flow_netlink.c 44.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
/*
 * Copyright (c) 2007-2013 Nicira, Inc.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA
 */

#include "flow.h"
#include "datapath.h"
#include <linux/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/sctp.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/rculist.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ndisc.h>

#include "flow_netlink.h"

static void update_range__(struct sw_flow_match *match,
			   size_t offset, size_t size, bool is_mask)
{
	struct sw_flow_key_range *range = NULL;
	size_t start = rounddown(offset, sizeof(long));
	size_t end = roundup(offset + size, sizeof(long));

	if (!is_mask)
		range = &match->range;
	else if (match->mask)
		range = &match->mask->range;

	if (!range)
		return;

	if (range->start == range->end) {
		range->start = start;
		range->end = end;
		return;
	}

	if (range->start > start)
		range->start = start;

	if (range->end < end)
		range->end = end;
}

#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
	do { \
		update_range__(match, offsetof(struct sw_flow_key, field),  \
				     sizeof((match)->key->field), is_mask); \
		if (is_mask) {						    \
			if ((match)->mask)				    \
				(match)->mask->key.field = value;	    \
		} else {                                                    \
			(match)->key->field = value;		            \
		}                                                           \
	} while (0)

#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
	do { \
		update_range__(match, offsetof(struct sw_flow_key, field),  \
				len, is_mask);                              \
		if (is_mask) {						    \
			if ((match)->mask)				    \
				memcpy(&(match)->mask->key.field, value_p, len);\
		} else {                                                    \
			memcpy(&(match)->key->field, value_p, len);         \
		}                                                           \
	} while (0)

static u16 range_n_bytes(const struct sw_flow_key_range *range)
{
	return range->end - range->start;
}

static bool match_validate(const struct sw_flow_match *match,
			   u64 key_attrs, u64 mask_attrs)
{
	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */

	/* The following mask attributes allowed only if they
	 * pass the validation tests. */
	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
			| (1 << OVS_KEY_ATTR_IPV6)
			| (1 << OVS_KEY_ATTR_TCP)
117
			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
			| (1 << OVS_KEY_ATTR_UDP)
			| (1 << OVS_KEY_ATTR_SCTP)
			| (1 << OVS_KEY_ATTR_ICMP)
			| (1 << OVS_KEY_ATTR_ICMPV6)
			| (1 << OVS_KEY_ATTR_ARP)
			| (1 << OVS_KEY_ATTR_ND));

	/* Always allowed mask fields. */
	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
		       | (1 << OVS_KEY_ATTR_IN_PORT)
		       | (1 << OVS_KEY_ATTR_ETHERTYPE));

	/* Check key attributes. */
	if (match->key->eth.type == htons(ETH_P_ARP)
			|| match->key->eth.type == htons(ETH_P_RARP)) {
		key_expected |= 1 << OVS_KEY_ATTR_ARP;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
	}

	if (match->key->eth.type == htons(ETH_P_IP)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
158 159
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
160
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
161 162
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
			}

			if (match->key->ip.proto == IPPROTO_ICMP) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
			}
		}
	}

	if (match->key->eth.type == htons(ETH_P_IPV6)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
193 194
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
195
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
196 197
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
			}

			if (match->key->ip.proto == IPPROTO_ICMPV6) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;

				if (match->key->ipv6.tp.src ==
						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
				    match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
					key_expected |= 1 << OVS_KEY_ATTR_ND;
					if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff)))
						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
				}
			}
		}
	}

	if ((key_attrs & key_expected) != key_expected) {
		/* Key attributes check failed. */
		OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
				key_attrs, key_expected);
		return false;
	}

	if ((mask_attrs & mask_allowed) != mask_attrs) {
		/* Mask attributes check failed. */
		OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
				mask_attrs, mask_allowed);
		return false;
	}

	return true;
}

/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
	[OVS_KEY_ATTR_ENCAP] = -1,
	[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
	[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
	[OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
	[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
	[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
	[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
	[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
	[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
	[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
245
	[OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16),
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
	[OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
	[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
	[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
	[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
	[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
	[OVS_KEY_ATTR_TUNNEL] = -1,
};

static bool is_all_zero(const u8 *fp, size_t size)
{
	int i;

	if (!fp)
		return false;

	for (i = 0; i < size; i++)
		if (fp[i])
			return false;

	return true;
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282
static bool is_all_set(const u8 *fp, size_t size)
{
	int i;

	if (!fp)
		return false;

	for (i = 0; i < size; i++)
		if (fp[i] != 0xff)
			return false;

	return true;
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static int __parse_flow_nlattrs(const struct nlattr *attr,
				const struct nlattr *a[],
				u64 *attrsp, bool nz)
{
	const struct nlattr *nla;
	u64 attrs;
	int rem;

