sdhci-msm.c 73.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10
/*
 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
 *
 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
 */

#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/delay.h>
11
#include <linux/mmc/mmc.h>
12
#include <linux/pm_runtime.h>
13
#include <linux/pm_opp.h>
14
#include <linux/slab.h>
15
#include <linux/iopoll.h>
16
#include <linux/regulator/consumer.h>
17
#include <linux/interconnect.h>
18
#include <linux/pinctrl/consumer.h>
19 20

#include "sdhci-pltfm.h"
21
#include "cqhci.h"
22

23 24 25 26 27
#define CORE_MCI_VERSION		0x50
#define CORE_VERSION_MAJOR_SHIFT	28
#define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
#define CORE_VERSION_MINOR_MASK		0xff

28 29 30
#define CORE_MCI_GENERICS		0x70
#define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)

31 32 33
#define HC_MODE_EN		0x1
#define CORE_POWER		0x0
#define CORE_SW_RST		BIT(7)
34
#define FF_CLK_SW_RST_DIS	BIT(13)
35

36 37 38 39 40
#define CORE_PWRCTL_BUS_OFF	BIT(0)
#define CORE_PWRCTL_BUS_ON	BIT(1)
#define CORE_PWRCTL_IO_LOW	BIT(2)
#define CORE_PWRCTL_IO_HIGH	BIT(3)
#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
41
#define CORE_PWRCTL_BUS_FAIL    BIT(1)
42
#define CORE_PWRCTL_IO_SUCCESS	BIT(2)
43
#define CORE_PWRCTL_IO_FAIL     BIT(3)
44 45 46 47 48
#define REQ_BUS_OFF		BIT(0)
#define REQ_BUS_ON		BIT(1)
#define REQ_IO_LOW		BIT(2)
#define REQ_IO_HIGH		BIT(3)
#define INT_MASK		0xf
49 50
#define MAX_PHASES		16
#define CORE_DLL_LOCK		BIT(7)
51
#define CORE_DDR_DLL_LOCK	BIT(11)
52 53 54 55 56 57
#define CORE_DLL_EN		BIT(16)
#define CORE_CDR_EN		BIT(17)
#define CORE_CK_OUT_EN		BIT(18)
#define CORE_CDR_EXT_EN		BIT(19)
#define CORE_DLL_PDN		BIT(29)
#define CORE_DLL_RST		BIT(30)
58
#define CORE_CMD_DAT_TRACK_SEL	BIT(0)
59

60
#define CORE_DDR_CAL_EN		BIT(0)
61 62 63
#define CORE_FLL_CYCLE_CNT	BIT(18)
#define CORE_DLL_CLOCK_DISABLE	BIT(21)

64 65 66 67 68
#define DLL_USR_CTL_POR_VAL	0x10800
#define ENABLE_DLL_LOCK_STATUS	BIT(26)
#define FINE_TUNE_MODE_EN	BIT(27)
#define BIAS_OK_SIGNAL		BIT(29)

69 70 71
#define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
#define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10

72
#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
73
#define CORE_CLK_PWRSAVE	BIT(1)
74 75 76
#define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
#define CORE_HC_MCLK_SEL_HS400	(3 << 8)
#define CORE_HC_MCLK_SEL_MASK	(3 << 8)
77 78
#define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
#define CORE_IO_PAD_PWR_SWITCH	BIT(16)
79 80 81
#define CORE_HC_SELECT_IN_EN	BIT(18)
#define CORE_HC_SELECT_IN_HS400	(6 << 19)
#define CORE_HC_SELECT_IN_MASK	(7 << 19)
82

83 84
#define CORE_3_0V_SUPPORT	BIT(25)
#define CORE_1_8V_SUPPORT	BIT(26)
85
#define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
86

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
#define CORE_CSR_CDC_CTLR_CFG0		0x130
#define CORE_SW_TRIG_FULL_CALIB		BIT(16)
#define CORE_HW_AUTOCAL_ENA		BIT(17)

#define CORE_CSR_CDC_CTLR_CFG1		0x134
#define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
#define CORE_TIMER_ENA			BIT(16)

