node to avoid the bucket's generation
 * wrapping around. It also merges adjacent btree nodes if they're empty enough.
 *
 * THE JOURNAL:
 *
 * Bcache's journal is not necessary for consistency; we always strictly
 * order metadata writes so that the btree and everything else is consistent on
 * disk in the event of an unclean shutdown, and in fact bcache had writeback
 * caching (with recovery from unclean shutdown) before journalling was
 * implemented.
 *
 * Rather, the journal is purely a performance optimization; we can't complete a
 * write until we've updated the index on disk, otherwise the cache would be
 * inconsistent in the event of an unclean shutdown. This means that without the
 * journal, on random write workloads we constantly have to update all the leaf
 * nodes in the btree, and those writes will be mostly empty (appending at most
 * a few keys each) - highly inefficient in terms of amount of metadata writes,
 * and it puts more strain on the various btree resorting/compacting code.
 *
 * The journal is just a log of keys we've inserted; on startup we just reinsert
 * all the keys in the open journal entries. That means that when we're updating
 * a node in the btree, we can wait until a 4k block of keys fills up before
 * writing them out.
 *
 * For simplicity, we only journal updates to leaf nodes; updates to parent
 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
 * the complexity to deal with journalling them (in particular, journal replay)
 * - updates to non leaf nodes just happen synchronously (see btree_split()).
 */

#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__

181
#include <linux/bcache.h>
K
Kent Overstreet 已提交
182 183 184 185 186 187
#include <linux/bio.h>
#include <linux/kobject.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/rbtree.h>
#include <linux/rwsem.h>
188
#include <linux/refcount.h>
K
Kent Overstreet 已提交
189 190
#include <linux/types.h>
#include <linux/workqueue.h>
191
#include <linux/kthread.h>
K
Kent Overstreet 已提交
192

193
#include "bset.h"
K
Kent Overstreet 已提交
194 195 196 197 198 199 200 201
#include "util.h"
#include "closure.h"

struct bucket {
	atomic_t	pin;
	uint16_t	prio;
	uint8_t		gen;
	uint8_t		last_gc; /* Most out of date gen in the btree */
202
	uint16_t	gc_mark; /* Bitfield used by GC. See below for field */
K
Kent Overstreet 已提交
203 204 205 206 207 208 209 210
};

/*
 * I'd use bitfields for these, but I don't trust the compiler not to screw me
 * as multiple threads touch struct bucket without locking
 */

BITMASK(GC_MARK,	 struct bucket, gc_mark, 0, 2);
211 212 213
#define GC_MARK_RECLAIMABLE	1
#define GC_MARK_DIRTY		2
#define GC_MARK_METADATA	3
214 215 216
#define GC_SECTORS_USED_SIZE	13
#define MAX_GC_SECTORS_USED	(~(~0ULL << GC_SECTORS_USED_SIZE))
BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
217
BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
K
Kent Overstreet 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

#include "journal.h"
#include "stats.h"
struct search;
struct btree;
struct keybuf;

struct keybuf_key {
	struct rb_node		node;
	BKEY_PADDED(key);
	void			*private;
};

struct keybuf {
	struct bkey		last_scanned;
	spinlock_t		lock;

	/*
	 * Beginning and end of range in rb tree - so that we can skip taking
	 * lock and checking the rb tree when we need to check for overlapping
	 * keys.
	 */
	struct bkey		start;
	struct bkey		end;

	struct rb_root		keys;

245
#define KEYBUF_NR		500
K
Kent Overstreet 已提交
246 247 248 249 250 251 252 253 254
	DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
};

struct bcache_device {
	struct closure		cl;

	struct kobject		kobj;

	struct cache_set	*c;
255
	unsigned int		id;
K
Kent Overstreet 已提交
256 257 258 259 260
#define BCACHEDEVNAME_SIZE	12
	char			name[BCACHEDEVNAME_SIZE];

	struct gendisk		*disk;

261
	unsigned long		flags;
262 263 264 265 266
#define BCACHE_DEV_CLOSING		0
#define BCACHE_DEV_DETACHING		1
#define BCACHE_DEV_UNLINK_DONE		2
#define BCACHE_DEV_WB_RUNNING		3
#define BCACHE_DEV_RATE_DW_RUNNING	4
267 268
	unsigned int		nr_stripes;
	unsigned int		stripe_size;
269
	atomic_t		*stripe_sectors_dirty;
270
	unsigned long		*full_dirty_stripes;
271

