vmscan.c 80.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
43 44 45 46 47 48

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

49 50
#include "internal.h"

L
Linus Torvalds 已提交
51 52 53 54
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

55 56 57
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

58 59 60
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

61 62
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
63
	/* This context's GFP mask */
A
Al Viro 已提交
64
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
65 66 67

	int may_writepage;

68 69
	/* Can mapped pages be reclaimed? */
	int may_unmap;
70

71 72 73
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

74
	int swappiness;
75

A
Andy Whitcroft 已提交
76
	int order;
77

78 79 80 81 82 83
	/*
	 * Intend to reclaim enough contenious memory rather than to reclaim
	 * enough amount memory. I.e, it's the mode for high order allocation.
	 */
	bool lumpy_reclaim_mode;

84 85 86
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

87 88 89 90 91 92
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;

93 94 95 96
	/* Pluggable isolate pages callback */
	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
			unsigned long *scanned, int order, int mode,
			struct zone *z, struct mem_cgroup *mem_cont,
97
			int active, int file);
L
Linus Torvalds 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
134
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
135 136 137 138

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

139
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
140
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
141
#else
142
#define scanning_global_lru(sc)	(1)
143 144
#endif

145 146 147
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
148
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
149 150
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

151 152 153
	return &zone->reclaim_stat;
}

154 155
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
156
{
157
	if (!scanning_global_lru(sc))
158 159
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

160 161 162 163
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
164 165 166
/*
 * Add a shrinker callback to be called from the vm
 */
167
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
168
{
169 170 171 172
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
173
}
174
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
175 176 177 178

/*
 * Remove one
 */
179
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
180 181 182 183 184
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
185
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
186 187 188 189 190 191 192 193 194 195

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
196
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
197 198 199 200 201 202 203
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
204 205
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
206
 */
207 208
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
209 210
{
	struct shrinker *shrinker;
211
	unsigned long ret = 0;
L
Linus Torvalds 已提交
212 213 214 215 216

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
217
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
218 219 220 221

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
222
		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
L
Linus Torvalds 已提交
223 224

		delta = (4 * scanned) / shrinker->seeks;
225
		delta *= max_pass;
L
Linus Torvalds 已提交
226 227
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
228
		if (shrinker->nr < 0) {
229 230 231
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
232 233 234 235 236 237 238 239 240 241
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
242 243 244 245 246 247 248

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
249
			int nr_before;
L
Linus Torvalds 已提交
250

251 252
			nr_before = (*shrinker->shrink)(0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
L
Linus Torvalds 已提交
253 254
			if (shrink_ret == -1)
				break;
255 256
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
257
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
258 259 260 261 262 263 264 265
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
266
	return ret;
L
Linus Torvalds 已提交
267 268 269 270
}

static inline int is_page_cache_freeable(struct page *page)
{
271 272 273 274 275
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
276
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
277 278 279 280
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
281
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
	lock_page(page);
306 307
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
308 309 310
	unlock_page(page);
}

311 312 313 314 315 316
/* Request for sync pageout. */
enum pageout_io {
	PAGEOUT_IO_ASYNC,
	PAGEOUT_IO_SYNC,
};

317 318 319 320 321 322 323 324 325 326 327 328
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
329
/*
A
Andrew Morton 已提交
330 331
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
332
 */
333 334
static pageout_t pageout(struct page *page, struct address_space *mapping,
						enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
335 336 337 338 339 340 341 342
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
343
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
359
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
360 361
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
362
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
378 379
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
388
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
389 390 391
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
392 393 394 395 396 397 398 399 400

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
401 402 403 404
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
405
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
406 407 408 409 410 411
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

412
/*
N
Nick Piggin 已提交
413 414
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
415
 */
N
Nick Piggin 已提交
416
static int __remove_mapping(struct address_space *mapping, struct page *page)
417
{
418 419
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
420

N
Nick Piggin 已提交
421
	spin_lock_irq(&mapping->tree_lock);
422
	/*
N
Nick Piggin 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
446
	 */
N
Nick Piggin 已提交
447
	if (!page_freeze_refs(page, 2))
448
		goto cannot_free;
N
Nick Piggin 已提交
449 450 451
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
452
		goto cannot_free;
N
Nick Piggin 已提交
453
	}
454 455 456 457

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
458
		spin_unlock_irq(&mapping->tree_lock);
459
		swapcache_free(swap, page);
N
Nick Piggin 已提交
460 461
	} else {
		__remove_from_page_cache(page);
N
Nick Piggin 已提交
462
		spin_unlock_irq(&mapping->tree_lock);
463
		mem_cgroup_uncharge_cache_page(page);
464 465 466 467 468
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
469
	spin_unlock_irq(&mapping->tree_lock);
470 471 472
	return 0;
}

