i2c-rk3x.c 25.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Driver for I2C adapter in Rockchip RK3xxx SoC
 *
 * Max Schwarz <max.schwarz@online.de>
 * based on the patches by Rockchip Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/spinlock.h>
#include <linux/clk.h>
#include <linux/wait.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
27
#include <linux/math64.h>
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74


/* Register Map */
#define REG_CON        0x00 /* control register */
#define REG_CLKDIV     0x04 /* clock divisor register */
#define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
#define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
#define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
#define REG_MRXCNT     0x14 /* number of bytes to be received */
#define REG_IEN        0x18 /* interrupt enable */
#define REG_IPD        0x1c /* interrupt pending */
#define REG_FCNT       0x20 /* finished count */

/* Data buffer offsets */
#define TXBUFFER_BASE 0x100
#define RXBUFFER_BASE 0x200

/* REG_CON bits */
#define REG_CON_EN        BIT(0)
enum {
	REG_CON_MOD_TX = 0,      /* transmit data */
	REG_CON_MOD_REGISTER_TX, /* select register and restart */
	REG_CON_MOD_RX,          /* receive data */
	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
				  * register addr */
};
#define REG_CON_MOD(mod)  ((mod) << 1)
#define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
#define REG_CON_START     BIT(3)
#define REG_CON_STOP      BIT(4)
#define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
#define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */

/* REG_MRXADDR bits */
#define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */

/* REG_IEN/REG_IPD bits */
#define REG_INT_BTF       BIT(0) /* a byte was transmitted */
#define REG_INT_BRF       BIT(1) /* a byte was received */
#define REG_INT_MBTF      BIT(2) /* master data transmit finished */
#define REG_INT_MBRF      BIT(3) /* master data receive finished */
#define REG_INT_START     BIT(4) /* START condition generated */
#define REG_INT_STOP      BIT(5) /* STOP condition generated */
#define REG_INT_NAKRCV    BIT(6) /* NACK received */
#define REG_INT_ALL       0x7f

/* Constants */
75
#define WAIT_TIMEOUT      1000 /* ms */
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
#define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */

enum rk3x_i2c_state {
	STATE_IDLE,
	STATE_START,
	STATE_READ,
	STATE_WRITE,
	STATE_STOP
};

/**
 * @grf_offset: offset inside the grf regmap for setting the i2c type
 */
struct rk3x_i2c_soc_data {
	int grf_offset;
};

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
/**
 * struct rk3x_i2c - private data of the controller
 * @adap: corresponding I2C adapter
 * @dev: device for this controller
 * @soc_data: related soc data struct
 * @regs: virtual memory area
 * @clk: clock of i2c bus
 * @clk_rate_nb: i2c clk rate change notify
 * @t: I2C known timing information
 * @lock: spinlock for the i2c bus
 * @wait: the waitqueue to wait for i2c transfer
 * @busy: the condition for the event to wait for
 * @msg: current i2c message
 * @addr: addr of i2c slave device
 * @mode: mode of i2c transfer
 * @is_last_msg: flag determines whether it is the last msg in this transfer
 * @state: state of i2c transfer
 * @processed: byte length which has been send or received
 * @error: error code for i2c transfer
 */
113 114 115 116 117 118 119 120
struct rk3x_i2c {
	struct i2c_adapter adap;
	struct device *dev;
	struct rk3x_i2c_soc_data *soc_data;

	/* Hardware resources */
	void __iomem *regs;
	struct clk *clk;
121
	struct notifier_block clk_rate_nb;
122 123

	/* Settings */
124
	struct i2c_timings t;
125 126 127 128 129 130 131 132 133 134 135 136 137 138

	/* Synchronization & notification */
	spinlock_t lock;
	wait_queue_head_t wait;
	bool busy;

	/* Current message */
	struct i2c_msg *msg;
	u8 addr;
	unsigned int mode;
	bool is_last_msg;

	/* I2C state machine */
	enum rk3x_i2c_state state;
139
	unsigned int processed;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	int error;
};

static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
			      unsigned int offset)
{
	writel(value, i2c->regs + offset);
}

static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
{
	return readl(i2c->regs + offset);
}

