kfd_device_queue_manager.c 24.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <linux/slab.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/printk.h>
#include <linux/bitops.h>
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_mqd_manager.h"
#include "cik_regs.h"
#include "kfd_kernel_queue.h"
#include "../../radeon/cik_reg.h"

/* Size of the per-pipe EOP queue */
#define CIK_HPD_EOP_BYTES_LOG2 11
#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)

static bool is_mem_initialized;

static int init_memory(struct device_queue_manager *dqm);
static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
					unsigned int pasid, unsigned int vmid);

static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd);
static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);


static inline unsigned int get_pipes_num(struct device_queue_manager *dqm)
{
	BUG_ON(!dqm || !dqm->dev);
	return dqm->dev->shared_resources.compute_pipe_count;
}

static inline unsigned int get_first_pipe(struct device_queue_manager *dqm)
{
	BUG_ON(!dqm);
	return dqm->dev->shared_resources.first_compute_pipe;
}

static inline unsigned int get_pipes_num_cpsch(void)
{
	return PIPE_PER_ME_CP_SCHEDULING;
}

70 71
static inline unsigned int
get_sh_mem_bases_nybble_64(struct kfd_process_device *pdd)
72 73 74 75 76 77 78 79
{
	uint32_t nybble;

	nybble = (pdd->lds_base >> 60) & 0x0E;

	return nybble;
}

80
static inline unsigned int get_sh_mem_bases_32(struct kfd_process_device *pdd)
81 82 83 84 85 86 87 88 89 90 91 92
{
	unsigned int shared_base;

	shared_base = (pdd->lds_base >> 16) & 0xFF;

	return shared_base;
}

static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble);
static void init_process_memory(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd)
{
93
	struct kfd_process_device *pdd;
94 95 96 97
	unsigned int temp;

	BUG_ON(!dqm || !qpd);

98 99
	pdd = qpd_to_pdd(qpd);

100 101 102 103 104 105 106 107 108 109 110
	/* check if sh_mem_config register already configured */
	if (qpd->sh_mem_config == 0) {
		qpd->sh_mem_config =
			ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED) |
			DEFAULT_MTYPE(MTYPE_NONCACHED) |
			APE1_MTYPE(MTYPE_NONCACHED);
		qpd->sh_mem_ape1_limit = 0;
		qpd->sh_mem_ape1_base = 0;
	}

	if (qpd->pqm->process->is_32bit_user_mode) {
111
		temp = get_sh_mem_bases_32(pdd);
112 113 114
		qpd->sh_mem_bases = SHARED_BASE(temp);
		qpd->sh_mem_config |= PTR32;
	} else {
115
		temp = get_sh_mem_bases_nybble_64(pdd);
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
		qpd->sh_mem_bases = compute_sh_mem_bases_64bit(temp);
	}

	pr_debug("kfd: is32bit process: %d sh_mem_bases nybble: 0x%X and register 0x%X\n",
		qpd->pqm->process->is_32bit_user_mode, temp, qpd->sh_mem_bases);
}

static void program_sh_mem_settings(struct device_queue_manager *dqm,
					struct qcm_process_device *qpd)
{
	return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
						qpd->sh_mem_config,
						qpd->sh_mem_ape1_base,
						qpd->sh_mem_ape1_limit,
						qpd->sh_mem_bases);
}

static int allocate_vmid(struct device_queue_manager *dqm,
			struct qcm_process_device *qpd,
			struct queue *q)
{
	int bit, allocated_vmid;

	if (dqm->vmid_bitmap == 0)
		return -ENOMEM;

	bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
	clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);

	/* Kaveri kfd vmid's starts from vmid 8 */
	allocated_vmid = bit + KFD_VMID_START_OFFSET;
	pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
	qpd->vmid = allocated_vmid;
	q->properties.vmid = allocated_vmid;

	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
	program_sh_mem_settings(dqm, qpd);

	return 0;
}

static void deallocate_vmid(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int bit = qpd->vmid - KFD_VMID_START_OFFSET;

	set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
	qpd->vmid = 0;
	q->properties.vmid = 0;
}

static int create_queue_nocpsch(struct device_queue_manager *dqm,
				struct queue *q,
				struct qcm_process_device *qpd,
				int *allocated_vmid)
{
	int retval;