	attrs = *attrsp;
	nla_for_each_nested(nla, attr, rem) {
		u16 type = nla_type(nla);
		int expected_len;

		if (type > OVS_KEY_ATTR_MAX) {
			OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
				  type, OVS_KEY_ATTR_MAX);
			return -EINVAL;
		}

		if (attrs & (1 << type)) {
			OVS_NLERR("Duplicate key attribute (type %d).\n", type);
			return -EINVAL;
		}

		expected_len = ovs_key_lens[type];
		if (nla_len(nla) != expected_len && expected_len != -1) {
			OVS_NLERR("Key attribute has unexpected length (type=%d"
				  ", length=%d, expected=%d).\n", type,
				  nla_len(nla), expected_len);
			return -EINVAL;
		}

		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
			attrs |= 1 << type;
			a[type] = nla;
		}
	}
	if (rem) {
		OVS_NLERR("Message has %d unknown bytes.\n", rem);
		return -EINVAL;
	}

	*attrsp = attrs;
	return 0;
}

static int parse_flow_mask_nlattrs(const struct nlattr *attr,
				   const struct nlattr *a[], u64 *attrsp)
{
	return __parse_flow_nlattrs(attr, a, attrsp, true);
}

static int parse_flow_nlattrs(const struct nlattr *attr,
			      const struct nlattr *a[], u64 *attrsp)
{
	return __parse_flow_nlattrs(attr, a, attrsp, false);
}

static int ipv4_tun_from_nlattr(const struct nlattr *attr,
				struct sw_flow_match *match, bool is_mask)
{
	struct nlattr *a;
	int rem;
	bool ttl = false;
	__be16 tun_flags = 0;

	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
			[OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
			[OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
			[OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
			[OVS_TUNNEL_KEY_ATTR_TOS] = 1,
			[OVS_TUNNEL_KEY_ATTR_TTL] = 1,
			[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
			[OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
		};

		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
			OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
			type, OVS_TUNNEL_KEY_ATTR_MAX);
			return -EINVAL;
		}

		if (ovs_tunnel_key_lens[type] != nla_len(a)) {
			OVS_NLERR("IPv4 tunnel attribute type has unexpected "
				  " length (type=%d, length=%d, expected=%d).\n",
				  type, nla_len(a), ovs_tunnel_key_lens[type]);
			return -EINVAL;
		}

		switch (type) {
		case OVS_TUNNEL_KEY_ATTR_ID:
			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
					nla_get_be64(a), is_mask);
			tun_flags |= TUNNEL_KEY;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
					nla_get_be32(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
					nla_get_be32(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TOS:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
					nla_get_u8(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TTL:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
					nla_get_u8(a), is_mask);
			ttl = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
			tun_flags |= TUNNEL_DONT_FRAGMENT;
			break;
		case OVS_TUNNEL_KEY_ATTR_CSUM:
			tun_flags |= TUNNEL_CSUM;
			break;
		default:
			return -EINVAL;
		}
	}

	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);

	if (rem > 0) {
		OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
		return -EINVAL;
	}

	if (!is_mask) {
		if (!match->key->tun_key.ipv4_dst) {
			OVS_NLERR("IPv4 tunnel destination address is zero.\n");
			return -EINVAL;
		}

		if (!ttl) {
			OVS_NLERR("IPv4 tunnel TTL not specified.\n");
			return -EINVAL;
		}
	}

	return 0;
}

static int ipv4_tun_to_nlattr(struct sk_buff *skb,
			      const struct ovs_key_ipv4_tunnel *tun_key,
			      const struct ovs_key_ipv4_tunnel *output)
{
	struct nlattr *nla;

	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
	if (!nla)
		return -EMSGSIZE;

	if (output->tun_flags & TUNNEL_KEY &&
	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
		return -EMSGSIZE;
	if (output->ipv4_src &&
		nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
		return -EMSGSIZE;
	if (output->ipv4_dst &&
		nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
		return -EMSGSIZE;
	if (output->ipv4_tos &&
		nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
		return -EMSGSIZE;
	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_CSUM) &&
		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
		return -EMSGSIZE;

	nla_nest_end(skb, nla);
	return 0;
}


static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
				 const struct nlattr **a, bool is_mask)
{
	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
		SW_FLOW_KEY_PUT(match, phy.priority,
			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);

		if (is_mask)
			in_port = 0xffffffff; /* Always exact match in_port. */
		else if (in_port >= DP_MAX_PORTS)
			return -EINVAL;

		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
	} else if (!is_mask) {
		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);

		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
	}
	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
		if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
					 is_mask))
			return -EINVAL;
		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
	}
	return 0;
}