#define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
#define CORE_CSR_CDC_REFCOUNT_CFG	0x140
#define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
#define CORE_CDC_OFFSET_CFG		0x14C
#define CORE_CSR_CDC_DELAY_CFG		0x150
#define CORE_CDC_SLAVE_DDA_CFG		0x160
#define CORE_CSR_CDC_STATUS0		0x164
#define CORE_CALIBRATION_DONE		BIT(0)

#define CORE_CDC_ERROR_CODE_MASK	0x7000000

#define CORE_CSR_CDC_GEN_CFG		0x178
#define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
#define CORE_CDC_SWITCH_RC_EN		BIT(1)

#define CORE_CDC_T4_DLY_SEL		BIT(0)
111
#define CORE_CMDIN_RCLK_EN		BIT(1)
112
#define CORE_START_CDC_TRAFFIC		BIT(6)
113

114 115
#define CORE_PWRSAVE_DLL	BIT(3)

116
#define DDR_CONFIG_POR_VAL	0x80040873
117

118

119
#define INVALID_TUNING_PHASE	-1
120
#define SDHCI_MSM_MIN_CLOCK	400000
121
#define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
122

123 124 125 126 127
#define CDR_SELEXT_SHIFT	20
#define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
#define CMUX_SHIFT_PHASE_SHIFT	24
#define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)

128
#define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
129 130 131 132

/* Timeout value to avoid infinite waiting for pwr_irq */
#define MSM_PWR_IRQ_TIMEOUT_MS 5000

133 134 135
/* Max load for eMMC Vdd-io supply */
#define MMC_VQMMC_MAX_LOAD_UA	325000

136 137 138 139 140 141
#define msm_host_readl(msm_host, host, offset) \
	msm_host->var_ops->msm_readl_relaxed(host, offset)

#define msm_host_writel(msm_host, val, host, offset) \
	msm_host->var_ops->msm_writel_relaxed(val, host, offset)

142 143 144 145
/* CQHCI vendor specific registers */
#define CQHCI_VENDOR_CFG1	0xA00
#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
struct sdhci_msm_offset {
	u32 core_hc_mode;
	u32 core_mci_data_cnt;
	u32 core_mci_status;
	u32 core_mci_fifo_cnt;
	u32 core_mci_version;
	u32 core_generics;
	u32 core_testbus_config;
	u32 core_testbus_sel2_bit;
	u32 core_testbus_ena;
	u32 core_testbus_sel2;
	u32 core_pwrctl_status;
	u32 core_pwrctl_mask;
	u32 core_pwrctl_clear;
	u32 core_pwrctl_ctl;
	u32 core_sdcc_debug_reg;
	u32 core_dll_config;
	u32 core_dll_status;
	u32 core_vendor_spec;
	u32 core_vendor_spec_adma_err_addr0;
	u32 core_vendor_spec_adma_err_addr1;
	u32 core_vendor_spec_func2;
	u32 core_vendor_spec_capabilities0;
	u32 core_ddr_200_cfg;
	u32 core_vendor_spec3;
	u32 core_dll_config_2;
172 173
	u32 core_dll_config_3;
	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
174
	u32 core_ddr_config;
175
	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
};

static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
	.core_mci_data_cnt = 0x35c,
	.core_mci_status = 0x324,
	.core_mci_fifo_cnt = 0x308,
	.core_mci_version = 0x318,
	.core_generics = 0x320,
	.core_testbus_config = 0x32c,
	.core_testbus_sel2_bit = 3,
	.core_testbus_ena = (1 << 31),
	.core_testbus_sel2 = (1 << 3),
	.core_pwrctl_status = 0x240,
	.core_pwrctl_mask = 0x244,
	.core_pwrctl_clear = 0x248,
	.core_pwrctl_ctl = 0x24c,
	.core_sdcc_debug_reg = 0x358,
	.core_dll_config = 0x200,
	.core_dll_status = 0x208,
	.core_vendor_spec = 0x20c,
	.core_vendor_spec_adma_err_addr0 = 0x214,
	.core_vendor_spec_adma_err_addr1 = 0x218,
	.core_vendor_spec_func2 = 0x210,
	.core_vendor_spec_capabilities0 = 0x21c,
	.core_ddr_200_cfg = 0x224,
	.core_vendor_spec3 = 0x250,
	.core_dll_config_2 = 0x254,
203 204
	.core_dll_config_3 = 0x258,
	.core_ddr_config = 0x25c,
205
	.core_dll_usr_ctl = 0x388,
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
};