	BUG_ON(!dqm || !q || !qpd || !allocated_vmid);

	pr_debug("kfd: In func %s\n", __func__);
	print_queue(q);

	mutex_lock(&dqm->lock);

	if (list_empty(&qpd->queues_list)) {
		retval = allocate_vmid(dqm, qpd, q);
		if (retval != 0) {
			mutex_unlock(&dqm->lock);
			return retval;
		}
	}
	*allocated_vmid = qpd->vmid;
	q->properties.vmid = qpd->vmid;

	retval = create_compute_queue_nocpsch(dqm, q, qpd);

	if (retval != 0) {
		if (list_empty(&qpd->queues_list)) {
			deallocate_vmid(dqm, qpd, q);
			*allocated_vmid = 0;
		}
		mutex_unlock(&dqm->lock);
		return retval;
	}

	list_add(&q->list, &qpd->queues_list);
	dqm->queue_count++;

	mutex_unlock(&dqm->lock);
	return 0;
}

static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
{
	bool set;
	int pipe, bit;

	set = false;

	for (pipe = dqm->next_pipe_to_allocate; pipe < get_pipes_num(dqm);
			pipe = (pipe + 1) % get_pipes_num(dqm)) {
		if (dqm->allocated_queues[pipe] != 0) {
			bit = find_first_bit(
				(unsigned long *)&dqm->allocated_queues[pipe],
				QUEUES_PER_PIPE);

			clear_bit(bit,
				(unsigned long *)&dqm->allocated_queues[pipe]);
			q->pipe = pipe;
			q->queue = bit;
			set = true;
			break;
		}
	}

	if (set == false)
		return -EBUSY;

	pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
				__func__, q->pipe, q->queue);
	/* horizontal hqd allocation */
	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);

	return 0;
}

static inline void deallocate_hqd(struct device_queue_manager *dqm,
				struct queue *q)
{
	set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
}

static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !qpd);

	mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
	if (mqd == NULL)
		return -ENOMEM;

	retval = allocate_hqd(dqm, q);
	if (retval != 0)
		return retval;

	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0) {
		deallocate_hqd(dqm, q);
		return retval;
	}

	return 0;
}

static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !q->mqd || !qpd);

	retval = 0;

	pr_debug("kfd: In Func %s\n", __func__);

	mutex_lock(&dqm->lock);
	mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
	if (mqd == NULL) {
		retval = -ENOMEM;
		goto out;
	}

	retval = mqd->destroy_mqd(mqd, q->mqd,
				KFD_PREEMPT_TYPE_WAVEFRONT,
				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
				q->pipe, q->queue);

	if (retval != 0)
		goto out;

	deallocate_hqd(dqm, q);

	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);

	list_del(&q->list);
	if (list_empty(&qpd->queues_list))
		deallocate_vmid(dqm, qpd, q);
	dqm->queue_count--;
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

static int update_queue(struct device_queue_manager *dqm, struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !q->mqd);

	mutex_lock(&dqm->lock);
	mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
	if (mqd == NULL) {
		mutex_unlock(&dqm->lock);
		return -ENOMEM;
	}

	retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
	if (q->properties.is_active == true)
		dqm->queue_count++;
	else
		dqm->queue_count--;

	if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
		retval = execute_queues_cpsch(dqm, false);

	mutex_unlock(&dqm->lock);
	return retval;
}

static struct mqd_manager *get_mqd_manager_nocpsch(
		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
{
	struct mqd_manager *mqd;

	BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);

	pr_debug("kfd: In func %s mqd type %d\n", __func__, type);

	mqd = dqm->mqds[type];
	if (!mqd) {
		mqd = mqd_manager_init(type, dqm->dev);
		if (mqd == NULL)
			pr_err("kfd: mqd manager is NULL");
		dqm->mqds[type] = mqd;
	}

	return mqd;
}

static int register_process_nocpsch(struct device_queue_manager *dqm,
					struct qcm_process_device *qpd)
{
	struct device_process_node *n;