N
Nick Piggin 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
506
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
520
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
521 522 523 524 525 526 527 528
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
529 530 531 532 533 534 535 536 537 538
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

557 558 559 560 561
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
562 563 564
	put_page(page);		/* drop ref from isolate */
}

565 566 567
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
568
	PAGEREF_KEEP,
569 570 571 572 573 574
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
575
	int referenced_ptes, referenced_page;
576 577
	unsigned long vm_flags;

578 579
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
580 581

	/* Lumpy reclaim - ignore references */
582
	if (sc->lumpy_reclaim_mode)
583 584 585 586 587 588 589 590 591
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
616 617

	/* Reclaim if clean, defer dirty pages to writeback */
618 619 620 621
	if (referenced_page)
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
622 623
}

L
Linus Torvalds 已提交
624
/*
A
Andrew Morton 已提交
625
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
626
 */
A
Andrew Morton 已提交
627
static unsigned long shrink_page_list(struct list_head *page_list,
628 629
					struct scan_control *sc,
					enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
630 631 632 633
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
634
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
635 636 637 638 639

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
640
		enum page_references references;
L
Linus Torvalds 已提交
641 642 643 644 645 646 647 648 649
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
650
		if (!trylock_page(page))
L
Linus Torvalds 已提交
651 652
			goto keep;

N
Nick Piggin 已提交
653
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
654 655

		sc->nr_scanned++;
656

N
Nick Piggin 已提交
657 658
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
659

660
		if (!sc->may_unmap && page_mapped(page))
661 662
			goto keep_locked;

L
Linus Torvalds 已提交
663 664 665 666
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

667 668 669 670 671 672 673 674 675 676 677 678 679 680
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
				wait_on_page_writeback(page);
681
			else
682 683
				goto keep_locked;
		}
L
Linus Torvalds 已提交
684

685 686 687
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
688
			goto activate_locked;
689 690
		case PAGEREF_KEEP:
			goto keep_locked;
691 692 693 694
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
695 696 697 698 699

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
700
		if (PageAnon(page) && !PageSwapCache(page)) {
701 702
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
703
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
704
				goto activate_locked;
705
			may_enter_fs = 1;
N
Nick Piggin 已提交
706
		}
L
Linus Torvalds 已提交
707 708 709 710 711 712 713 714

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
715
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
716 717 718 719
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
720 721
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
722 723 724 725 726 727
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
728
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
729
				goto keep_locked;
730
			if (!may_enter_fs)
L
Linus Torvalds 已提交
731
				goto keep_locked;
732
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
733 734 735
				goto keep_locked;

			/* Page is dirty, try to write it out here */
736
			switch (pageout(page, mapping, sync_writeback)) {
L
Linus Torvalds 已提交
737 738 739 740 741
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
742
				if (PageWriteback(page) || PageDirty(page))
L
Linus Torvalds 已提交
743 744 745 746 747
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
748
				if (!trylock_page(page))
L
Linus Torvalds 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
768
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
769 770 771 772 773 774 775 776 777 778
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
779
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
780 781
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
798 799
		}

N
Nick Piggin 已提交
800
		if (!mapping || !__remove_mapping(mapping, page))
801
			goto keep_locked;
L
Linus Torvalds 已提交
802

N
Nick Piggin 已提交
803 804 805 806 807 808 809 810
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
811
free_it:
812
		nr_reclaimed++;
N
Nick Piggin 已提交
813 814 815 816
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
L
Linus Torvalds 已提交
817 818
		continue;

N
Nick Piggin 已提交
819
cull_mlocked:
820 821
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
822 823 824 825
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
826
activate_locked:
827 828
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
829
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
830
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
831 832 833 834 835 836
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
837
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
838 839 840
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
N
Nick Piggin 已提交
841
		__pagevec_free(&freed_pvec);
842
	count_vm_events(PGACTIVATE, pgactivate);
843
	return nr_reclaimed;
L
Linus Torvalds 已提交
844 845
}

A
Andy Whitcroft 已提交
846 847 848 849 850 851 852 853 854 855
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
856
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

872
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
873 874
		return ret;

L
Lee Schermerhorn 已提交
875 876 877 878 879 880 881 882
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
883
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
884

A
Andy Whitcroft 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
912 913
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
914
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
915 916 917
 *
 * returns how many pages were moved onto *@dst.
 */
918 919
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
920
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
921
{
922
	unsigned long nr_taken = 0;
923
	unsigned long scan;
L
Linus Torvalds 已提交
924

925
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
926 927 928 929 930 931
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
932 933 934
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
935
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
936

937
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
938 939
		case 0:
			list_move(&page->lru, dst);
940
			mem_cgroup_del_lru(page);
941
			nr_taken++;
A
Andy Whitcroft 已提交
942 943 944 945 946
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
947
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
948
			continue;
949