272
	struct bio_set		bio_split;
K
Kent Overstreet 已提交
273

274
	unsigned int		data_csum:1;
K
Kent Overstreet 已提交
275

276 277
	int (*cache_miss)(struct btree *b, struct search *s,
			  struct bio *bio, unsigned int sectors);
278 279
	int (*ioctl)(struct bcache_device *d, fmode_t mode,
		     unsigned int cmd, unsigned long arg);
K
Kent Overstreet 已提交
280 281 282 283 284 285 286 287
};

struct io {
	/* Used to track sequential IO so it can be skipped */
	struct hlist_node	hash;
	struct list_head	lru;

	unsigned long		jiffies;
288
	unsigned int		sequential;
K
Kent Overstreet 已提交
289 290 291
	sector_t		last;
};

292 293 294 295 296 297
enum stop_on_failure {
	BCH_CACHED_DEV_STOP_AUTO = 0,
	BCH_CACHED_DEV_STOP_ALWAYS,
	BCH_CACHED_DEV_STOP_MODE_MAX,
};

K
Kent Overstreet 已提交
298 299 300 301 302 303 304 305
struct cached_dev {
	struct list_head	list;
	struct bcache_device	disk;
	struct block_device	*bdev;

	struct cache_sb		sb;
	struct bio		sb_bio;
	struct bio_vec		sb_bv[1];
306 307
	struct closure		sb_write;
	struct semaphore	sb_write_mutex;
K
Kent Overstreet 已提交
308 309

	/* Refcount on the cache set. Always nonzero when we're caching. */
310
	refcount_t		count;
K
Kent Overstreet 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	struct work_struct	detach;

	/*
	 * Device might not be running if it's dirty and the cache set hasn't
	 * showed up yet.
	 */
	atomic_t		running;

	/*
	 * Writes take a shared lock from start to finish; scanning for dirty
	 * data to refill the rb tree requires an exclusive lock.
	 */
	struct rw_semaphore	writeback_lock;

	/*
	 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
	 * data in the cache. Protected by writeback_lock; must have an
	 * shared lock to set and exclusive lock to clear.
	 */
	atomic_t		has_dirty;

332
	struct bch_ratelimit	writeback_rate;
K
Kent Overstreet 已提交
333 334
	struct delayed_work	writeback_rate_update;

335 336
	/* Limit number of writeback bios in flight */
	struct semaphore	in_flight;
337
	struct task_struct	*writeback_thread;
338
	struct workqueue_struct	*writeback_write_wq;
K
Kent Overstreet 已提交
339 340 341

	struct keybuf		writeback_keys;

342
	struct task_struct	*status_update_thread;
343 344 345 346 347 348 349 350
	/*
	 * Order the write-half of writeback operations strongly in dispatch
	 * order.  (Maintain LBA order; don't allow reads completing out of
	 * order to re-order the writes...)
	 */
	struct closure_waitlist writeback_ordering_wait;
	atomic_t		writeback_sequence_next;

K
Kent Overstreet 已提交
351 352 353 354 355 356 357 358 359 360 361
	/* For tracking sequential IO */
#define RECENT_IO_BITS	7
#define RECENT_IO	(1 << RECENT_IO_BITS)
	struct io		io[RECENT_IO];
	struct hlist_head	io_hash[RECENT_IO + 1];
	struct list_head	io_lru;
	spinlock_t		io_lock;

	struct cache_accounting	accounting;

	/* The rest of this all shows up in sysfs */
362 363
	unsigned int		sequential_cutoff;
	unsigned int		readahead;
K
Kent Overstreet 已提交
364

365 366 367
	unsigned int		io_disable:1;
	unsigned int		verify:1;
	unsigned int		bypass_torture_test:1;
K
Kent Overstreet 已提交
368