/* Reset all interrupt pending bits */
static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
{
	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
}

/**
 * Generate a START condition, which triggers a REG_INT_START interrupt.
 */
static void rk3x_i2c_start(struct rk3x_i2c *i2c)
{
	u32 val;

	rk3x_i2c_clean_ipd(i2c);
	i2c_writel(i2c, REG_INT_START, REG_IEN);

	/* enable adapter with correct mode, send START condition */
	val = REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;

	/* if we want to react to NACK, set ACTACK bit */
	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
		val |= REG_CON_ACTACK;

	i2c_writel(i2c, val, REG_CON);
}

/**
 * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
 *
 * @error: Error code to return in rk3x_i2c_xfer
 */
static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
{
	unsigned int ctrl;

	i2c->processed = 0;
	i2c->msg = NULL;
	i2c->error = error;

	if (i2c->is_last_msg) {
		/* Enable stop interrupt */
		i2c_writel(i2c, REG_INT_STOP, REG_IEN);

		i2c->state = STATE_STOP;

		ctrl = i2c_readl(i2c, REG_CON);
		ctrl |= REG_CON_STOP;
		i2c_writel(i2c, ctrl, REG_CON);
	} else {
		/* Signal rk3x_i2c_xfer to start the next message. */
		i2c->busy = false;
		i2c->state = STATE_IDLE;

		/*
		 * The HW is actually not capable of REPEATED START. But we can
		 * get the intended effect by resetting its internal state
		 * and issuing an ordinary START.
		 */
		i2c_writel(i2c, 0, REG_CON);

		/* signal that we are finished with the current msg */
		wake_up(&i2c->wait);
	}
}

/**
 * Setup a read according to i2c->msg
 */
static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
{
	unsigned int len = i2c->msg->len - i2c->processed;
	u32 con;

	con = i2c_readl(i2c, REG_CON);

	/*
	 * The hw can read up to 32 bytes at a time. If we need more than one
	 * chunk, send an ACK after the last byte of the current chunk.
	 */
233
	if (len > 32) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
		len = 32;
		con &= ~REG_CON_LASTACK;
	} else {
		con |= REG_CON_LASTACK;
	}

	/* make sure we are in plain RX mode if we read a second chunk */
	if (i2c->processed != 0) {
		con &= ~REG_CON_MOD_MASK;
		con |= REG_CON_MOD(REG_CON_MOD_RX);
	}

	i2c_writel(i2c, con, REG_CON);
	i2c_writel(i2c, len, REG_MRXCNT);
}

/**
 * Fill the transmit buffer with data from i2c->msg
 */
static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
{
	unsigned int i, j;
	u32 cnt = 0;
	u32 val;
	u8 byte;

	for (i = 0; i < 8; ++i) {
		val = 0;
		for (j = 0; j < 4; ++j) {
263
			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
				break;

			if (i2c->processed == 0 && cnt == 0)
				byte = (i2c->addr & 0x7f) << 1;
			else
				byte = i2c->msg->buf[i2c->processed++];

			val |= byte << (j * 8);
			cnt++;
		}

		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);

		if (i2c->processed == i2c->msg->len)
			break;
	}

	i2c_writel(i2c, cnt, REG_MTXCNT);
}


/* IRQ handlers for individual states */

static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
{
	if (!(ipd & REG_INT_START)) {
		rk3x_i2c_stop(i2c, -EIO);
		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		return;
	}

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_START, REG_IPD);

	/* disable start bit */
	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);

	/* enable appropriate interrupts and transition */
	if (i2c->mode == REG_CON_MOD_TX) {
		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
		i2c->state = STATE_WRITE;
		rk3x_i2c_fill_transmit_buf(i2c);
	} else {
		/* in any other case, we are going to be reading. */
		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
		i2c->state = STATE_READ;
		rk3x_i2c_prepare_read(i2c);
	}
}

static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
{
	if (!(ipd & REG_INT_MBTF)) {
		rk3x_i2c_stop(i2c, -EIO);
		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		return;
	}