A
Andy Whitcroft 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
982

A
Andy Whitcroft 已提交
983 984 985
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
				continue;
986 987 988 989 990 991 992 993 994 995

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
					!PageSwapCache(cursor_page))
				continue;

996
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
997
				list_move(&cursor_page->lru, dst);
998
				mem_cgroup_del_lru(cursor_page);
A
Andy Whitcroft 已提交
999 1000 1001 1002
				nr_taken++;
				scan++;
			}
		}
L
Linus Torvalds 已提交
1003 1004 1005 1006 1007 1008
	}

	*scanned = scan;
	return nr_taken;
}

1009 1010 1011 1012 1013
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1014
					int active, int file)
1015
{
1016
	int lru = LRU_BASE;
1017
	if (active)
1018 1019 1020 1021
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1022
								mode, file);
1023 1024
}

A
Andy Whitcroft 已提交
1025 1026 1027 1028
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1029 1030
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1031 1032
{
	int nr_active = 0;
1033
	int lru;
A
Andy Whitcroft 已提交
1034 1035
	struct page *page;

1036
	list_for_each_entry(page, page_list, lru) {
1037
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1038
		if (PageActive(page)) {
1039
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1040 1041 1042
			ClearPageActive(page);
			nr_active++;
		}
1043 1044
		count[lru]++;
	}
A
Andy Whitcroft 已提交
1045 1046 1047 1048

	return nr_active;
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1060 1061 1062
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1083
			int lru = page_lru(page);
1084 1085
			ret = 0;
			ClearPageLRU(page);
1086 1087

			del_page_from_lru_list(zone, page, lru);
1088 1089 1090 1091 1092 1093
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

L
Linus Torvalds 已提交
1119
/*
A
Andrew Morton 已提交
1120 1121
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1122
 */
A
Andrew Morton 已提交
1123
static unsigned long shrink_inactive_list(unsigned long max_scan,
R
Rik van Riel 已提交
1124 1125
			struct zone *zone, struct scan_control *sc,
			int priority, int file)
L
Linus Torvalds 已提交
1126 1127 1128
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
1129
	unsigned long nr_scanned = 0;
1130
	unsigned long nr_reclaimed = 0;
1131
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1132

1133
	while (unlikely(too_many_isolated(zone, file, sc))) {
1134
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1135 1136 1137 1138 1139 1140

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1141 1142 1143 1144 1145

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1146
	do {
L
Linus Torvalds 已提交
1147
		struct page *page;
1148 1149 1150
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
A
Andy Whitcroft 已提交
1151
		unsigned long nr_active;
1152
		unsigned int count[NR_LRU_LISTS] = { 0, };
1153
		int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE;
K
KOSAKI Motohiro 已提交
1154 1155
		unsigned long nr_anon;
		unsigned long nr_file;
L
Linus Torvalds 已提交
1156

K
KOSAKI Motohiro 已提交
1157
		nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
1158 1159
			     &page_list, &nr_scan, sc->order, mode,
				zone, sc->mem_cgroup, 0, file);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

		if (scanning_global_lru(sc)) {
			zone->pages_scanned += nr_scan;
			if (current_is_kswapd())
				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
						       nr_scan);
			else
				__count_zone_vm_events(PGSCAN_DIRECT, zone,
						       nr_scan);
		}

		if (nr_taken == 0)
			goto done;

1174
		nr_active = clear_active_flags(&page_list, count);
1175
		__count_vm_events(PGDEACTIVATE, nr_active);
A
Andy Whitcroft 已提交
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185
		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
						-count[LRU_ACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
						-count[LRU_INACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
						-count[LRU_ACTIVE_ANON]);
		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
						-count[LRU_INACTIVE_ANON]);

K
KOSAKI Motohiro 已提交
1186 1187 1188 1189
		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
K
KOSAKI Motohiro 已提交
1190

H
Huang Shijie 已提交
1191 1192
		reclaim_stat->recent_scanned[0] += nr_anon;
		reclaim_stat->recent_scanned[1] += nr_file;
K
KOSAKI Motohiro 已提交
1193

L
Linus Torvalds 已提交
1194 1195
		spin_unlock_irq(&zone->lru_lock);

1196
		nr_scanned += nr_scan;
1197 1198 1199 1200 1201 1202 1203 1204 1205
		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);

		/*
		 * If we are direct reclaiming for contiguous pages and we do
		 * not reclaim everything in the list, try again and wait
		 * for IO to complete. This will stall high-order allocations
		 * but that should be acceptable to the caller
		 */
		if (nr_freed < nr_taken && !current_is_kswapd() &&
1206
		    sc->lumpy_reclaim_mode) {
1207
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1208 1209 1210 1211 1212