369 370 371
	unsigned int		partial_stripes_expensive:1;
	unsigned int		writeback_metadata:1;
	unsigned int		writeback_running:1;
K
Kent Overstreet 已提交
372
	unsigned char		writeback_percent;
373
	unsigned int		writeback_delay;
K
Kent Overstreet 已提交
374 375

	uint64_t		writeback_rate_target;
376
	int64_t			writeback_rate_proportional;
377 378
	int64_t			writeback_rate_integral;
	int64_t			writeback_rate_integral_scaled;
379
	int32_t			writeback_rate_change;
K
Kent Overstreet 已提交
380

381 382 383 384
	unsigned int		writeback_rate_update_seconds;
	unsigned int		writeback_rate_i_term_inverse;
	unsigned int		writeback_rate_p_term_inverse;
	unsigned int		writeback_rate_minimum;
385 386

	enum stop_on_failure	stop_when_cache_set_failed;
387 388
#define DEFAULT_CACHED_DEV_ERROR_LIMIT	64
	atomic_t		io_errors;
389 390
	unsigned int		error_limit;
	unsigned int		offline_seconds;
391 392

	char			backing_dev_name[BDEVNAME_SIZE];
K
Kent Overstreet 已提交
393 394
};

395 396 397 398 399 400
enum alloc_reserve {
	RESERVE_BTREE,
	RESERVE_PRIO,
	RESERVE_MOVINGGC,
	RESERVE_NONE,
	RESERVE_NR,
K
Kent Overstreet 已提交
401 402 403 404 405 406 407 408 409 410 411
};

struct cache {
	struct cache_set	*set;
	struct cache_sb		sb;
	struct bio		sb_bio;
	struct bio_vec		sb_bv[1];

	struct kobject		kobj;
	struct block_device	*bdev;

412
	struct task_struct	*alloc_thread;
K
Kent Overstreet 已提交
413 414 415 416 417 418 419

	struct closure		prio;
	struct prio_set		*disk_buckets;

	/*
	 * When allocating new buckets, prio_write() gets first dibs - since we
	 * may not be allocate at all without writing priorities and gens.
420 421 422
	 * prio_last_buckets[] contains the last buckets we wrote priorities to
	 * (so gc can mark them as metadata), prio_buckets[] contains the
	 * buckets allocated for the next prio write.
K
Kent Overstreet 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435
	 */
	uint64_t		*prio_buckets;
	uint64_t		*prio_last_buckets;

	/*
	 * free: Buckets that are ready to be used
	 *
	 * free_inc: Incoming buckets - these are buckets that currently have
	 * cached data in them, and we can't reuse them until after we write
	 * their new gen to disk. After prio_write() finishes writing the new
	 * gens/prios, they'll be moved to the free list (and possibly discarded
	 * in the process)
	 */
436
	DECLARE_FIFO(long, free)[RESERVE_NR];
K
Kent Overstreet 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450
	DECLARE_FIFO(long, free_inc);

	size_t			fifo_last_bucket;

	/* Allocation stuff: */
	struct bucket		*buckets;

	DECLARE_HEAP(struct bucket *, heap);

	/*
	 * If nonzero, we know we aren't going to find any buckets to invalidate
	 * until a gc finishes - otherwise we could pointlessly burn a ton of
	 * cpu
	 */
451
	unsigned int		invalidate_needs_gc;
K
Kent Overstreet 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464

	bool			discard; /* Get rid of? */

	struct journal_device	journal;

	/* The rest of this all shows up in sysfs */
#define IO_ERROR_SHIFT		20
	atomic_t		io_errors;
	atomic_t		io_count;

	atomic_long_t		meta_sectors_written;
	atomic_long_t		btree_sectors_written;
	atomic_long_t		sectors_written;
465 466

	char			cache_dev_name[BDEVNAME_SIZE];
K
Kent Overstreet 已提交
467 468 469 470
};

struct gc_stat {
	size_t			nodes;
T
Tang Junhui 已提交
471
	size_t			nodes_pre;
K
Kent Overstreet 已提交
472 473 474 475
	size_t			key_bytes;

	size_t			nkeys;
	uint64_t		data;	/* sectors */
476
	unsigned int		in_use; /* percent */
K
Kent Overstreet 已提交
477 478 479 480 481 482 483 484 485 486 487 488
};