	BUG_ON(!dqm || !qpd);

	pr_debug("kfd: In func %s\n", __func__);

	n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
	if (!n)
		return -ENOMEM;

	n->qpd = qpd;

	mutex_lock(&dqm->lock);
	list_add(&n->list, &dqm->queues);

	init_process_memory(dqm, qpd);
	dqm->processes_count++;

	mutex_unlock(&dqm->lock);

	return 0;
}

static int unregister_process_nocpsch(struct device_queue_manager *dqm,
					struct qcm_process_device *qpd)
{
	int retval;
	struct device_process_node *cur, *next;

	BUG_ON(!dqm || !qpd);

	BUG_ON(!list_empty(&qpd->queues_list));

	pr_debug("kfd: In func %s\n", __func__);

	retval = 0;
	mutex_lock(&dqm->lock);

	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
		if (qpd == cur->qpd) {
			list_del(&cur->list);
409
			kfree(cur);
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
			dqm->processes_count--;
			goto out;
		}
	}
	/* qpd not found in dqm list */
	retval = 1;
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

static int
set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
			unsigned int vmid)
{
	uint32_t pasid_mapping;

	pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
						ATC_VMID_PASID_MAPPING_VALID;
	return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
						vmid);
}

static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble)
{
	/* In 64-bit mode, we can only control the top 3 bits of the LDS,
	 * scratch and GPUVM apertures.
	 * The hardware fills in the remaining 59 bits according to the
	 * following pattern:
	 * LDS:		X0000000'00000000 - X0000001'00000000 (4GB)
	 * Scratch:	X0000001'00000000 - X0000002'00000000 (4GB)
	 * GPUVM:	Y0010000'00000000 - Y0020000'00000000 (1TB)
	 *
	 * (where X/Y is the configurable nybble with the low-bit 0)
	 *
	 * LDS and scratch will have the same top nybble programmed in the
	 * top 3 bits of SH_MEM_BASES.PRIVATE_BASE.
	 * GPUVM can have a different top nybble programmed in the
	 * top 3 bits of SH_MEM_BASES.SHARED_BASE.
	 * We don't bother to support different top nybbles
	 * for LDS/Scratch and GPUVM.
	 */

	BUG_ON((top_address_nybble & 1) || top_address_nybble > 0xE ||
		top_address_nybble == 0);

	return PRIVATE_BASE(top_address_nybble << 12) |
			SHARED_BASE(top_address_nybble << 12);
}

static int init_memory(struct device_queue_manager *dqm)
{
	int i, retval;

	for (i = 8; i < 16; i++)
		set_pasid_vmid_mapping(dqm, 0, i);

	retval = kfd2kgd->init_memory(dqm->dev->kgd);
	if (retval == 0)
		is_mem_initialized = true;
	return retval;
}


static int init_pipelines(struct device_queue_manager *dqm,
			unsigned int pipes_num, unsigned int first_pipe)
{
	void *hpdptr;
	struct mqd_manager *mqd;
	unsigned int i, err, inx;
	uint64_t pipe_hpd_addr;

	BUG_ON(!dqm || !dqm->dev);

	pr_debug("kfd: In func %s\n", __func__);

	/*
	 * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
	 * The driver never accesses this memory after zeroing it.
	 * It doesn't even have to be saved/restored on suspend/resume
	 * because it contains no data when there are no active queues.
	 */

	err = kfd2kgd->allocate_mem(dqm->dev->kgd,
				CIK_HPD_EOP_BYTES * pipes_num,
				PAGE_SIZE,
				KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
				(struct kgd_mem **) &dqm->pipeline_mem);

	if (err) {
		pr_err("kfd: error allocate vidmem num pipes: %d\n",
			pipes_num);
		return -ENOMEM;
	}

	hpdptr = dqm->pipeline_mem->cpu_ptr;
	dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;

	memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);

	mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
	if (mqd == NULL) {
		kfd2kgd->free_mem(dqm->dev->kgd,
				(struct kgd_mem *) dqm->pipeline_mem);
		return -ENOMEM;
	}

	for (i = 0; i < pipes_num; i++) {
		inx = i + first_pipe;
		pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
		pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
		/* = log2(bytes/4)-1 */
		kfd2kgd->init_pipeline(dqm->dev->kgd, i,
				CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
	}

	return 0;
}


static int init_scheduler(struct device_queue_manager *dqm)
{
	int retval;