			/*
			 * The attempt at page out may have made some
			 * of the pages active, mark them inactive again.
			 */
1213
			nr_active = clear_active_flags(&page_list, count);
1214 1215 1216 1217 1218 1219
			count_vm_events(PGDEACTIVATE, nr_active);

			nr_freed += shrink_page_list(&page_list, sc,
							PAGEOUT_IO_SYNC);
		}

1220
		nr_reclaimed += nr_freed;
1221

N
Nick Piggin 已提交
1222
		local_irq_disable();
1223
		if (current_is_kswapd())
1224
			__count_vm_events(KSWAPD_STEAL, nr_freed);
S
Shantanu Goel 已提交
1225
		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
N
Nick Piggin 已提交
1226 1227

		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
1228 1229 1230 1231
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
L
Lee Schermerhorn 已提交
1232
			int lru;
L
Linus Torvalds 已提交
1233
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
1234
			VM_BUG_ON(PageLRU(page));
L
Linus Torvalds 已提交
1235
			list_del(&page->lru);
L
Lee Schermerhorn 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244
			if (unlikely(!page_evictable(page, NULL))) {
				spin_unlock_irq(&zone->lru_lock);
				putback_lru_page(page);
				spin_lock_irq(&zone->lru_lock);
				continue;
			}
			SetPageLRU(page);
			lru = page_lru(page);
			add_page_to_lru_list(zone, page, lru);
1245
			if (is_active_lru(lru)) {
1246
				int file = is_file_lru(lru);
1247
				reclaim_stat->recent_rotated[file]++;
1248
			}
L
Linus Torvalds 已提交
1249 1250 1251 1252 1253 1254
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
K
KOSAKI Motohiro 已提交
1255 1256 1257
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

1258
  	} while (nr_scanned < max_scan);
1259

L
Linus Torvalds 已提交
1260
done:
1261
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1262
	pagevec_release(&pvec);
1263
	return nr_reclaimed;
L
Linus Torvalds 已提交
1264 1265
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/*
 * We are about to scan this zone at a certain priority level.  If that priority
 * level is smaller (ie: more urgent) than the previous priority, then note
 * that priority level within the zone.  This is done so that when the next
 * process comes in to scan this zone, it will immediately start out at this
 * priority level rather than having to build up its own scanning priority.
 * Here, this priority affects only the reclaim-mapped threshold.
 */
static inline void note_zone_scanning_priority(struct zone *zone, int priority)
{
	if (priority < zone->prev_priority)
		zone->prev_priority = priority;
}

L
Linus Torvalds 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1297

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
		pgmoved++;

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1330

A
Andrew Morton 已提交
1331
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1332
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1333
{
1334
	unsigned long nr_taken;
1335
	unsigned long pgscanned;
1336
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1337
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1338
	LIST_HEAD(l_active);
1339
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1340
	struct page *page;
1341
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1342
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1343 1344 1345

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1346
	nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1347
					ISOLATE_ACTIVE, zone,
1348
					sc->mem_cgroup, 1, file);
1349 1350 1351 1352
	/*
	 * zone->pages_scanned is used for detect zone's oom
	 * mem_cgroup remembers nr_scan by itself.
	 */
1353
	if (scanning_global_lru(sc)) {
1354
		zone->pages_scanned += pgscanned;
1355
	}
1356
	reclaim_stat->recent_scanned[file] += nr_taken;
1357

1358
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1359
	if (file)
1360
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1361
	else
1362
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1363
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1364 1365 1366 1367 1368 1369
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1370

L
Lee Schermerhorn 已提交
1371 1372 1373 1374 1375
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1376
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1377
			nr_rotated++;
1378 1379 1380 1381 1382 1383 1384 1385 1386
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1387
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1388 1389 1390 1391
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1392

1393
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1394 1395 1396
		list_add(&page->lru, &l_inactive);
	}

1397
	/*
1398
	 * Move pages back to the lru list.
1399
	 */
1400
	spin_lock_irq(&zone->lru_lock);
1401
	/*
1402 1403 1404 1405
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1406
	 */
1407
	reclaim_stat->recent_rotated[file] += nr_rotated;
1408

1409 1410 1411 1412
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1413
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1414
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1415 1416
}

1417
static int inactive_anon_is_low_global(struct zone *zone)
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1442
	if (scanning_global_lru(sc))
1443 1444
		low = inactive_anon_is_low_global(zone);
	else
1445
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1446 1447 1448
	return low;
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1485 1486 1487 1488 1489 1490 1491 1492 1493
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1494
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1495 1496
	struct zone *zone, struct scan_control *sc, int priority)
{
1497 1498
	int file = is_file_lru(lru);

1499 1500 1501
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1502 1503 1504
		return 0;
	}

R
Rik van Riel 已提交
1505
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1506 1507
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
				       unsigned long *nr_saved_scan)
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

	if (nr >= SWAP_CLUSTER_MAX)
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}

1528 1529 1530 1531 1532 1533
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1534
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1535
 */
1536 1537
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1538 1539 1540 1541
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1542
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1555