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);

	/* are we finished? */
	if (i2c->processed == i2c->msg->len)
		rk3x_i2c_stop(i2c, i2c->error);
	else
		rk3x_i2c_fill_transmit_buf(i2c);
}

static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
{
	unsigned int i;
	unsigned int len = i2c->msg->len - i2c->processed;
	u32 uninitialized_var(val);
	u8 byte;

	/* we only care for MBRF here. */
	if (!(ipd & REG_INT_MBRF))
		return;

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_MBRF, REG_IPD);

348 349 350 351
	/* Can only handle a maximum of 32 bytes at a time */
	if (len > 32)
		len = 32;

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	/* read the data from receive buffer */
	for (i = 0; i < len; ++i) {
		if (i % 4 == 0)
			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);

		byte = (val >> ((i % 4) * 8)) & 0xff;
		i2c->msg->buf[i2c->processed++] = byte;
	}

	/* are we finished? */
	if (i2c->processed == i2c->msg->len)
		rk3x_i2c_stop(i2c, i2c->error);
	else
		rk3x_i2c_prepare_read(i2c);
}

static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
{
	unsigned int con;

	if (!(ipd & REG_INT_STOP)) {
		rk3x_i2c_stop(i2c, -EIO);
		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		return;
	}

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_STOP, REG_IPD);

	/* disable STOP bit */
	con = i2c_readl(i2c, REG_CON);
	con &= ~REG_CON_STOP;
	i2c_writel(i2c, con, REG_CON);

	i2c->busy = false;
	i2c->state = STATE_IDLE;

	/* signal rk3x_i2c_xfer that we are finished */
	wake_up(&i2c->wait);
}

static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
{
	struct rk3x_i2c *i2c = dev_id;
	unsigned int ipd;

	spin_lock(&i2c->lock);

	ipd = i2c_readl(i2c, REG_IPD);
	if (i2c->state == STATE_IDLE) {
		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		goto out;
	}

	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);

	/* Clean interrupt bits we don't care about */
	ipd &= ~(REG_INT_BRF | REG_INT_BTF);

	if (ipd & REG_INT_NAKRCV) {
		/*
		 * We got a NACK in the last operation. Depending on whether
		 * IGNORE_NAK is set, we have to stop the operation and report
		 * an error.
		 */
		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);

		ipd &= ~REG_INT_NAKRCV;

		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
			rk3x_i2c_stop(i2c, -ENXIO);
	}

	/* is there anything left to handle? */
428
	if ((ipd & REG_INT_ALL) == 0)
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
		goto out;

	switch (i2c->state) {
	case STATE_START:
		rk3x_i2c_handle_start(i2c, ipd);
		break;
	case STATE_WRITE:
		rk3x_i2c_handle_write(i2c, ipd);
		break;
	case STATE_READ:
		rk3x_i2c_handle_read(i2c, ipd);
		break;
	case STATE_STOP:
		rk3x_i2c_handle_stop(i2c, ipd);
		break;
	case STATE_IDLE:
		break;
	}

out:
	spin_unlock(&i2c->lock);
	return IRQ_HANDLED;
}

453 454 455 456
/**
 * Calculate divider values for desired SCL frequency
 *
 * @clk_rate: I2C input clock rate
457
 * @t: Known I2C timing information.
458 459 460 461 462 463 464
 * @div_low: Divider output for low
 * @div_high: Divider output for high
 *
 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
 * a best-effort divider value is returned in divs. If the target rate is
 * too high, we silently use the highest possible rate.
 */
465 466 467 468
static int rk3x_i2c_calc_divs(unsigned long clk_rate,
			      struct i2c_timings *t,
			      unsigned long *div_low,
			      unsigned long *div_high)
469
{
470
	unsigned long spec_min_low_ns, spec_min_high_ns;
471
	unsigned long spec_setup_start, spec_max_data_hold_ns;
472
	unsigned long data_hold_buffer_ns;
473 474

	unsigned long min_low_ns, min_high_ns;
475 476
	unsigned long max_low_ns, min_total_ns;