	BUG_ON(!dqm);

	pr_debug("kfd: In %s\n", __func__);

	retval = init_pipelines(dqm, get_pipes_num(dqm), KFD_DQM_FIRST_PIPE);
	if (retval != 0)
		return retval;

	retval = init_memory(dqm);

	return retval;
}

static int initialize_nocpsch(struct device_queue_manager *dqm)
{
	int i;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s num of pipes: %d\n",
			__func__, get_pipes_num(dqm));

	mutex_init(&dqm->lock);
	INIT_LIST_HEAD(&dqm->queues);
	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
	dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
					sizeof(unsigned int), GFP_KERNEL);
	if (!dqm->allocated_queues) {
		mutex_destroy(&dqm->lock);
		return -ENOMEM;
	}

	for (i = 0; i < get_pipes_num(dqm); i++)
		dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;

	dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;

	init_scheduler(dqm);
	return 0;
}

static void uninitialize_nocpsch(struct device_queue_manager *dqm)
{
577 578
	int i;

579 580 581 582 583
	BUG_ON(!dqm);

	BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);

	kfree(dqm->allocated_queues);
584 585
	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
		kfree(dqm->mqds[i]);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	mutex_destroy(&dqm->lock);
	kfd2kgd->free_mem(dqm->dev->kgd,
			(struct kgd_mem *) dqm->pipeline_mem);
}

static int start_nocpsch(struct device_queue_manager *dqm)
{
	return 0;
}

static int stop_nocpsch(struct device_queue_manager *dqm)
{
	return 0;
}

/*
 * Device Queue Manager implementation for cp scheduler
 */

static int set_sched_resources(struct device_queue_manager *dqm)
{
	struct scheduling_resources res;
	unsigned int queue_num, queue_mask;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s\n", __func__);

	queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
	queue_mask = (1 << queue_num) - 1;
	res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
	res.vmid_mask <<= KFD_VMID_START_OFFSET;
	res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
	res.gws_mask = res.oac_mask = res.gds_heap_base =
						res.gds_heap_size = 0;

	pr_debug("kfd: scheduling resources:\n"
			"      vmid mask: 0x%8X\n"
			"      queue mask: 0x%8llX\n",
			res.vmid_mask, res.queue_mask);

	return pm_send_set_resources(&dqm->packets, &res);
}

static int initialize_cpsch(struct device_queue_manager *dqm)
{
	int retval;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s num of pipes: %d\n",
			__func__, get_pipes_num_cpsch());

	mutex_init(&dqm->lock);
	INIT_LIST_HEAD(&dqm->queues);
	dqm->queue_count = dqm->processes_count = 0;
	dqm->active_runlist = false;
	retval = init_pipelines(dqm, get_pipes_num(dqm), 0);
	if (retval != 0)
		goto fail_init_pipelines;

	return 0;

fail_init_pipelines:
	mutex_destroy(&dqm->lock);
	return retval;
}

static int start_cpsch(struct device_queue_manager *dqm)
{
	struct device_process_node *node;
	int retval;

	BUG_ON(!dqm);

	retval = 0;

	retval = pm_init(&dqm->packets, dqm);
	if (retval != 0)
		goto fail_packet_manager_init;

	retval = set_sched_resources(dqm);
	if (retval != 0)
		goto fail_set_sched_resources;

	pr_debug("kfd: allocating fence memory\n");

	/* allocate fence memory on the gart */
	retval = kfd2kgd->allocate_mem(dqm->dev->kgd,
					sizeof(*dqm->fence_addr),
					32,
					KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
					(struct kgd_mem **) &dqm->fence_mem);

	if (retval != 0)
		goto fail_allocate_vidmem;

	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;

	list_for_each_entry(node, &dqm->queues, list)
		if (node->qpd->pqm->process && dqm->dev)
			kfd_bind_process_to_device(dqm->dev,
						node->qpd->pqm->process);

	execute_queues_cpsch(dqm, true);

	return 0;
fail_allocate_vidmem:
fail_set_sched_resources:
	pm_uninit(&dqm->packets);
fail_packet_manager_init:
	return retval;
}

static int stop_cpsch(struct device_queue_manager *dqm)
{
	struct device_process_node *node;
	struct kfd_process_device *pdd;