1556 1557 1558 1559
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1560

1561
	if (scanning_global_lru(sc)) {
1562 1563 1564
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1565
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1566 1567 1568 1569
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1570
		}
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	}

	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1584
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1585
		spin_lock_irq(&zone->lru_lock);
1586 1587
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1588 1589 1590
		spin_unlock_irq(&zone->lru_lock);
	}

1591
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1592
		spin_lock_irq(&zone->lru_lock);
1593 1594
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
		spin_unlock_irq(&zone->lru_lock);
	}

	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

	/*
1606 1607 1608
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1609
	 */
1610 1611
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1612

1613 1614
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1615

1616 1617 1618 1619 1620 1621 1622
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1623

1624 1625 1626 1627 1628 1629 1630 1631
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
		nr[l] = nr_scan_try_batch(scan,
					  &reclaim_stat->nr_saved_scan[l]);
	}
1632
}
1633

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
{
	/*
	 * If we need a large contiguous chunk of memory, or have
	 * trouble getting a small set of contiguous pages, we
	 * will reclaim both active and inactive pages.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		sc->lumpy_reclaim_mode = 1;
	else if (sc->order && priority < DEF_PRIORITY - 2)
		sc->lumpy_reclaim_mode = 1;
	else
		sc->lumpy_reclaim_mode = 0;
}

L
Linus Torvalds 已提交
1649 1650 1651
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1652
static void shrink_zone(int priority, struct zone *zone,
1653
				struct scan_control *sc)
L
Linus Torvalds 已提交
1654
{
1655
	unsigned long nr[NR_LRU_LISTS];
1656
	unsigned long nr_to_scan;
1657
	enum lru_list l;
1658
	unsigned long nr_reclaimed = sc->nr_reclaimed;
1659
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1660

1661
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1662

1663 1664
	set_lumpy_reclaim_mode(priority, sc);

1665 1666
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1667
		for_each_evictable_lru(l) {
1668
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1669 1670
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1671
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1672

1673 1674
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1675
			}
L
Linus Torvalds 已提交
1676
		}
1677 1678 1679 1680 1681 1682 1683 1684
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1685
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1686
			break;
L
Linus Torvalds 已提交
1687 1688
	}

1689 1690
	sc->nr_reclaimed = nr_reclaimed;

1691 1692 1693 1694
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1695
	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1696 1697
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1698
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1699 1700 1701 1702 1703 1704 1705
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1706 1707
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1708 1709
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1710 1711 1712
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1713 1714 1715 1716
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1717
static int shrink_zones(int priority, struct zonelist *zonelist,
1718
					struct scan_control *sc)
L
Linus Torvalds 已提交
1719
{
1720
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1721
	struct zoneref *z;
1722
	struct zone *zone;
1723
	int progress = 0;
1724

1725 1726
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
					sc->nodemask) {
1727
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1728
			continue;
1729 1730 1731 1732
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1733
		if (scanning_global_lru(sc)) {
1734 1735 1736
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
			note_zone_scanning_priority(zone, priority);
L
Linus Torvalds 已提交
1737

1738
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1739 1740 1741 1742 1743 1744 1745 1746 1747
				continue;	/* Let kswapd poll it */
		} else {
			/*
			 * Ignore cpuset limitation here. We just want to reduce
			 * # of used pages by us regardless of memory shortage.
			 */
			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
							priority);
		}
1748

1749
		shrink_zone(priority, zone, sc);
1750
		progress = 1;
L
Linus Torvalds 已提交
1751
	}
1752
	return progress;
L
Linus Torvalds 已提交
1753
}
1754

L
Linus Torvalds 已提交
1755 1756 1757 1758 1759 1760 1761 1762
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
1763 1764 1765 1766
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
1767 1768 1769
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
1770
 */
1771
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1772
					struct scan_control *sc)
L
Linus Torvalds 已提交
1773 1774
{
	int priority;
1775
	unsigned long ret = 0;
1776
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
1777 1778
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long lru_pages = 0;
1779
	struct zoneref *z;
1780
	struct zone *zone;
1781
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1782
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
1783

1784
	get_mems_allowed();
1785 1786
	delayacct_freepages_start();

1787
	if (scanning_global_lru(sc))
1788 1789 1790 1791
		count_vm_event(ALLOCSTALL);
	/*
	 * mem_cgroup will not do shrink_slab.
	 */
1792
	if (scanning_global_lru(sc)) {
1793
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
L
Linus Torvalds 已提交
1794

1795 1796
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
L
Linus Torvalds 已提交
1797