477
	unsigned long clk_rate_khz, scl_rate_khz;
478 479 480 481 482 483 484

	unsigned long min_low_div, min_high_div;
	unsigned long max_low_div;

	unsigned long min_div_for_hold, min_total_div;
	unsigned long extra_div, extra_low_div, ideal_low_div;

485 486
	int ret = 0;

487
	/* Only support standard-mode and fast-mode */
488 489
	if (WARN_ON(t->bus_freq_hz > 400000))
		t->bus_freq_hz = 400000;
490 491

	/* prevent scl_rate_khz from becoming 0 */
492 493
	if (WARN_ON(t->bus_freq_hz < 1000))
		t->bus_freq_hz = 1000;
494

495
	/*
496 497 498 499 500 501
	 * min_low_ns:  The minimum number of ns we need to hold low to
	 *		meet I2C specification, should include fall time.
	 * min_high_ns: The minimum number of ns we need to hold high to
	 *		meet I2C specification, should include rise time.
	 * max_low_ns:  The maximum number of ns we can hold low to meet
	 *		I2C specification.
502
	 *
503
	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
504 505
	 *	 This is because the i2c host on Rockchip holds the data line
	 *	 for half the low time.
506
	 */
507
	if (t->bus_freq_hz <= 100000) {
508 509
		/* Standard-mode */
		spec_min_low_ns = 4700;
510
		spec_setup_start = 4700;
511 512
		spec_min_high_ns = 4000;
		spec_max_data_hold_ns = 3450;
513 514
		data_hold_buffer_ns = 50;
	} else {
515 516
		/* Fast-mode */
		spec_min_low_ns = 1300;
517
		spec_setup_start = 600;
518 519
		spec_min_high_ns = 600;
		spec_max_data_hold_ns = 900;
520 521
		data_hold_buffer_ns = 50;
	}
522
	min_high_ns = t->scl_rise_ns + spec_min_high_ns;
523 524 525 526 527 528 529 530 531 532

	/*
	 * Timings for repeated start:
	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
	 * - controller appears to keep SCL high for 2x programmed clk high.
	 *
	 * We need to account for those rules in picking our "high" time so
	 * we meet tSU;STA and tHD;STA times.
	 */
	min_high_ns = max(min_high_ns,
533
		DIV_ROUND_UP((t->scl_rise_ns + spec_setup_start) * 1000, 875));
534
	min_high_ns = max(min_high_ns,
535 536
		DIV_ROUND_UP((t->scl_rise_ns + spec_setup_start +
			      t->sda_fall_ns + spec_min_high_ns), 2));
537

538
	min_low_ns = t->scl_fall_ns + spec_min_low_ns;
539
	max_low_ns = spec_max_data_hold_ns * 2 - data_hold_buffer_ns;
540 541 542
	min_total_ns = min_low_ns + min_high_ns;

	/* Adjust to avoid overflow */
543
	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
544
	scl_rate_khz = t->bus_freq_hz / 1000;
545 546 547 548 549

	/*
	 * We need the total div to be >= this number
	 * so we don't clock too fast.
	 */
550
	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
551 552

	/* These are the min dividers needed for min hold times. */
553 554
	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
555 556 557
	min_div_for_hold = (min_low_div + min_high_div);

	/*
558 559
	 * This is the maximum divider so we don't go over the maximum.
	 * We don't round up here (we round down) since this is a maximum.
560
	 */
561
	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588

	if (min_low_div > max_low_div) {
		WARN_ONCE(true,
			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
			  min_low_div, max_low_div);
		max_low_div = min_low_div;
	}

	if (min_div_for_hold > min_total_div) {
		/*
		 * Time needed to meet hold requirements is important.
		 * Just use that.
		 */
		*div_low = min_low_div;
		*div_high = min_high_div;
	} else {
		/*
		 * We've got to distribute some time among the low and high
		 * so we don't run too fast.
		 */
		extra_div = min_total_div - min_div_for_hold;

		/*
		 * We'll try to split things up perfectly evenly,
		 * biasing slightly towards having a higher div
		 * for low (spend more time low).
		 */
589
		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
590 591
					     scl_rate_khz * 8 * min_total_ns);