	BUG_ON(!dqm);

	destroy_queues_cpsch(dqm, true);

	list_for_each_entry(node, &dqm->queues, list) {
711
		pdd = qpd_to_pdd(node->qpd);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
		pdd->bound = false;
	}
	kfd2kgd->free_mem(dqm->dev->kgd,
			(struct kgd_mem *) dqm->fence_mem);
	pm_uninit(&dqm->packets);

	return 0;
}

static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
					struct kernel_queue *kq,
					struct qcm_process_device *qpd)
{
	BUG_ON(!dqm || !kq || !qpd);

	pr_debug("kfd: In func %s\n", __func__);

	mutex_lock(&dqm->lock);
	list_add(&kq->list, &qpd->priv_queue_list);
	dqm->queue_count++;
	qpd->is_debug = true;
	execute_queues_cpsch(dqm, false);
	mutex_unlock(&dqm->lock);

	return 0;
}

static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
					struct kernel_queue *kq,
					struct qcm_process_device *qpd)
{
	BUG_ON(!dqm || !kq);

	pr_debug("kfd: In %s\n", __func__);

	mutex_lock(&dqm->lock);
	destroy_queues_cpsch(dqm, false);
	list_del(&kq->list);
	dqm->queue_count--;
	qpd->is_debug = false;
	execute_queues_cpsch(dqm, false);
	mutex_unlock(&dqm->lock);
}

static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
			struct qcm_process_device *qpd, int *allocate_vmid)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !qpd);

	retval = 0;

	if (allocate_vmid)
		*allocate_vmid = 0;

	mutex_lock(&dqm->lock);

	mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
	if (mqd == NULL) {
		mutex_unlock(&dqm->lock);
		return -ENOMEM;
	}

	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0)
		goto out;

	list_add(&q->list, &qpd->queues_list);
	if (q->properties.is_active) {
		dqm->queue_count++;
		retval = execute_queues_cpsch(dqm, false);
	}

out:
	mutex_unlock(&dqm->lock);
	return retval;
}

793 794 795
static int fence_wait_timeout(unsigned int *fence_addr,
				unsigned int fence_value,
				unsigned long timeout)
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
{
	BUG_ON(!fence_addr);
	timeout += jiffies;

	while (*fence_addr != fence_value) {
		if (time_after(jiffies, timeout)) {
			pr_err("kfd: qcm fence wait loop timeout expired\n");
			return -ETIME;
		}
		cpu_relax();
	}

	return 0;
}

static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
{
	int retval;

	BUG_ON(!dqm);

	retval = 0;

	if (lock)
		mutex_lock(&dqm->lock);
	if (dqm->active_runlist == false)
		goto out;
	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
	if (retval != 0)
		goto out;

	*dqm->fence_addr = KFD_FENCE_INIT;
	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
				KFD_FENCE_COMPLETED);
	/* should be timed out */
	fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
	pm_release_ib(&dqm->packets);
	dqm->active_runlist = false;

out:
	if (lock)
		mutex_unlock(&dqm->lock);
	return retval;
}

static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
{
	int retval;

	BUG_ON(!dqm);

	if (lock)
		mutex_lock(&dqm->lock);

	retval = destroy_queues_cpsch(dqm, false);
	if (retval != 0) {
		pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
		goto out;
	}

	if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
		retval = 0;
		goto out;
	}

	if (dqm->active_runlist) {
		retval = 0;
		goto out;
	}

	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
	if (retval != 0) {
		pr_err("kfd: failed to execute runlist");
		goto out;
	}
	dqm->active_runlist = true;

out:
	if (lock)
		mutex_unlock(&dqm->lock);
	return retval;
}

static int destroy_queue_cpsch(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !qpd || !q);

	retval = 0;

	/* remove queue from list to prevent rescheduling after preemption */
	mutex_lock(&dqm->lock);

	mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
	if (!mqd) {
		retval = -ENOMEM;
		goto failed;
	}

	list_del(&q->list);
	dqm->queue_count--;

	execute_queues_cpsch(dqm, false);