1798
			lru_pages += zone_reclaimable_pages(zone);
1799
		}
L
Linus Torvalds 已提交
1800 1801 1802
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1803
		sc->nr_scanned = 0;
1804 1805
		if (!priority)
			disable_swap_token();
1806
		ret = shrink_zones(priority, zonelist, sc);
1807 1808 1809 1810
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
1811
		if (scanning_global_lru(sc)) {
1812
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1813
			if (reclaim_state) {
1814
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1815 1816
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
1817
		}
1818
		total_scanned += sc->nr_scanned;
1819
		if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
1820
			ret = sc->nr_reclaimed;
L
Linus Torvalds 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
			goto out;
		}

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1831 1832
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
1833
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1834
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
1835 1836 1837
		}

		/* Take a nap, wait for some writeback to complete */
1838 1839
		if (!sc->hibernation_mode && sc->nr_scanned &&
		    priority < DEF_PRIORITY - 2)
1840
			congestion_wait(BLK_RW_ASYNC, HZ/10);
L
Linus Torvalds 已提交
1841
	}
1842
	/* top priority shrink_zones still had more to do? don't OOM, then */
1843
	if (ret && scanning_global_lru(sc))
1844
		ret = sc->nr_reclaimed;
L
Linus Torvalds 已提交
1845
out:
1846 1847 1848 1849 1850 1851 1852 1853 1854
	/*
	 * Now that we've scanned all the zones at this priority level, note
	 * that level within the zone so that the next thread which performs
	 * scanning of this zone will immediately start out at this priority
	 * level.  This affects only the decision whether or not to bring
	 * mapped pages onto the inactive list.
	 */
	if (priority < 0)
		priority = 0;
L
Linus Torvalds 已提交
1855

1856
	if (scanning_global_lru(sc)) {
1857
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1858 1859 1860 1861 1862 1863 1864 1865

			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;

			zone->prev_priority = priority;
		}
	} else
		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
L
Linus Torvalds 已提交
1866

1867
	delayacct_freepages_end();
1868
	put_mems_allowed();
1869

L
Linus Torvalds 已提交
1870 1871 1872
	return ret;
}

1873
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1874
				gfp_t gfp_mask, nodemask_t *nodemask)
1875 1876 1877 1878
{
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
1879
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1880
		.may_unmap = 1,
1881
		.may_swap = 1,
1882 1883 1884 1885
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
1886
		.nodemask = nodemask,
1887 1888
	};

1889
	return do_try_to_free_pages(zonelist, &sc);
1890 1891
}

1892
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1893

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
						struct zone *zone, int nid)
{
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
		.isolate_pages = mem_cgroup_isolate_pages,
	};
	nodemask_t nm  = nodemask_of_node(nid);

	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	sc.nodemask = &nm;
	sc.nr_reclaimed = 0;
	sc.nr_scanned = 0;
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
	return sc.nr_reclaimed;
}

1926
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
1927 1928 1929
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
1930
{
1931
	struct zonelist *zonelist;
1932 1933
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
1934
		.may_unmap = 1,
1935
		.may_swap = !noswap,
1936
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
1937
		.swappiness = swappiness,
1938 1939 1940
		.order = 0,
		.mem_cgroup = mem_cont,
		.isolate_pages = mem_cgroup_isolate_pages,
1941
		.nodemask = NULL, /* we don't care the placement */
1942 1943
	};

1944 1945 1946 1947
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
	return do_try_to_free_pages(zonelist, &sc);
1948 1949 1950
}
#endif

1951
/* is kswapd sleeping prematurely? */
1952
static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1953
{
1954
	int i;
1955 1956 1957 1958 1959 1960

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
		return 1;

	/* If after HZ/10, a zone is below the high mark, it's premature */
1961 1962 1963 1964 1965 1966
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

1967
		if (zone->all_unreclaimable)
1968 1969
			continue;

1970 1971 1972
		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
								0, 0))
			return 1;
1973
	}
1974 1975 1976 1977

	return 0;
}

L
Linus Torvalds 已提交
1978 1979
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
1980
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1993 1994 1995 1996 1997
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
1998
 */
1999
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
2000 2001 2002 2003
{
	int all_zones_ok;
	int priority;
	int i;
2004
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2005
	struct reclaim_state *reclaim_state = current->reclaim_state;
2006 2007
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2008
		.may_unmap = 1,
2009
		.may_swap = 1,
2010 2011 2012 2013 2014
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2015
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2016
		.order = order,
2017 2018
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
2019
	};
2020 2021
	/*
	 * temp_priority is used to remember the scanning priority at which
2022 2023
	 * this zone was successfully refilled to
	 * free_pages == high_wmark_pages(zone).
2024 2025
	 */
	int temp_priority[MAX_NR_ZONES];
L
Linus Torvalds 已提交
2026 2027 2028

loop_again:
	total_scanned = 0;
2029
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2030
	sc.may_writepage = !laptop_mode;
2031
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2032

2033 2034
	for (i = 0; i < pgdat->nr_zones; i++)
		temp_priority[i] = DEF_PRIORITY;
L
Linus Torvalds 已提交
2035 2036 2037 2038