504 505 506
static int ovs_key_from_nlattrs(struct sw_flow_match *match,  bool *exact_5tuple,
				u64 attrs, const struct nlattr **a,
				bool is_mask)
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
{
	int err;
	u64 orig_attrs = attrs;

	err = metadata_from_nlattrs(match, &attrs, a, is_mask);
	if (err)
		return err;

	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
		const struct ovs_key_ethernet *eth_key;

		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
		SW_FLOW_KEY_MEMCPY(match, eth.src,
				eth_key->eth_src, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, eth.dst,
				eth_key->eth_dst, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
	}

	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
		__be16 tci;

		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
		if (!(tci & htons(VLAN_TAG_PRESENT))) {
			if (is_mask)
				OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
			else
				OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");

			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
	} else if (!is_mask)
		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);

	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
		__be16 eth_type;

		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
		if (is_mask) {
			/* Always exact match EtherType. */
			eth_type = htons(0xffff);
		} else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
			OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
					ntohs(eth_type), ETH_P_802_3_MIN);
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
	} else if (!is_mask) {
		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
	}

563 564 565 566 567
	if (is_mask && exact_5tuple) {
		if (match->mask->key.eth.type != htons(0xffff))
			*exact_5tuple = false;
	}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
		const struct ovs_key_ipv4 *ipv4_key;

		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
			OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
				ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
			return -EINVAL;
		}
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv4_key->ipv4_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv4_key->ipv4_tos, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv4_key->ipv4_ttl, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv4_key->ipv4_frag, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				ipv4_key->ipv4_src, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
				ipv4_key->ipv4_dst, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
590 591 592 593 594 595 596

		if (is_mask && exact_5tuple && *exact_5tuple) {
			if (ipv4_key->ipv4_proto != 0xff ||
			    ipv4_key->ipv4_src != htonl(0xffffffff) ||
			    ipv4_key->ipv4_dst != htonl(0xffffffff))
				*exact_5tuple = false;
		}
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
	}

	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
		const struct ovs_key_ipv6 *ipv6_key;

		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
			OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
				ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
			return -EINVAL;
		}
		SW_FLOW_KEY_PUT(match, ipv6.label,
				ipv6_key->ipv6_label, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv6_key->ipv6_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv6_key->ipv6_tclass, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv6_key->ipv6_hlimit, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv6_key->ipv6_frag, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
				ipv6_key->ipv6_src,
				sizeof(match->key->ipv6.addr.src),
				is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
				ipv6_key->ipv6_dst,
				sizeof(match->key->ipv6.addr.dst),
				is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
628 629 630

		if (is_mask && exact_5tuple && *exact_5tuple) {
			if (ipv6_key->ipv6_proto != 0xff ||
631 632 633 634
			    !is_all_set((const u8 *)ipv6_key->ipv6_src,
					sizeof(match->key->ipv6.addr.src)) ||
			    !is_all_set((const u8 *)ipv6_key->ipv6_dst,
					sizeof(match->key->ipv6.addr.dst)))
635 636
				*exact_5tuple = false;
		}
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	}

	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
		const struct ovs_key_arp *arp_key;

		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
			OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
				  arp_key->arp_op);
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				arp_key->arp_sip, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
			arp_key->arp_tip, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ntohs(arp_key->arp_op), is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
				arp_key->arp_sha, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
				arp_key->arp_tha, ETH_ALEN, is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
		const struct ovs_key_tcp *tcp_key;

		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
			SW_FLOW_KEY_PUT(match, ipv4.tp.src,
					tcp_key->tcp_src, is_mask);
			SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
					tcp_key->tcp_dst, is_mask);
		} else {
			SW_FLOW_KEY_PUT(match, ipv6.tp.src,
					tcp_key->tcp_src, is_mask);
			SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
					tcp_key->tcp_dst, is_mask);
		}
		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
679 680 681 682 683

		if (is_mask && exact_5tuple && *exact_5tuple &&
		    (tcp_key->tcp_src != htons(0xffff) ||
		     tcp_key->tcp_dst != htons(0xffff)))
			*exact_5tuple = false;
684 685
	}

686 687 688 689 690 691 692 693 694 695 696 697 698
	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
			SW_FLOW_KEY_PUT(match, ipv4.tp.flags,
					nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
					is_mask);
		} else {
			SW_FLOW_KEY_PUT(match, ipv6.tp.flags,
					nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
					is_mask);
		}
		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
	}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
		const struct ovs_key_udp *udp_key;

		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
			SW_FLOW_KEY_PUT(match, ipv4.tp.src,
					udp_key->udp_src, is_mask);
			SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
					udp_key->udp_dst, is_mask);
		} else {
			SW_FLOW_KEY_PUT(match, ipv6.tp.src,
					udp_key->udp_src, is_mask);
			SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
					udp_key->udp_dst, is_mask);
		}
		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
715 716 717 718 719

		if (is_mask && exact_5tuple && *exact_5tuple &&
		    (udp_key->udp_src != htons(0xffff) ||
		     udp_key->udp_dst != htons(0xffff)))
			*exact_5tuple = false;
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	}