static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
	.core_hc_mode = 0x78,
	.core_mci_data_cnt = 0x30,
	.core_mci_status = 0x34,
	.core_mci_fifo_cnt = 0x44,
	.core_mci_version = 0x050,
	.core_generics = 0x70,
	.core_testbus_config = 0x0cc,
	.core_testbus_sel2_bit = 4,
	.core_testbus_ena = (1 << 3),
	.core_testbus_sel2 = (1 << 4),
	.core_pwrctl_status = 0xdc,
	.core_pwrctl_mask = 0xe0,
	.core_pwrctl_clear = 0xe4,
	.core_pwrctl_ctl = 0xe8,
	.core_sdcc_debug_reg = 0x124,
	.core_dll_config = 0x100,
	.core_dll_status = 0x108,
	.core_vendor_spec = 0x10c,
	.core_vendor_spec_adma_err_addr0 = 0x114,
	.core_vendor_spec_adma_err_addr1 = 0x118,
	.core_vendor_spec_func2 = 0x110,
	.core_vendor_spec_capabilities0 = 0x11c,
	.core_ddr_200_cfg = 0x184,
	.core_vendor_spec3 = 0x1b0,
	.core_dll_config_2 = 0x1b4,
234 235
	.core_ddr_config_old = 0x1b8,
	.core_ddr_config = 0x1bc,
236 237
};

238 239 240 241 242 243 244 245 246 247 248 249
struct sdhci_msm_variant_ops {
	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
			u32 offset);
};

/*
 * From V5, register spaces have changed. Wrap this info in a structure
 * and choose the data_structure based on version info mentioned in DT.
 */
struct sdhci_msm_variant_info {
	bool mci_removed;
250
	bool restore_dll_config;
251
	bool uses_tassadar_dll;
252 253 254 255
	const struct sdhci_msm_variant_ops *var_ops;
	const struct sdhci_msm_offset *offset;
};

256 257 258
struct sdhci_msm_host {
	struct platform_device *pdev;
	void __iomem *core_mem;	/* MSM SDCC mapped address */
259
	int pwr_irq;		/* power irq */
260
	struct clk *bus_clk;	/* SDHC bus voter clock */
261
	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
262
	struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
263
	unsigned long clk_rate;
264
	struct mmc_host *mmc;
265 266
	struct opp_table *opp_table;
	bool has_opp_table;
267
	bool use_14lpp_dll_reset;
268 269
	bool tuning_done;
	bool calibration_done;
270
	u8 saved_tuning_phase;
271
	bool use_cdclp533;
272 273 274 275
	u32 curr_pwr_state;
	u32 curr_io_level;
	wait_queue_head_t pwr_irq_wait;
	bool pwr_irq_flag;
276
	u32 caps_0;
277
	bool mci_removed;
278
	bool restore_dll_config;
279 280
	const struct sdhci_msm_variant_ops *var_ops;
	const struct sdhci_msm_offset *offset;
281 282
	bool use_cdr;
	u32 transfer_mode;
283
	bool updated_ddr_cfg;
284
	bool uses_tassadar_dll;
285
	u32 dll_config;
286
	u32 ddr_config;
287
	bool vqmmc_enabled;
288 289
};

290 291 292 293 294 295 296 297
static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);

	return msm_host->offset;
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
/*
 * APIs to read/write to vendor specific registers which were there in the
 * core_mem region before MCI was removed.
 */
static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
		u32 offset)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);

	return readl_relaxed(msm_host->core_mem + offset);
}

static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
		u32 offset)
{
	return readl_relaxed(host->ioaddr + offset);
}

static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
		struct sdhci_host *host, u32 offset)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);

	writel_relaxed(val, msm_host->core_mem + offset);
}

static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
		struct sdhci_host *host, u32 offset)
{
	writel_relaxed(val, host->ioaddr + offset);
}