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;
2039
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2040

2041 2042 2043 2044
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2045 2046
		all_zones_ok = 1;

2047 2048 2049 2050 2051 2052
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2053

2054 2055
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2056

2057
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2058
				continue;
L
Linus Torvalds 已提交
2059

2060 2061 2062 2063
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2064
			if (inactive_anon_is_low(zone, &sc))
2065 2066 2067
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2068 2069
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), 0, 0)) {
2070
				end_zone = i;
A
Andrew Morton 已提交
2071
				break;
L
Linus Torvalds 已提交
2072 2073
			}
		}
A
Andrew Morton 已提交
2074 2075 2076
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2077 2078 2079
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2080
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2094
			int nr_slab;
2095
			int nid, zid;
L
Linus Torvalds 已提交
2096

2097
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2098 2099
				continue;

2100
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2101 2102
				continue;

2103
			temp_priority[i] = priority;
L
Linus Torvalds 已提交
2104
			sc.nr_scanned = 0;
2105
			note_zone_scanning_priority(zone, priority);
2106 2107 2108 2109 2110 2111 2112 2113 2114

			nid = pgdat->node_id;
			zid = zone_idx(zone);
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
							nid, zid);
2115 2116 2117 2118
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
2119 2120
			if (!zone_watermark_ok(zone, order,
					8*high_wmark_pages(zone), end_zone, 0))
2121
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2122
			reclaim_state->reclaimed_slab = 0;
2123 2124
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2125
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2126
			total_scanned += sc.nr_scanned;
2127
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2128
				continue;
2129 2130 2131
			if (nr_slab == 0 &&
			    zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2132 2133 2134 2135 2136 2137
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2138
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2139
				sc.may_writepage = 1;
2140

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
				if (!zone_watermark_ok(zone, order,
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
			}
2153

L
Linus Torvalds 已提交
2154 2155 2156 2157 2158 2159 2160
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2161 2162 2163 2164 2165 2166
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2167 2168 2169 2170 2171 2172 2173

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2174
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2175 2176 2177
			break;
	}
out:
2178 2179 2180 2181 2182
	/*
	 * Note within each zone the priority level at which this zone was
	 * brought into a happy state.  So that the next thread which scans this
	 * zone will start out at that priority level.
	 */
L
Linus Torvalds 已提交
2183 2184 2185
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

2186
		zone->prev_priority = temp_priority[i];
L
Linus Torvalds 已提交
2187 2188 2189
	}
	if (!all_zones_ok) {
		cond_resched();
2190 2191 2192

		try_to_freeze();

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2210 2211 2212
		goto loop_again;
	}

2213
	return sc.nr_reclaimed;
L
Linus Torvalds 已提交
2214 2215 2216 2217
}

/*
 * The background pageout daemon, started as a kernel thread
2218
 * from the init process.
L
Linus Torvalds 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2238
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2239

2240 2241
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2242
	if (!cpumask_empty(cpumask))
2243
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2258
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2259
	set_freezable();
L
Linus Torvalds 已提交
2260 2261 2262 2263

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
2264
		int ret;
2265

L
Linus Torvalds 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
2276 2277 2278 2279
			if (!freezing(current) && !kthread_should_stop()) {
				long remaining = 0;

				/* Try to sleep for a short interval */
2280
				if (!sleeping_prematurely(pgdat, order, remaining)) {
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
					remaining = schedule_timeout(HZ/10);
					finish_wait(&pgdat->kswapd_wait, &wait);
					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
				}

				/*
				 * After a short sleep, check if it was a
				 * premature sleep. If not, then go fully
				 * to sleep until explicitly woken up
				 */
2291
				if (!sleeping_prematurely(pgdat, order, remaining))
2292 2293 2294
					schedule();
				else {
					if (remaining)
2295
						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2296
					else
2297
						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2298 2299
				}
			}
2300

L
Linus Torvalds 已提交
2301 2302 2303 2304
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

2305 2306 2307 2308 2309 2310 2311 2312 2313
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
		if (!ret)
2314
			balance_pgdat(pgdat, order);
L
Linus Torvalds 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

2326
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2327 2328 2329
		return;

	pgdat = zone->zone_pgdat;
2330
	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
L
Linus Torvalds 已提交
2331 2332 2333
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
2334
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2335
		return;
2336
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2337
		return;
2338
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2339 2340
}

2341 2342 2343 2344 2345 2346 2347 2348
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2349
{
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2374 2375
}

2376
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2377
/*
2378
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2379 2380 2381 2382 2383
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2384
 */
2385
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2386
{
2387 2388
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2389 2390 2391
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2392
		.may_writepage = 1,
2393 2394 2395 2396
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
2397
		.isolate_pages = isolate_pages_global,
L
Linus Torvalds 已提交
2398
	};
2399 2400 2401
	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2402