	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
		const struct ovs_key_sctp *sctp_key;

		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
			SW_FLOW_KEY_PUT(match, ipv4.tp.src,
					sctp_key->sctp_src, is_mask);
			SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
					sctp_key->sctp_dst, is_mask);
		} else {
			SW_FLOW_KEY_PUT(match, ipv6.tp.src,
					sctp_key->sctp_src, is_mask);
			SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
					sctp_key->sctp_dst, is_mask);
		}
		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
		const struct ovs_key_icmp *icmp_key;

		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
		SW_FLOW_KEY_PUT(match, ipv4.tp.src,
				htons(icmp_key->icmp_type), is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
				htons(icmp_key->icmp_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
		const struct ovs_key_icmpv6 *icmpv6_key;

		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
		SW_FLOW_KEY_PUT(match, ipv6.tp.src,
				htons(icmpv6_key->icmpv6_type), is_mask);
		SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
				htons(icmpv6_key->icmpv6_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
		const struct ovs_key_nd *nd_key;

		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
			nd_key->nd_target,
			sizeof(match->key->ipv6.nd.target),
			is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
			nd_key->nd_sll, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
				nd_key->nd_tll, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ND);
	}

	if (attrs != 0)
		return -EINVAL;

	return 0;
}

static void sw_flow_mask_set(struct sw_flow_mask *mask,
			     struct sw_flow_key_range *range, u8 val)
{
	u8 *m = (u8 *)&mask->key + range->start;

	mask->range = *range;
	memset(m, val, range_n_bytes(range));
}

/**
 * ovs_nla_get_match - parses Netlink attributes into a flow key and
 * mask. In case the 'mask' is NULL, the flow is treated as exact match
 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
 * does not include any don't care bit.
 * @match: receives the extracted flow match information.
 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 * sequence. The fields should of the packet that triggered the creation
 * of this flow.
 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
 * attribute specifies the mask field of the wildcarded flow.
 */
int ovs_nla_get_match(struct sw_flow_match *match,
805
		      bool *exact_5tuple,
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
		      const struct nlattr *key,
		      const struct nlattr *mask)
{
	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
	const struct nlattr *encap;
	u64 key_attrs = 0;
	u64 mask_attrs = 0;
	bool encap_valid = false;
	int err;

	err = parse_flow_nlattrs(key, a, &key_attrs);
	if (err)
		return err;

	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
		__be16 tci;

		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
			OVS_NLERR("Invalid Vlan frame.\n");
			return -EINVAL;
		}

		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
		encap = a[OVS_KEY_ATTR_ENCAP];
		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
		encap_valid = true;

		if (tci & htons(VLAN_TAG_PRESENT)) {
			err = parse_flow_nlattrs(encap, a, &key_attrs);
			if (err)
				return err;
		} else if (!tci) {
			/* Corner case for truncated 802.1Q header. */
			if (nla_len(encap)) {
				OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
				return -EINVAL;
			}
		} else {
			OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
			return  -EINVAL;
		}
	}

853
	err = ovs_key_from_nlattrs(match, NULL, key_attrs, a, false);
854 855 856
	if (err)
		return err;

857 858 859
	if (exact_5tuple)
		*exact_5tuple = true;

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	if (mask) {
		err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
		if (err)
			return err;

		if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP)  {
			__be16 eth_type = 0;
			__be16 tci = 0;

			if (!encap_valid) {
				OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
				return  -EINVAL;
			}

			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
			if (a[OVS_KEY_ATTR_ETHERTYPE])
				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);

			if (eth_type == htons(0xffff)) {
				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
				encap = a[OVS_KEY_ATTR_ENCAP];
				err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
			} else {
				OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
						ntohs(eth_type));
				return -EINVAL;
			}

			if (a[OVS_KEY_ATTR_VLAN])
				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);

			if (!(tci & htons(VLAN_TAG_PRESENT))) {
				OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci));
				return -EINVAL;
			}
		}