	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);

	mutex_unlock(&dqm->lock);

	return 0;

failed:
	mutex_unlock(&dqm->lock);
	return retval;
}

/*
 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
 * stay in user mode.
 */
#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
/* APE1 limit is inclusive and 64K aligned. */
#define APE1_LIMIT_ALIGNMENT 0xFFFF

static bool set_cache_memory_policy(struct device_queue_manager *dqm,
				   struct qcm_process_device *qpd,
				   enum cache_policy default_policy,
				   enum cache_policy alternate_policy,
				   void __user *alternate_aperture_base,
				   uint64_t alternate_aperture_size)
{
	uint32_t default_mtype;
	uint32_t ape1_mtype;

	pr_debug("kfd: In func %s\n", __func__);

	mutex_lock(&dqm->lock);

	if (alternate_aperture_size == 0) {
		/* base > limit disables APE1 */
		qpd->sh_mem_ape1_base = 1;
		qpd->sh_mem_ape1_limit = 0;
	} else {
		/*
		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
		 * Verify that the base and size parameters can be
		 * represented in this format and convert them.
		 * Additionally restrict APE1 to user-mode addresses.
		 */

		uint64_t base = (uintptr_t)alternate_aperture_base;
		uint64_t limit = base + alternate_aperture_size - 1;

		if (limit <= base)
			goto out;

		if ((base & APE1_FIXED_BITS_MASK) != 0)
			goto out;

		if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
			goto out;

		qpd->sh_mem_ape1_base = base >> 16;
		qpd->sh_mem_ape1_limit = limit >> 16;
	}

	default_mtype = (default_policy == cache_policy_coherent) ?
			MTYPE_NONCACHED :
			MTYPE_CACHED;

	ape1_mtype = (alternate_policy == cache_policy_coherent) ?
			MTYPE_NONCACHED :
			MTYPE_CACHED;

	qpd->sh_mem_config = (qpd->sh_mem_config & PTR32)
			| ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED)
			| DEFAULT_MTYPE(default_mtype)
			| APE1_MTYPE(ape1_mtype);

	if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
		program_sh_mem_settings(dqm, qpd);

	pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
		qpd->sh_mem_ape1_limit);

	mutex_unlock(&dqm->lock);
	return true;

out:
	mutex_unlock(&dqm->lock);
	return false;
}

struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
{
	struct device_queue_manager *dqm;

	BUG_ON(!dev);

	dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
	if (!dqm)
		return NULL;

	dqm->dev = dev;
	switch (sched_policy) {
	case KFD_SCHED_POLICY_HWS:
	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
		/* initialize dqm for cp scheduling */
		dqm->create_queue = create_queue_cpsch;
		dqm->initialize = initialize_cpsch;
		dqm->start = start_cpsch;
		dqm->stop = stop_cpsch;
		dqm->destroy_queue = destroy_queue_cpsch;
		dqm->update_queue = update_queue;
		dqm->get_mqd_manager = get_mqd_manager_nocpsch;
		dqm->register_process = register_process_nocpsch;
		dqm->unregister_process = unregister_process_nocpsch;
		dqm->uninitialize = uninitialize_nocpsch;
		dqm->create_kernel_queue = create_kernel_queue_cpsch;
		dqm->destroy_kernel_queue = destroy_kernel_queue_cpsch;
		dqm->set_cache_memory_policy = set_cache_memory_policy;
		break;
	case KFD_SCHED_POLICY_NO_HWS:
		/* initialize dqm for no cp scheduling */
		dqm->start = start_nocpsch;
		dqm->stop = stop_nocpsch;
		dqm->create_queue = create_queue_nocpsch;
		dqm->destroy_queue = destroy_queue_nocpsch;
		dqm->update_queue = update_queue;
		dqm->get_mqd_manager = get_mqd_manager_nocpsch;
		dqm->register_process = register_process_nocpsch;
		dqm->unregister_process = unregister_process_nocpsch;
		dqm->initialize = initialize_nocpsch;
		dqm->uninitialize = uninitialize_nocpsch;
		dqm->set_cache_memory_policy = set_cache_memory_policy;
		break;
	default:
		BUG();
		break;
	}

	if (dqm->initialize(dqm) != 0) {
		kfree(dqm);
		return NULL;
	}

	return dqm;
}

void device_queue_manager_uninit(struct device_queue_manager *dqm)
{
	BUG_ON(!dqm);

	dqm->uninitialize(dqm);
	kfree(dqm);
}