/*
 * Flag bits, for how the cache set is shutting down, and what phase it's at:
 *
 * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
 * all the backing devices first (their cached data gets invalidated, and they
 * won't automatically reattach).
 *
 * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
 * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
 * flushing dirty data).
489 490 491
 *
 * CACHE_SET_RUNNING means all cache devices have been registered and journal
 * replay is complete.
492 493 494 495
 *
 * CACHE_SET_IO_DISABLE is set when bcache is stopping the whold cache set, all
 * external and internal I/O should be denied when this flag is set.
 *
K
Kent Overstreet 已提交
496 497 498
 */
#define CACHE_SET_UNREGISTERING		0
#define	CACHE_SET_STOPPING		1
499
#define	CACHE_SET_RUNNING		2
500
#define CACHE_SET_IO_DISABLE		3
K
Kent Overstreet 已提交
501 502 503 504 505 506 507 508 509 510 511

struct cache_set {
	struct closure		cl;

	struct list_head	list;
	struct kobject		kobj;
	struct kobject		internal;
	struct dentry		*debug;
	struct cache_accounting accounting;

	unsigned long		flags;
512 513
	atomic_t		idle_counter;
	atomic_t		at_max_writeback_rate;
K
Kent Overstreet 已提交
514 515 516 517 518 519 520 521

	struct cache_sb		sb;

	struct cache		*cache[MAX_CACHES_PER_SET];
	struct cache		*cache_by_alloc[MAX_CACHES_PER_SET];
	int			caches_loaded;

	struct bcache_device	**devices;
522
	unsigned int		devices_max_used;
523
	atomic_t		attached_dev_nr;
K
Kent Overstreet 已提交
524 525
	struct list_head	cached_devs;
	uint64_t		cached_dev_sectors;
526
	atomic_long_t		flash_dev_dirty_sectors;
K
Kent Overstreet 已提交
527 528
	struct closure		caching;

529 530
	struct closure		sb_write;
	struct semaphore	sb_write_mutex;
K
Kent Overstreet 已提交
531

532 533 534
	mempool_t		search;
	mempool_t		bio_meta;
	struct bio_set		bio_split;
K
Kent Overstreet 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551

	/* For the btree cache */
	struct shrinker		shrink;

	/* For the btree cache and anything allocation related */
	struct mutex		bucket_lock;

	/* log2(bucket_size), in sectors */
	unsigned short		bucket_bits;

	/* log2(block_size), in sectors */
	unsigned short		block_bits;

	/*
	 * Default number of pages for a new btree node - may be less than a
	 * full bucket
	 */
552
	unsigned int		btree_pages;
K
Kent Overstreet 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

	/*
	 * Lists of struct btrees; lru is the list for structs that have memory
	 * allocated for actual btree node, freed is for structs that do not.
	 *
	 * We never free a struct btree, except on shutdown - we just put it on
	 * the btree_cache_freed list and reuse it later. This simplifies the
	 * code, and it doesn't cost us much memory as the memory usage is
	 * dominated by buffers that hold the actual btree node data and those
	 * can be freed - and the number of struct btrees allocated is
	 * effectively bounded.
	 *
	 * btree_cache_freeable effectively is a small cache - we use it because
	 * high order page allocations can be rather expensive, and it's quite
	 * common to delete and allocate btree nodes in quick succession. It
	 * should never grow past ~2-3 nodes in practice.
	 */
	struct list_head	btree_cache;
	struct list_head	btree_cache_freeable;
	struct list_head	btree_cache_freed;

	/* Number of elements in btree_cache + btree_cache_freeable lists */
575
	unsigned int		btree_cache_used;
K
Kent Overstreet 已提交
576 577 578 579

	/*
	 * If we need to allocate memory for a new btree node and that
	 * allocation fails, we can cannibalize another node in the btree cache
580 581
	 * to satisfy the allocation - lock to guarantee only one thread does
	 * this at a time:
K
Kent Overstreet 已提交
582
	 */
583 584
	wait_queue_head_t	btree_cache_wait;
	struct task_struct	*btree_cache_alloc_lock;
K
Kent Overstreet 已提交
585 586 587 588 589 590 591 592 593 594 595 596