897
		err = ovs_key_from_nlattrs(match, exact_5tuple, mask_attrs, a, true);
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
		if (err)
			return err;
	} else {
		/* Populate exact match flow's key mask. */
		if (match->mask)
			sw_flow_mask_set(match->mask, &match->range, 0xff);
	}

	if (!match_validate(match, key_attrs, mask_attrs))
		return -EINVAL;

	return 0;
}

/**
 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
 * @flow: Receives extracted in_port, priority, tun_key and skb_mark.
 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 * sequence.
 *
 * This parses a series of Netlink attributes that form a flow key, which must
 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
 * get the metadata, that is, the parts of the flow key that cannot be
 * extracted from the packet itself.
 */

int ovs_nla_get_flow_metadata(struct sw_flow *flow,
			      const struct nlattr *attr)
{
	struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
	u64 attrs = 0;
	int err;
	struct sw_flow_match match;

	flow->key.phy.in_port = DP_MAX_PORTS;
	flow->key.phy.priority = 0;
	flow->key.phy.skb_mark = 0;
	memset(tun_key, 0, sizeof(flow->key.tun_key));

	err = parse_flow_nlattrs(attr, a, &attrs);
	if (err)
		return -EINVAL;

	memset(&match, 0, sizeof(match));
	match.key = &flow->key;

	err = metadata_from_nlattrs(&match, &attrs, a, false);
	if (err)
		return err;

	return 0;
}

int ovs_nla_put_flow(const struct sw_flow_key *swkey,
		     const struct sw_flow_key *output, struct sk_buff *skb)
{
	struct ovs_key_ethernet *eth_key;
	struct nlattr *nla, *encap;
	bool is_mask = (swkey != output);

	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
		goto nla_put_failure;

	if ((swkey->tun_key.ipv4_dst || is_mask) &&
	    ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
		goto nla_put_failure;

	if (swkey->phy.in_port == DP_MAX_PORTS) {
		if (is_mask && (output->phy.in_port == 0xffff))
			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
				goto nla_put_failure;
	} else {
		u16 upper_u16;
		upper_u16 = !is_mask ? 0 : 0xffff;

		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
				(upper_u16 << 16) | output->phy.in_port))
			goto nla_put_failure;
	}

	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
		goto nla_put_failure;

	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
	if (!nla)
		goto nla_put_failure;

	eth_key = nla_data(nla);
	memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN);
	memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN);

	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
		__be16 eth_type;
		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
			goto nla_put_failure;
		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
		if (!swkey->eth.tci)
			goto unencap;
	} else
		encap = NULL;

	if (swkey->eth.type == htons(ETH_P_802_2)) {
		/*
		 * Ethertype 802.2 is represented in the netlink with omitted
		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
		 * 0xffff in the mask attribute.  Ethertype can also
		 * be wildcarded.
		 */
		if (is_mask && output->eth.type)
			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
						output->eth.type))
				goto nla_put_failure;
		goto unencap;
	}

	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
		goto nla_put_failure;

	if (swkey->eth.type == htons(ETH_P_IP)) {
		struct ovs_key_ipv4 *ipv4_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
		if (!nla)
			goto nla_put_failure;
		ipv4_key = nla_data(nla);
		ipv4_key->ipv4_src = output->ipv4.addr.src;
		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
		ipv4_key->ipv4_proto = output->ip.proto;
		ipv4_key->ipv4_tos = output->ip.tos;
		ipv4_key->ipv4_ttl = output->ip.ttl;
		ipv4_key->ipv4_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
		struct ovs_key_ipv6 *ipv6_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
		if (!nla)
			goto nla_put_failure;
		ipv6_key = nla_data(nla);
		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
				sizeof(ipv6_key->ipv6_src));
		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
				sizeof(ipv6_key->ipv6_dst));
		ipv6_key->ipv6_label = output->ipv6.label;
		ipv6_key->ipv6_proto = output->ip.proto;
		ipv6_key->ipv6_tclass = output->ip.tos;
		ipv6_key->ipv6_hlimit = output->ip.ttl;
		ipv6_key->ipv6_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
		   swkey->eth.type == htons(ETH_P_RARP)) {
		struct ovs_key_arp *arp_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
		if (!nla)
			goto nla_put_failure;
		arp_key = nla_data(nla);
		memset(arp_key, 0, sizeof(struct ovs_key_arp));
		arp_key->arp_sip = output->ipv4.addr.src;
		arp_key->arp_tip = output->ipv4.addr.dst;
		arp_key->arp_op = htons(output->ip.proto);
		memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN);
		memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN);
	}

	if ((swkey->eth.type == htons(ETH_P_IP) ||
	     swkey->eth.type == htons(ETH_P_IPV6)) &&
	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {

		if (swkey->ip.proto == IPPROTO_TCP) {
			struct ovs_key_tcp *tcp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
			if (!nla)
				goto nla_put_failure;
			tcp_key = nla_data(nla);
			if (swkey->eth.type == htons(ETH_P_IP)) {
				tcp_key->tcp_src = output->ipv4.tp.src;
				tcp_key->tcp_dst = output->ipv4.tp.dst;
1078 1079 1080
				if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
						 output->ipv4.tp.flags))
					goto nla_put_failure;
1081 1082 1083
			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
				tcp_key->tcp_src = output->ipv6.tp.src;
				tcp_key->tcp_dst = output->ipv6.tp.dst;
1084 1085 1086
				if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
						 output->ipv6.tp.flags))
					goto nla_put_failure;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
			}
		} else if (swkey->ip.proto == IPPROTO_UDP) {
			struct ovs_key_udp *udp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
			if (!nla)
				goto nla_put_failure;
			udp_key = nla_data(nla);
			if (swkey->eth.type == htons(ETH_P_IP)) {
				udp_key->udp_src = output->ipv4.tp.src;
				udp_key->udp_dst = output->ipv4.tp.dst;
			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
				udp_key->udp_src = output->ipv6.tp.src;
				udp_key->udp_dst = output->ipv6.tp.dst;
			}
		} else if (swkey->ip.proto == IPPROTO_SCTP) {
			struct ovs_key_sctp *sctp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
			if (!nla)
				goto nla_put_failure;
			sctp_key = nla_data(nla);
			if (swkey->eth.type == htons(ETH_P_IP)) {
				sctp_key->sctp_src = swkey->ipv4.tp.src;
				sctp_key->sctp_dst = swkey->ipv4.tp.dst;
			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
				sctp_key->sctp_src = swkey->ipv6.tp.src;
				sctp_key->sctp_dst = swkey->ipv6.tp.dst;
			}
		} else if (swkey->eth.type == htons(ETH_P_IP) &&
			   swkey->ip.proto == IPPROTO_ICMP) {
			struct ovs_key_icmp *icmp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
			if (!nla)
				goto nla_put_failure;
			icmp_key = nla_data(nla);
			icmp_key->icmp_type = ntohs(output->ipv4.tp.src);
			icmp_key->icmp_code = ntohs(output->ipv4.tp.dst);
		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
			   swkey->ip.proto == IPPROTO_ICMPV6) {
			struct ovs_key_icmpv6 *icmpv6_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
						sizeof(*icmpv6_key));
			if (!nla)
				goto nla_put_failure;
			icmpv6_key = nla_data(nla);
			icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src);
			icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst);

			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
				struct ovs_key_nd *nd_key;

				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
				if (!nla)
					goto nla_put_failure;
				nd_key = nla_data(nla);
				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
							sizeof(nd_key->nd_target));
				memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN);
				memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN);
			}
		}
	}

unencap:
	if (encap)
		nla_nest_end(skb, encap);

	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

#define MAX_ACTIONS_BUFSIZE	(32 * 1024)

struct sw_flow_actions *ovs_nla_alloc_flow_actions(int size)
{
	struct sw_flow_actions *sfa;

	if (size > MAX_ACTIONS_BUFSIZE)
		return ERR_PTR(-EINVAL);

	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
	if (!sfa)
		return ERR_PTR(-ENOMEM);

	sfa->actions_len = 0;
	return sfa;
}

/* Schedules 'sf_acts' to be freed after the next RCU grace period.
 * The caller must hold rcu_read_lock for this to be sensible. */
void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
{
1185
	kfree_rcu(sf_acts, rcu);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
}

static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
				       int attr_len)
{

	struct sw_flow_actions *acts;
	int new_acts_size;
	int req_size = NLA_ALIGN(attr_len);
	int next_offset = offsetof(struct sw_flow_actions, actions) +
					(*sfa)->actions_len;

	if (req_size <= (ksize(*sfa) - next_offset))
		goto out;

	new_acts_size = ksize(*sfa) * 2;

	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
			return ERR_PTR(-EMSGSIZE);
		new_acts_size = MAX_ACTIONS_BUFSIZE;
	}

	acts = ovs_nla_alloc_flow_actions(new_acts_size);
	if (IS_ERR(acts))
		return (void *)acts;

	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
	acts->actions_len = (*sfa)->actions_len;
	kfree(*sfa);
	*sfa = acts;

out:
	(*sfa)->actions_len += req_size;
	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
}

static int add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len)
{
	struct nlattr *a;

	a = reserve_sfa_size(sfa, nla_attr_size(len));
	if (IS_ERR(a))
		return PTR_ERR(a);

	a->nla_type = attrtype;
	a->nla_len = nla_attr_size(len);

	if (data)
		memcpy(nla_data(a), data, len);
	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));

	return 0;
}

static inline int add_nested_action_start(struct sw_flow_actions **sfa,
					  int attrtype)
{
	int used = (*sfa)->actions_len;
	int err;

	err = add_action(sfa, attrtype, NULL, 0);
	if (err)
		return err;

	return used;
}

static inline void add_nested_action_end(struct sw_flow_actions *sfa,
					 int st_offset)
{
	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
							       st_offset);

	a->nla_len = sfa->actions_len - st_offset;
}

static int validate_and_copy_sample(const struct nlattr *attr,
				    const struct sw_flow_key *key, int depth,
				    struct sw_flow_actions **sfa)
{
	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
	const struct nlattr *probability, *actions;
	const struct nlattr *a;
	int rem, start, err, st_acts;

	memset(attrs, 0, sizeof(attrs));
	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
			return -EINVAL;
		attrs[type] = a;
	}
	if (rem)
		return -EINVAL;