2403 2404 2405 2406
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2407

2408
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2409

2410 2411 2412
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2413

2414
	return nr_reclaimed;
L
Linus Torvalds 已提交
2415
}
2416
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2417 2418 2419 2420 2421

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2422
static int __devinit cpu_callback(struct notifier_block *nfb,
2423
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2424
{
2425
	int nid;
L
Linus Torvalds 已提交
2426

2427
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2428
		for_each_node_state(nid, N_HIGH_MEMORY) {
2429
			pg_data_t *pgdat = NODE_DATA(nid);
2430 2431 2432
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2433

2434
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2435
				/* One of our CPUs online: restore mask */
2436
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2437 2438 2439 2440 2441
		}
	}
	return NOTIFY_OK;
}

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2475 2476
static int __init kswapd_init(void)
{
2477
	int nid;
2478

L
Linus Torvalds 已提交
2479
	swap_setup();
2480
	for_each_node_state(nid, N_HIGH_MEMORY)
2481
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2482 2483 2484 2485 2486
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2497
#define RECLAIM_OFF 0
2498
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2499 2500 2501
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2502 2503 2504 2505 2506 2507 2508
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2509 2510 2511 2512 2513 2514
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2515 2516 2517 2518 2519 2520
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2563 2564 2565
/*
 * Try to free up some pages from this zone through reclaim.
 */
2566
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2567
{
2568
	/* Minimum pages needed in order to stay on node */
2569
	const unsigned long nr_pages = 1 << order;
2570 2571
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2572
	int priority;
2573 2574
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2575
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2576
		.may_swap = 1,
2577 2578
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2579
		.gfp_mask = gfp_mask,
2580
		.swappiness = vm_swappiness,
2581
		.order = order,
2582
		.isolate_pages = isolate_pages_global,
2583
	};
2584
	unsigned long slab_reclaimable;
2585 2586 2587

	disable_swap_token();
	cond_resched();
2588 2589 2590 2591 2592 2593
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2594
	lockdep_set_current_reclaim_state(gfp_mask);
2595 2596
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2597

2598
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2599 2600 2601 2602 2603 2604
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2605
			note_zone_scanning_priority(zone, priority);
2606
			shrink_zone(priority, zone, &sc);
2607
			priority--;
2608
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2609
	}
2610

2611 2612
	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (slab_reclaimable > zone->min_slab_pages) {
2613
		/*
2614
		 * shrink_slab() does not currently allow us to determine how
2615 2616 2617 2618
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2619
		 *
2620 2621
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
2622
		 */
2623
		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2624 2625
			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
				slab_reclaimable - nr_pages)
2626
			;
2627 2628 2629 2630 2631

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
2632
		sc.nr_reclaimed += slab_reclaimable -
2633
			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2634 2635
	}

2636
	p->reclaim_state = NULL;
2637
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2638
	lockdep_clear_current_reclaim_state();
2639
	return sc.nr_reclaimed >= nr_pages;
2640
}
2641 2642 2643 2644

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
2645
	int ret;
2646 2647

	/*
2648 2649
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
2650
	 *
2651 2652 2653 2654 2655
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
2656
	 */
2657 2658
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2659
		return ZONE_RECLAIM_FULL;
2660

2661
	if (zone->all_unreclaimable)
2662
		return ZONE_RECLAIM_FULL;
2663

2664
	/*
2665
	 * Do not scan if the allocation should not be delayed.
2666
	 */
2667
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2668
		return ZONE_RECLAIM_NOSCAN;
2669 2670 2671 2672 2673 2674 2675

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
2676
	node_id = zone_to_nid(zone);
2677
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2678
		return ZONE_RECLAIM_NOSCAN;
2679 2680

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2681 2682
		return ZONE_RECLAIM_NOSCAN;

2683 2684 2685
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

2686 2687 2688
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

2689
	return ret;
2690
}
2691
#endif
L
Lee Schermerhorn 已提交
2692 2693 2694 2695 2696 2697 2698

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
2699 2700
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
2701 2702
 *
 * Reasons page might not be evictable:
2703
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
2704
 * (2) page is part of an mlocked VMA
2705
 *
L
Lee Schermerhorn 已提交
2706 2707 2708 2709
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

2710 2711 2712
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
2713 2714
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
2715 2716 2717

	return 1;
}
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
2737
		enum lru_list l = page_lru_base_type(page);
2738

2739 2740
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
2741
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2742 2743 2744 2745 2746 2747 2748 2749
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
2750
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2822
static void scan_zone_unevictable_pages(struct zone *zone)
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
2864
static void scan_all_zones_unevictable_pages(void)
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
2880
			   void __user *buffer,
2881 2882
			   size_t *length, loff_t *ppos)
{
2883
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}