	/*
	 * When we free a btree node, we increment the gen of the bucket the
	 * node is in - but we can't rewrite the prios and gens until we
	 * finished whatever it is we were doing, otherwise after a crash the
	 * btree node would be freed but for say a split, we might not have the
	 * pointers to the new nodes inserted into the btree yet.
	 *
	 * This is a refcount that blocks prio_write() until the new keys are
	 * written.
	 */
	atomic_t		prio_blocked;
597
	wait_queue_head_t	bucket_wait;
K
Kent Overstreet 已提交
598 599 600 601 602 603

	/*
	 * For any bio we don't skip we subtract the number of sectors from
	 * rescale; when it hits 0 we rescale all the bucket priorities.
	 */
	atomic_t		rescale;
T
Tang Junhui 已提交
604 605 606 607
	/*
	 * used for GC, identify if any front side I/Os is inflight
	 */
	atomic_t		search_inflight;
K
Kent Overstreet 已提交
608 609 610 611 612 613 614 615 616
	/*
	 * When we invalidate buckets, we use both the priority and the amount
	 * of good data to determine which buckets to reuse first - to weight
	 * those together consistently we keep track of the smallest nonzero
	 * priority of any bucket.
	 */
	uint16_t		min_prio;

	/*
617 618
	 * max(gen - last_gc) for all buckets. When it gets too big we have to
	 * gc to keep gens from wrapping around.
K
Kent Overstreet 已提交
619 620 621 622
	 */
	uint8_t			need_gc;
	struct gc_stat		gc_stats;
	size_t			nbuckets;
623
	size_t			avail_nbuckets;
K
Kent Overstreet 已提交
624

K
Kent Overstreet 已提交
625
	struct task_struct	*gc_thread;
K
Kent Overstreet 已提交
626 627 628
	/* Where in the btree gc currently is */
	struct bkey		gc_done;

629 630 631 632 633 634 635 636 637 638 639 640 641 642
	/*
	 * For automatical garbage collection after writeback completed, this
	 * varialbe is used as bit fields,
	 * - 0000 0001b (BCH_ENABLE_AUTO_GC): enable gc after writeback
	 * - 0000 0010b (BCH_DO_AUTO_GC):     do gc after writeback
	 * This is an optimization for following write request after writeback
	 * finished, but read hit rate dropped due to clean data on cache is
	 * discarded. Unless user explicitly sets it via sysfs, it won't be
	 * enabled.
	 */
#define BCH_ENABLE_AUTO_GC	1
#define BCH_DO_AUTO_GC		2
	uint8_t			gc_after_writeback;

K
Kent Overstreet 已提交
643 644 645 646 647 648 649 650
	/*
	 * The allocation code needs gc_mark in struct bucket to be correct, but
	 * it's not while a gc is in progress. Protected by bucket_lock.
	 */
	int			gc_mark_valid;

	/* Counts how many sectors bio_insert has added to the cache */
	atomic_t		sectors_to_gc;
651
	wait_queue_head_t	gc_wait;
K
Kent Overstreet 已提交
652 653 654

	struct keybuf		moving_gc_keys;
	/* Number of moving GC bios in flight */
K
Kent Overstreet 已提交
655
	struct semaphore	moving_in_flight;
K
Kent Overstreet 已提交
656

657 658
	struct workqueue_struct	*moving_gc_wq;

K
Kent Overstreet 已提交
659 660 661 662
	struct btree		*root;

#ifdef CONFIG_BCACHE_DEBUG
	struct btree		*verify_data;
663
	struct bset		*verify_ondisk;
K
Kent Overstreet 已提交
664 665 666
	struct mutex		verify_lock;
#endif

667
	unsigned int		nr_uuids;
K
Kent Overstreet 已提交
668 669
	struct uuid_entry	*uuids;
	BKEY_PADDED(uuid_bucket);
670 671
	struct closure		uuid_write;
	struct semaphore	uuid_write_mutex;
K
Kent Overstreet 已提交
672 673 674

	/*
	 * A btree node on disk could have too many bsets for an iterator to fit
675 676 677 678 679
	 * on the stack - have to dynamically allocate them.
	 * bch_cache_set_alloc() will make sure the pool can allocate iterators
	 * equipped with enough room that can host
	 *     (sb.bucket_size / sb.block_size)
	 * btree_iter_sets, which is more than static MAX_BSETS.
K
Kent Overstreet 已提交
680
	 */
681
	mempool_t		fill_iter;
K
Kent Overstreet 已提交
682