	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
	if (!probability || nla_len(probability) != sizeof(u32))
		return -EINVAL;

	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
		return -EINVAL;

	/* validation done, copy sample action. */
	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE);
	if (start < 0)
		return start;
	err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
			 nla_data(probability), sizeof(u32));
	if (err)
		return err;
	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS);
	if (st_acts < 0)
		return st_acts;

	err = ovs_nla_copy_actions(actions, key, depth + 1, sfa);
	if (err)
		return err;

	add_nested_action_end(*sfa, st_acts);
	add_nested_action_end(*sfa, start);

	return 0;
}

static int validate_tp_port(const struct sw_flow_key *flow_key)
{
	if (flow_key->eth.type == htons(ETH_P_IP)) {
		if (flow_key->ipv4.tp.src || flow_key->ipv4.tp.dst)
			return 0;
	} else if (flow_key->eth.type == htons(ETH_P_IPV6)) {
		if (flow_key->ipv6.tp.src || flow_key->ipv6.tp.dst)
			return 0;
	}

	return -EINVAL;
}

void ovs_match_init(struct sw_flow_match *match,
		    struct sw_flow_key *key,
		    struct sw_flow_mask *mask)
{
	memset(match, 0, sizeof(*match));
	match->key = key;
	match->mask = mask;

	memset(key, 0, sizeof(*key));

	if (mask) {
		memset(&mask->key, 0, sizeof(mask->key));
		mask->range.start = mask->range.end = 0;
	}
}

static int validate_and_copy_set_tun(const struct nlattr *attr,
				     struct sw_flow_actions **sfa)
{
	struct sw_flow_match match;
	struct sw_flow_key key;
	int err, start;

	ovs_match_init(&match, &key, NULL);
	err = ipv4_tun_from_nlattr(nla_data(attr), &match, false);
	if (err)
		return err;

	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET);
	if (start < 0)
		return start;

	err = add_action(sfa, OVS_KEY_ATTR_IPV4_TUNNEL, &match.key->tun_key,
			sizeof(match.key->tun_key));
	add_nested_action_end(*sfa, start);

	return err;
}

static int validate_set(const struct nlattr *a,
			const struct sw_flow_key *flow_key,
			struct sw_flow_actions **sfa,
			bool *set_tun)
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);

	/* There can be only one key in a action */
	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
		return -EINVAL;

	if (key_type > OVS_KEY_ATTR_MAX ||
	    (ovs_key_lens[key_type] != nla_len(ovs_key) &&
	     ovs_key_lens[key_type] != -1))
		return -EINVAL;

	switch (key_type) {
	const struct ovs_key_ipv4 *ipv4_key;
	const struct ovs_key_ipv6 *ipv6_key;
	int err;

	case OVS_KEY_ATTR_PRIORITY:
	case OVS_KEY_ATTR_SKB_MARK:
	case OVS_KEY_ATTR_ETHERNET:
		break;

	case OVS_KEY_ATTR_TUNNEL:
		*set_tun = true;
		err = validate_and_copy_set_tun(a, sfa);
		if (err)
			return err;
		break;

	case OVS_KEY_ATTR_IPV4:
		if (flow_key->eth.type != htons(ETH_P_IP))
			return -EINVAL;

		if (!flow_key->ip.proto)
			return -EINVAL;

		ipv4_key = nla_data(ovs_key);
		if (ipv4_key->ipv4_proto != flow_key->ip.proto)
			return -EINVAL;

		if (ipv4_key->ipv4_frag != flow_key->ip.frag)
			return -EINVAL;

		break;

	case OVS_KEY_ATTR_IPV6:
		if (flow_key->eth.type != htons(ETH_P_IPV6))
			return -EINVAL;

		if (!flow_key->ip.proto)
			return -EINVAL;

		ipv6_key = nla_data(ovs_key);
		if (ipv6_key->ipv6_proto != flow_key->ip.proto)
			return -EINVAL;

		if (ipv6_key->ipv6_frag != flow_key->ip.frag)
			return -EINVAL;