592
		/* Don't allow it to go over the maximum */
593 594
		if (ideal_low_div > max_low_div)
			ideal_low_div = max_low_div;
595

596 597 598 599 600 601 602 603 604 605 606 607 608 609
		/*
		 * Handle when the ideal low div is going to take up
		 * more than we have.
		 */
		if (ideal_low_div > min_low_div + extra_div)
			ideal_low_div = min_low_div + extra_div;

		/* Give low the "ideal" and give high whatever extra is left */
		extra_low_div = ideal_low_div - min_low_div;
		*div_low = ideal_low_div;
		*div_high = min_high_div + (extra_div - extra_low_div);
	}

	/*
610 611 612
	 * Adjust to the fact that the hardware has an implicit "+1".
	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
	 */
613 614 615
	*div_low = *div_low - 1;
	*div_high = *div_high - 1;

616 617 618 619 620 621 622 623 624 625 626 627
	/* Maximum divider supported by hw is 0xffff */
	if (*div_low > 0xffff) {
		*div_low = 0xffff;
		ret = -EINVAL;
	}

	if (*div_high > 0xffff) {
		*div_high = 0xffff;
		ret = -EINVAL;
	}

	return ret;
628 629
}

630
static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
631
{
632
	struct i2c_timings *t = &i2c->t;
633 634
	unsigned long div_low, div_high;
	u64 t_low_ns, t_high_ns;
635
	int ret;
636

637 638
	ret = rk3x_i2c_calc_divs(clk_rate, t, &div_low, &div_high);
	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
639 640

	clk_enable(i2c->clk);
641
	i2c_writel(i2c, (div_high << 16) | (div_low & 0xffff), REG_CLKDIV);
642
	clk_disable(i2c->clk);
643

644 645
	t_low_ns = div_u64(((u64)div_low + 1) * 8 * 1000000000, clk_rate);
	t_high_ns = div_u64(((u64)div_high + 1) * 8 * 1000000000, clk_rate);
646
	dev_dbg(i2c->dev,
647 648
		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
		clk_rate / 1000,
649
		1000000000 / t->bus_freq_hz,
650
		t_low_ns, t_high_ns);
651
}
652

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
/**
 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
 * @nb:		Pointer to notifier block
 * @event:	Notification reason
 * @data:	Pointer to notification data object
 *
 * The callback checks whether a valid bus frequency can be generated after the
 * change. If so, the change is acknowledged, otherwise the change is aborted.
 * New dividers are written to the HW in the pre- or post change notification
 * depending on the scaling direction.
 *
 * Code adapted from i2c-cadence.c.
 *
 * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
 *		to acknowedge the change, NOTIFY_DONE if the notification is
 *		considered irrelevant.
 */
static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
				    event, void *data)
{
	struct clk_notifier_data *ndata = data;
	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
	unsigned long div_low, div_high;

	switch (event) {
	case PRE_RATE_CHANGE:
679
		if (rk3x_i2c_calc_divs(ndata->new_rate, &i2c->t,
680
				       &div_low, &div_high) != 0)
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
			return NOTIFY_STOP;

		/* scale up */
		if (ndata->new_rate > ndata->old_rate)
			rk3x_i2c_adapt_div(i2c, ndata->new_rate);

		return NOTIFY_OK;
	case POST_RATE_CHANGE:
		/* scale down */
		if (ndata->new_rate < ndata->old_rate)
			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
		return NOTIFY_OK;
	case ABORT_RATE_CHANGE:
		/* scale up */
		if (ndata->new_rate > ndata->old_rate)
			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
}

/**
 * Setup I2C registers for an I2C operation specified by msgs, num.
 *
 * Must be called with i2c->lock held.
 *
 * @msgs: I2C msgs to process
 * @num: Number of msgs
 *
 * returns: Number of I2C msgs processed or negative in case of error
 */
static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
{
	u32 addr = (msgs[0].addr & 0x7f) << 1;
	int ret = 0;