683
	struct bset_sort_state	sort;
K
Kent Overstreet 已提交
684 685 686 687 688 689 690 691

	/* List of buckets we're currently writing data to */
	struct list_head	data_buckets;
	spinlock_t		data_bucket_lock;

	struct journal		journal;

#define CONGESTED_MAX		1024
692
	unsigned int		congested_last_us;
K
Kent Overstreet 已提交
693 694 695
	atomic_t		congested;

	/* The rest of this all shows up in sysfs */
696 697
	unsigned int		congested_read_threshold_us;
	unsigned int		congested_write_threshold_us;
K
Kent Overstreet 已提交
698 699 700 701 702 703 704 705

	struct time_stats	btree_gc_time;
	struct time_stats	btree_split_time;
	struct time_stats	btree_read_time;

	atomic_long_t		cache_read_races;
	atomic_long_t		writeback_keys_done;
	atomic_long_t		writeback_keys_failed;
706

T
Tang Junhui 已提交
707 708 709 710
	atomic_long_t		reclaim;
	atomic_long_t		flush_write;
	atomic_long_t		retry_flush_write;

711 712 713 714
	enum			{
		ON_ERROR_UNREGISTER,
		ON_ERROR_PANIC,
	}			on_error;
C
Coly Li 已提交
715
#define DEFAULT_IO_ERROR_LIMIT 8
716 717
	unsigned int		error_limit;
	unsigned int		error_decay;
718

K
Kent Overstreet 已提交
719
	unsigned short		journal_delay_ms;
K
Kent Overstreet 已提交
720
	bool			expensive_debug_checks;
721 722 723 724 725
	unsigned int		verify:1;
	unsigned int		key_merging_disabled:1;
	unsigned int		gc_always_rewrite:1;
	unsigned int		shrinker_disabled:1;
	unsigned int		copy_gc_enabled:1;
K
Kent Overstreet 已提交
726 727 728

#define BUCKET_HASH_BITS	12
	struct hlist_head	bucket_hash[1 << BUCKET_HASH_BITS];
729 730

	DECLARE_HEAP(struct btree *, flush_btree);
K
Kent Overstreet 已提交
731 732 733
};

struct bbio {
734
	unsigned int		submit_time_us;
K
Kent Overstreet 已提交
735 736 737 738 739 740 741 742 743 744 745 746
	union {
		struct bkey	key;
		uint64_t	_pad[3];
		/*
		 * We only need pad = 3 here because we only ever carry around a
		 * single pointer - i.e. the pointer we're doing io to/from.
		 */
	};
	struct bio		bio;
};

#define BTREE_PRIO		USHRT_MAX
747
#define INITIAL_PRIO		32768U
K
Kent Overstreet 已提交
748 749 750

#define btree_bytes(c)		((c)->btree_pages * PAGE_SIZE)
#define btree_blocks(b)							\
751
	((unsigned int) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
K
Kent Overstreet 已提交
752 753

#define btree_default_blocks(c)						\
754
	((unsigned int) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
K
Kent Overstreet 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

#define bucket_pages(c)		((c)->sb.bucket_size / PAGE_SECTORS)
#define bucket_bytes(c)		((c)->sb.bucket_size << 9)
#define block_bytes(c)		((c)->sb.block_size << 9)

#define prios_per_bucket(c)				\
	((bucket_bytes(c) - sizeof(struct prio_set)) /	\
	 sizeof(struct bucket_disk))
#define prio_buckets(c)					\
	DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))

static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
{
	return s >> c->bucket_bits;
}

static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
{
	return ((sector_t) b) << c->bucket_bits;
}

static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
{
	return s & (c->sb.bucket_size - 1);
}

static inline struct cache *PTR_CACHE(struct cache_set *c,
				      const struct bkey *k,
783
				      unsigned int ptr)
K
Kent Overstreet 已提交
784 785 786 787 788 789
{
	return c->cache[PTR_DEV(k, ptr)];
}

static inline size_t PTR_BUCKET_NR(struct cache_set *c,
				   const struct bkey *k,
790
				   unsigned int ptr)
K
Kent Overstreet 已提交
791 792 793 794 795 796
{
	return sector_to_bucket(c, PTR_OFFSET(k, ptr));
}

static inline struct bucket *PTR_BUCKET(struct cache_set *c,
					const struct bkey *k,
797
					unsigned int ptr)
K
Kent Overstreet 已提交
798 799 800 801
{
	return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
}