332 333 334 335 336 337 338 339 340 341 342 343
static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
						    unsigned int clock)
{
	struct mmc_ios ios = host->mmc->ios;
	/*
	 * The SDHC requires internal clock frequency to be double the
	 * actual clock that will be set for DDR mode. The controller
	 * uses the faster clock(100/400MHz) for some of its parts and
	 * send the actual required clock (50/200MHz) to the card.
	 */
	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
	    ios.timing == MMC_TIMING_MMC_DDR52 ||
344 345
	    ios.timing == MMC_TIMING_MMC_HS400 ||
	    host->flags & SDHCI_HS400_TUNING)
346 347 348 349 350 351 352 353 354 355
		clock *= 2;
	return clock;
}

static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
					    unsigned int clock)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
	struct mmc_ios curr_ios = host->mmc->ios;
356
	struct clk *core_clk = msm_host->bulk_clks[0].clk;
357 358 359
	int rc;

	clock = msm_get_clock_rate_for_bus_mode(host, clock);
360
	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), clock);
361 362 363 364 365 366 367 368
	if (rc) {
		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
		       mmc_hostname(host->mmc), clock,
		       curr_ios.timing);
		return;
	}
	msm_host->clk_rate = clock;
	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
369
		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
370 371 372
		 curr_ios.timing);
}

373
/* Platform specific tuning */
374 375 376 377 378
static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
{
	u32 wait_cnt = 50;
	u8 ck_out_en;
	struct mmc_host *mmc = host->mmc;
379 380
	const struct sdhci_msm_offset *msm_offset =
					sdhci_priv_msm_offset(host);
381 382

	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
383 384
	ck_out_en = !!(readl_relaxed(host->ioaddr +
			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
385 386 387 388 389 390 391 392 393

	while (ck_out_en != poll) {
		if (--wait_cnt == 0) {
			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
			       mmc_hostname(mmc), poll);
			return -ETIMEDOUT;
		}
		udelay(1);

394 395
		ck_out_en = !!(readl_relaxed(host->ioaddr +
			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	}

	return 0;
}

static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
{
	int rc;
	static const u8 grey_coded_phase_table[] = {
		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
	};
	unsigned long flags;
	u32 config;
	struct mmc_host *mmc = host->mmc;
411 412
	const struct sdhci_msm_offset *msm_offset =
					sdhci_priv_msm_offset(host);
413

414 415 416
	if (phase > 0xf)
		return -EINVAL;

417 418
	spin_lock_irqsave(&host->lock, flags);

419
	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
420 421
	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
422
	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
423 424 425 426 427 428 429 430 431 432

	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
	rc = msm_dll_poll_ck_out_en(host, 0);
	if (rc)
		goto err_out;

	/*
	 * Write the selected DLL clock output phase (0 ... 15)
	 * to CDR_SELEXT bit field of DLL_CONFIG register.
	 */
433
	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
434 435
	config &= ~CDR_SELEXT_MASK;
	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
436
	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
437

438
	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
439
	config |= CORE_CK_OUT_EN;
440
	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
441 442 443 444 445 446

	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
	rc = msm_dll_poll_ck_out_en(host, 1);
	if (rc)
		goto err_out;

447
	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
448 449
	config |= CORE_CDR_EN;
	config &= ~CORE_CDR_EXT_EN;
450
	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
451 452 453 454 455 456 457 458 459 460 461 462 463 464
	goto out;

err_out:
	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
	       mmc_hostname(mmc), phase);
out:
	spin_unlock_irqrestore(&host->lock, flags);
	return rc;
}

/*
 * Find out the greatest range of consecuitive selected
 * DLL clock output phases that can be used as sampling
 * setting for SD3.0 UHS-I card read operation (in SDR104
465 466
 * timing mode) or for eMMC4.5 card read operation (in
 * HS400/HS200 timing mode).
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
 * Select the 3/4 of the range and configure the DLL with the
 * selected DLL clock output phase.
 */

static int msm_find_most_appropriate_phase(struct sdhci_host *host,
					   u8 *phase_table, u8 total_phases)
{
	int ret;
	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
	u8 phases_per_row[MAX_PHASES] = { 0 };
	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
	bool phase_0_found = false, phase_15_found = false;
	struct mmc_host *mmc = host->mmc;

	if (!total_phases || (total_phases > MAX_PHASES)) {
		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
		       mmc_hostname(mmc), total_phases);
		return -EINVAL;
	}

	for (cnt = 0; cnt < total_phases; cnt++) {
		ranges[row_index][col_index] = phase_table[cnt];
		phases_per_row[row_index] += 1;
		col_index++;

		if ((cnt + 1) == total_phases) {
			continue;
		/* check if next phase in phase_table is consecutive or not */
		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
			row_index++;
			col_index = 0;
		}
	}

	if (row_index >= MAX_PHASES)
		return -EINVAL;