		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
			return -EINVAL;

		break;

	case OVS_KEY_ATTR_TCP:
		if (flow_key->ip.proto != IPPROTO_TCP)
			return -EINVAL;

		return validate_tp_port(flow_key);

	case OVS_KEY_ATTR_UDP:
		if (flow_key->ip.proto != IPPROTO_UDP)
			return -EINVAL;

		return validate_tp_port(flow_key);

	case OVS_KEY_ATTR_SCTP:
		if (flow_key->ip.proto != IPPROTO_SCTP)
			return -EINVAL;

		return validate_tp_port(flow_key);

	default:
		return -EINVAL;
	}

	return 0;
}

static int validate_userspace(const struct nlattr *attr)
{
	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
	};
	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
	int error;

	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
				 attr, userspace_policy);
	if (error)
		return error;

	if (!a[OVS_USERSPACE_ATTR_PID] ||
	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
		return -EINVAL;

	return 0;
}

static int copy_action(const struct nlattr *from,
		       struct sw_flow_actions **sfa)
{
	int totlen = NLA_ALIGN(from->nla_len);
	struct nlattr *to;

	to = reserve_sfa_size(sfa, from->nla_len);
	if (IS_ERR(to))
		return PTR_ERR(to);

	memcpy(to, from, totlen);
	return 0;
}

int ovs_nla_copy_actions(const struct nlattr *attr,
			 const struct sw_flow_key *key,
			 int depth,
			 struct sw_flow_actions **sfa)
{
	const struct nlattr *a;
	int rem, err;

	if (depth >= SAMPLE_ACTION_DEPTH)
		return -EOVERFLOW;

	nla_for_each_nested(a, attr, rem) {
		/* Expected argument lengths, (u32)-1 for variable length. */
		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
			[OVS_ACTION_ATTR_POP_VLAN] = 0,
			[OVS_ACTION_ATTR_SET] = (u32)-1,
			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1
		};
		const struct ovs_action_push_vlan *vlan;
		int type = nla_type(a);
		bool skip_copy;

		if (type > OVS_ACTION_ATTR_MAX ||
		    (action_lens[type] != nla_len(a) &&
		     action_lens[type] != (u32)-1))
			return -EINVAL;

		skip_copy = false;
		switch (type) {
		case OVS_ACTION_ATTR_UNSPEC:
			return -EINVAL;

		case OVS_ACTION_ATTR_USERSPACE:
			err = validate_userspace(a);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_OUTPUT:
			if (nla_get_u32(a) >= DP_MAX_PORTS)
				return -EINVAL;
			break;


		case OVS_ACTION_ATTR_POP_VLAN:
			break;

		case OVS_ACTION_ATTR_PUSH_VLAN:
			vlan = nla_data(a);
			if (vlan->vlan_tpid != htons(ETH_P_8021Q))
				return -EINVAL;
			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
				return -EINVAL;
			break;

		case OVS_ACTION_ATTR_SET:
			err = validate_set(a, key, sfa, &skip_copy);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_SAMPLE:
			err = validate_and_copy_sample(a, key, depth, sfa);
			if (err)
				return err;
			skip_copy = true;
			break;

		default:
			return -EINVAL;
		}
		if (!skip_copy) {
			err = copy_action(a, sfa);
			if (err)
				return err;
		}
	}

	if (rem > 0)
		return -EINVAL;

	return 0;
}

static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
{
	const struct nlattr *a;
	struct nlattr *start;
	int err = 0, rem;

	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
	if (!start)
		return -EMSGSIZE;

	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		struct nlattr *st_sample;

		switch (type) {
		case OVS_SAMPLE_ATTR_PROBABILITY:
			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
				    sizeof(u32), nla_data(a)))
				return -EMSGSIZE;
			break;
		case OVS_SAMPLE_ATTR_ACTIONS:
			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
			if (!st_sample)
				return -EMSGSIZE;
			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
			if (err)
				return err;
			nla_nest_end(skb, st_sample);
			break;
		}
	}

	nla_nest_end(skb, start);
	return err;
}

static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);
	struct nlattr *start;
	int err;

	switch (key_type) {
	case OVS_KEY_ATTR_IPV4_TUNNEL:
		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
		if (!start)
			return -EMSGSIZE;

		err = ipv4_tun_to_nlattr(skb, nla_data(ovs_key),
					     nla_data(ovs_key));
		if (err)
			return err;
		nla_nest_end(skb, start);
		break;
	default:
		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
			return -EMSGSIZE;
		break;
	}

	return 0;
}

int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
{
	const struct nlattr *a;
	int rem, err;

	nla_for_each_attr(a, attr, len, rem) {
		int type = nla_type(a);

		switch (type) {
		case OVS_ACTION_ATTR_SET:
			err = set_action_to_attr(a, skb);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_SAMPLE:
			err = sample_action_to_attr(a, skb);
			if (err)
				return err;
			break;
		default:
			if (nla_put(skb, type, nla_len(a), nla_data(a)))
				return -EMSGSIZE;
			break;
		}
	}

	return 0;
}