802 803 804
static inline uint8_t gen_after(uint8_t a, uint8_t b)
{
	uint8_t r = a - b;
805

806 807 808 809
	return r > 128U ? 0 : r;
}

static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
810
				unsigned int i)
811 812 813 814 815
{
	return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
}

static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
816
				 unsigned int i)
817 818 819 820
{
	return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
}

K
Kent Overstreet 已提交
821 822 823 824 825 826 827
/* Btree key macros */

/*
 * This is used for various on disk data structures - cache_sb, prio_set, bset,
 * jset: The checksum is _always_ the first 8 bytes of these structs
 */
#define csum_set(i)							\
828
	bch_crc64(((void *) (i)) + sizeof(uint64_t),			\
K
Kent Overstreet 已提交
829 830
		  ((void *) bset_bkey_last(i)) -			\
		  (((void *) (i)) + sizeof(uint64_t)))
K
Kent Overstreet 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

/* Error handling macros */

#define btree_bug(b, ...)						\
do {									\
	if (bch_cache_set_error((b)->c, __VA_ARGS__))			\
		dump_stack();						\
} while (0)

#define cache_bug(c, ...)						\
do {									\
	if (bch_cache_set_error(c, __VA_ARGS__))			\
		dump_stack();						\
} while (0)

#define btree_bug_on(cond, b, ...)					\
do {									\
	if (cond)							\
		btree_bug(b, __VA_ARGS__);				\
} while (0)

#define cache_bug_on(cond, c, ...)					\
do {									\
	if (cond)							\
		cache_bug(c, __VA_ARGS__);				\
} while (0)

#define cache_set_err_on(cond, c, ...)					\
do {									\
	if (cond)							\
		bch_cache_set_error(c, __VA_ARGS__);			\
} while (0)

/* Looping macros */

#define for_each_cache(ca, cs, iter)					\
	for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)

#define for_each_bucket(b, ca)						\
	for (b = (ca)->buckets + (ca)->sb.first_bucket;			\
	     b < (ca)->buckets + (ca)->sb.nbuckets; b++)

static inline void cached_dev_put(struct cached_dev *dc)
{
875
	if (refcount_dec_and_test(&dc->count))
K
Kent Overstreet 已提交
876 877 878 879 880
		schedule_work(&dc->detach);
}

static inline bool cached_dev_get(struct cached_dev *dc)
{
881
	if (!refcount_inc_not_zero(&dc->count))
K
Kent Overstreet 已提交
882 883 884
		return false;

	/* Paired with the mb in cached_dev_attach */
885
	smp_mb__after_atomic();
K
Kent Overstreet 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	return true;
}

/*
 * bucket_gc_gen() returns the difference between the bucket's current gen and
 * the oldest gen of any pointer into that bucket in the btree (last_gc).
 */

static inline uint8_t bucket_gc_gen(struct bucket *b)
{
	return b->gen - b->last_gc;
}

#define BUCKET_GC_GEN_MAX	96U

#define kobj_attribute_write(n, fn)					\
902
	static struct kobj_attribute ksysfs_##n = __ATTR(n, 0200, NULL, fn)
K
Kent Overstreet 已提交
903 904 905

#define kobj_attribute_rw(n, show, store)				\
	static struct kobj_attribute ksysfs_##n =			\
906
		__ATTR(n, 0600, show, store)
K
Kent Overstreet 已提交
907

908 909 910
static inline void wake_up_allocators(struct cache_set *c)
{
	struct cache *ca;
911
	unsigned int i;
912 913 914 915 916

	for_each_cache(ca, c, i)
		wake_up_process(ca->alloc_thread);
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
static inline void closure_bio_submit(struct cache_set *c,
				      struct bio *bio,
				      struct closure *cl)
{
	closure_get(cl);
	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) {
		bio->bi_status = BLK_STS_IOERR;
		bio_endio(bio);
		return;
	}
	generic_make_request(bio);
}