	/*
	 * The I2C adapter can issue a small (len < 4) write packet before
	 * reading. This speeds up SMBus-style register reads.
	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
	 * address in this case.
	 */

	if (num >= 2 && msgs[0].len < 4 &&
	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
		u32 reg_addr = 0;
		int i;

		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
			addr >> 1);

		/* Fill MRXRADDR with the register address(es) */
		for (i = 0; i < msgs[0].len; ++i) {
			reg_addr |= msgs[0].buf[i] << (i * 8);
			reg_addr |= REG_MRXADDR_VALID(i);
		}

		/* msgs[0] is handled by hw. */
		i2c->msg = &msgs[1];

		i2c->mode = REG_CON_MOD_REGISTER_TX;

		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
		i2c_writel(i2c, reg_addr, REG_MRXRADDR);

		ret = 2;
	} else {
		/*
		 * We'll have to do it the boring way and process the msgs
		 * one-by-one.
		 */

		if (msgs[0].flags & I2C_M_RD) {
			addr |= 1; /* set read bit */

			/*
			 * We have to transmit the slave addr first. Use
			 * MOD_REGISTER_TX for that purpose.
			 */
			i2c->mode = REG_CON_MOD_REGISTER_TX;
			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
				   REG_MRXADDR);
			i2c_writel(i2c, 0, REG_MRXRADDR);
		} else {
			i2c->mode = REG_CON_MOD_TX;
		}

		i2c->msg = &msgs[0];

		ret = 1;
	}

	i2c->addr = msgs[0].addr;
	i2c->busy = true;
	i2c->state = STATE_START;
	i2c->processed = 0;
	i2c->error = 0;

	rk3x_i2c_clean_ipd(i2c);

	return ret;
}

static int rk3x_i2c_xfer(struct i2c_adapter *adap,
			 struct i2c_msg *msgs, int num)
{
	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
	unsigned long timeout, flags;
	int ret = 0;
	int i;

	spin_lock_irqsave(&i2c->lock, flags);

	clk_enable(i2c->clk);

	i2c->is_last_msg = false;

	/*
	 * Process msgs. We can handle more than one message at once (see
	 * rk3x_i2c_setup()).
	 */
	for (i = 0; i < num; i += ret) {
		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);

		if (ret < 0) {
			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
			break;
		}

		if (i + ret >= num)
			i2c->is_last_msg = true;

		spin_unlock_irqrestore(&i2c->lock, flags);

		rk3x_i2c_start(i2c);

		timeout = wait_event_timeout(i2c->wait, !i2c->busy,
					     msecs_to_jiffies(WAIT_TIMEOUT));

		spin_lock_irqsave(&i2c->lock, flags);

		if (timeout == 0) {
			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
				i2c_readl(i2c, REG_IPD), i2c->state);

			/* Force a STOP condition without interrupt */
			i2c_writel(i2c, 0, REG_IEN);
			i2c_writel(i2c, REG_CON_EN | REG_CON_STOP, REG_CON);

			i2c->state = STATE_IDLE;

			ret = -ETIMEDOUT;
			break;
		}

		if (i2c->error) {
			ret = i2c->error;
			break;
		}
	}

	clk_disable(i2c->clk);
	spin_unlock_irqrestore(&i2c->lock, flags);

846
	return ret < 0 ? ret : num;
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
}

static u32 rk3x_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
}

static const struct i2c_algorithm rk3x_i2c_algorithm = {
	.master_xfer		= rk3x_i2c_xfer,
	.functionality		= rk3x_i2c_func,
};

static struct rk3x_i2c_soc_data soc_data[3] = {
	{ .grf_offset = 0x154 }, /* rk3066 */
	{ .grf_offset = 0x0a4 }, /* rk3188 */
	{ .grf_offset = -1 },    /* no I2C switching needed */
};

static const struct of_device_id rk3x_i2c_match[] = {
	{ .compatible = "rockchip,rk3066-i2c", .data = (void *)&soc_data[0] },
	{ .compatible = "rockchip,rk3188-i2c", .data = (void *)&soc_data[1] },
Y
Yakir Yang 已提交
868
	{ .compatible = "rockchip,rk3228-i2c", .data = (void *)&soc_data[2] },
869
	{ .compatible = "rockchip,rk3288-i2c", .data = (void *)&soc_data[2] },
870
	{},
871
};
872
MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
873 874 875 876 877 878 879 880 881 882 883

static int rk3x_i2c_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	const struct of_device_id *match;
	struct rk3x_i2c *i2c;
	struct resource *mem;
	int ret = 0;
	int bus_nr;
	u32 value;
	int irq;
884
	unsigned long clk_rate;
885 886 887 888 889 890 891 892