/*
 * Prevent the kthread exits directly, and make sure when kthread_stop()
 * is called to stop a kthread, it is still alive. If a kthread might be
 * stopped by CACHE_SET_IO_DISABLE bit set, wait_for_kthread_stop() is
 * necessary before the kthread returns.
 */
static inline void wait_for_kthread_stop(void)
{
	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
	}
}

K
Kent Overstreet 已提交
944 945
/* Forward declarations */

946
void bch_count_backing_io_errors(struct cached_dev *dc, struct bio *bio);
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
void bch_count_io_errors(struct cache *ca, blk_status_t error,
			 int is_read, const char *m);
void bch_bbio_count_io_errors(struct cache_set *c, struct bio *bio,
			      blk_status_t error, const char *m);
void bch_bbio_endio(struct cache_set *c, struct bio *bio,
		    blk_status_t error, const char *m);
void bch_bbio_free(struct bio *bio, struct cache_set *c);
struct bio *bch_bbio_alloc(struct cache_set *c);

void __bch_submit_bbio(struct bio *bio, struct cache_set *c);
void bch_submit_bbio(struct bio *bio, struct cache_set *c,
		     struct bkey *k, unsigned int ptr);

uint8_t bch_inc_gen(struct cache *ca, struct bucket *b);
void bch_rescale_priorities(struct cache_set *c, int sectors);

bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b);
void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b);

void __bch_bucket_free(struct cache *ca, struct bucket *b);
void bch_bucket_free(struct cache_set *c, struct bkey *k);

long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait);
int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
			   struct bkey *k, int n, bool wait);
int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
			 struct bkey *k, int n, bool wait);
bool bch_alloc_sectors(struct cache_set *c, struct bkey *k,
		       unsigned int sectors, unsigned int write_point,
		       unsigned int write_prio, bool wait);
977
bool bch_cached_dev_error(struct cached_dev *dc);
K
Kent Overstreet 已提交
978 979

__printf(2, 3)
980
bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...);
K
Kent Overstreet 已提交
981

982 983
void bch_prio_write(struct cache *ca);
void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent);
K
Kent Overstreet 已提交
984

K
Kent Overstreet 已提交
985
extern struct workqueue_struct *bcache_wq;
986
extern struct workqueue_struct *bch_journal_wq;
K
Kent Overstreet 已提交
987 988 989 990 991 992 993 994 995
extern struct mutex bch_register_lock;
extern struct list_head bch_cache_sets;

extern struct kobj_type bch_cached_dev_ktype;
extern struct kobj_type bch_flash_dev_ktype;
extern struct kobj_type bch_cache_set_ktype;
extern struct kobj_type bch_cache_set_internal_ktype;
extern struct kobj_type bch_cache_ktype;

996 997 998 999
void bch_cached_dev_release(struct kobject *kobj);
void bch_flash_dev_release(struct kobject *kobj);
void bch_cache_set_release(struct kobject *kobj);
void bch_cache_release(struct kobject *kobj);
K
Kent Overstreet 已提交
1000

1001 1002
int bch_uuid_write(struct cache_set *c);
void bcache_write_super(struct cache_set *c);
K
Kent Overstreet 已提交
1003 1004 1005

int bch_flash_dev_create(struct cache_set *c, uint64_t size);

1006 1007 1008
int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
			  uint8_t *set_uuid);
void bch_cached_dev_detach(struct cached_dev *dc);
1009
int bch_cached_dev_run(struct cached_dev *dc);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
void bcache_device_stop(struct bcache_device *d);

void bch_cache_set_unregister(struct cache_set *c);
void bch_cache_set_stop(struct cache_set *c);

struct cache_set *bch_cache_set_alloc(struct cache_sb *sb);
void bch_btree_cache_free(struct cache_set *c);
int bch_btree_cache_alloc(struct cache_set *c);
void bch_moving_init_cache_set(struct cache_set *c);
int bch_open_buckets_alloc(struct cache_set *c);
void bch_open_buckets_free(struct cache_set *c);
K
Kent Overstreet 已提交
1021

1022
int bch_cache_allocator_start(struct cache *ca);
K
Kent Overstreet 已提交
1023 1024

void bch_debug_exit(void);
1025
void bch_debug_init(void);
K
Kent Overstreet 已提交
1026 1027 1028 1029
void bch_request_exit(void);
int bch_request_init(void);

#endif /* _BCACHE_H */