	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
	if (!i2c)
		return -ENOMEM;

	match = of_match_node(rk3x_i2c_match, np);
	i2c->soc_data = (struct rk3x_i2c_soc_data *)match->data;

893 894
	/* use common interface to get I2C timing properties */
	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
895

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
	strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
	i2c->adap.owner = THIS_MODULE;
	i2c->adap.algo = &rk3x_i2c_algorithm;
	i2c->adap.retries = 3;
	i2c->adap.dev.of_node = np;
	i2c->adap.algo_data = i2c;
	i2c->adap.dev.parent = &pdev->dev;

	i2c->dev = &pdev->dev;

	spin_lock_init(&i2c->lock);
	init_waitqueue_head(&i2c->wait);

	i2c->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(i2c->clk)) {
		dev_err(&pdev->dev, "cannot get clock\n");
		return PTR_ERR(i2c->clk);
	}

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(i2c->regs))
		return PTR_ERR(i2c->regs);

	/* Try to set the I2C adapter number from dt */
	bus_nr = of_alias_get_id(np, "i2c");

	/*
	 * Switch to new interface if the SoC also offers the old one.
	 * The control bit is located in the GRF register space.
	 */
	if (i2c->soc_data->grf_offset >= 0) {
		struct regmap *grf;

		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
		if (IS_ERR(grf)) {
			dev_err(&pdev->dev,
				"rk3x-i2c needs 'rockchip,grf' property\n");
			return PTR_ERR(grf);
		}

		if (bus_nr < 0) {
			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
			return -EINVAL;
		}

		/* 27+i: write mask, 11+i: value */
		value = BIT(27 + bus_nr) | BIT(11 + bus_nr);

		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
		if (ret != 0) {
			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
			return ret;
		}
	}

	/* IRQ setup */
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
		return irq;
	}

	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
			       0, dev_name(&pdev->dev), i2c);
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot request IRQ\n");
		return ret;
	}

	platform_set_drvdata(pdev, i2c);

	ret = clk_prepare(i2c->clk);
	if (ret < 0) {
		dev_err(&pdev->dev, "Could not prepare clock\n");
		return ret;
	}

974 975 976 977 978 979 980 981 982 983
	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
	if (ret != 0) {
		dev_err(&pdev->dev, "Unable to register clock notifier\n");
		goto err_clk;
	}

	clk_rate = clk_get_rate(i2c->clk);
	rk3x_i2c_adapt_div(i2c, clk_rate);

984 985 986
	ret = i2c_add_adapter(&i2c->adap);
	if (ret < 0) {
		dev_err(&pdev->dev, "Could not register adapter\n");
987
		goto err_clk_notifier;
988 989 990 991 992 993
	}

	dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs);

	return 0;

994 995
err_clk_notifier:
	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
996 997 998 999 1000 1001 1002 1003 1004 1005
err_clk:
	clk_unprepare(i2c->clk);
	return ret;
}

static int rk3x_i2c_remove(struct platform_device *pdev)
{
	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);

	i2c_del_adapter(&i2c->adap);
1006 1007

	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	clk_unprepare(i2c->clk);

	return 0;
}

static struct platform_driver rk3x_i2c_driver = {
	.probe   = rk3x_i2c_probe,
	.remove  = rk3x_i2c_remove,
	.driver  = {
		.name  = "rk3x-i2c",
		.of_match_table = rk3x_i2c_match,
	},
};

module_platform_driver(rk3x_i2c_driver);

MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
MODULE_LICENSE("GPL v2");