	/* Check if phase-0 is present in first valid window? */
	if (!ranges[0][0]) {
		phase_0_found = true;
		phase_0_raw_index = 0;
		/* Check if cycle exist between 2 valid windows */
		for (cnt = 1; cnt <= row_index; cnt++) {
			if (phases_per_row[cnt]) {
				for (i = 0; i < phases_per_row[cnt]; i++) {
					if (ranges[cnt][i] == 15) {
						phase_15_found = true;
						phase_15_raw_index = cnt;
						break;
					}
				}
			}
		}
	}

	/* If 2 valid windows form cycle then merge them as single window */
	if (phase_0_found && phase_15_found) {
		/* number of phases in raw where phase 0 is present */
		u8 phases_0 = phases_per_row[phase_0_raw_index];
		/* number of phases in raw where phase 15 is present */
		u8 phases_15 = phases_per_row[phase_15_raw_index];

		if (phases_0 + phases_15 >= MAX_PHASES)
			/*
			 * If there are more than 1 phase windows then total
			 * number of phases in both the windows should not be
			 * more than or equal to MAX_PHASES.
			 */
			return -EINVAL;

		/* Merge 2 cyclic windows */
		i = phases_15;
		for (cnt = 0; cnt < phases_0; cnt++) {
			ranges[phase_15_raw_index][i] =
			    ranges[phase_0_raw_index][cnt];
			if (++i >= MAX_PHASES)
				break;
		}

		phases_per_row[phase_0_raw_index] = 0;
		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
	}

	for (cnt = 0; cnt <= row_index; cnt++) {
		if (phases_per_row[cnt] > curr_max) {
			curr_max = phases_per_row[cnt];
			selected_row_index = cnt;
		}
	}

	i = (curr_max * 3) / 4;
	if (i)
		i--;

	ret = ranges[selected_row_index][i];

	if (ret >= MAX_PHASES) {
		ret = -EINVAL;
		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
		       mmc_hostname(mmc), ret);
	}

	return ret;
}

static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
574
{
575
	u32 mclk_freq = 0, config;
576 577
	const struct sdhci_msm_offset *msm_offset =
					sdhci_priv_msm_offset(host);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

	/* Program the MCLK value to MCLK_FREQ bit field */
	if (host->clock <= 112000000)
		mclk_freq = 0;
	else if (host->clock <= 125000000)
		mclk_freq = 1;
	else if (host->clock <= 137000000)
		mclk_freq = 2;
	else if (host->clock <= 150000000)
		mclk_freq = 3;
	else if (host->clock <= 162000000)
		mclk_freq = 4;
	else if (host->clock <= 175000000)
		mclk_freq = 5;
	else if (host->clock <= 187000000)
		mclk_freq = 6;
	else if (host->clock <= 200000000)
		mclk_freq = 7;

597
	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
598 599
	config &= ~CMUX_SHIFT_PHASE_MASK;
	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
600
	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
601 602 603 604 605 606
}

/* Initialize the DLL (Programmable Delay Line) */
static int msm_init_cm_dll(struct sdhci_host *host)
{
	struct mmc_host *mmc = host->mmc;
607 608
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
609
	int wait_cnt = 50;
610
	unsigned long flags, xo_clk = 0;
611
	u32 config;
612 613
	const struct sdhci_msm_offset *msm_offset =
					msm_host->offset;
614

615 616 617
	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
		xo_clk = clk_get_rate(msm_host->xo_clk);

618 619
	spin_lock_irqsave(&host->lock, flags);

620
	/*
621 622 623
	 * Make sure that clock is always enabled when DLL
	 * tuning is in progress. Keeping PWRSAVE ON may
	 * turn off the clock.
624
	 */
625
	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
626
	config &= ~CORE_CLK_PWRSAVE;
627
	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
628

629 630 631
	if (msm_host->dll_config)
		writel_relaxed(msm_host->dll_config,
				host->ioaddr + msm_offset->core_dll_config);
632

633
	if (msm_host->use_14lpp_dll_reset) {
634 635
		config = readl_relaxed(host->ioaddr +
				msm_offset->core_dll_config);
636
		config &= ~CORE_CK_OUT_EN;
637 638
		writel_relaxed(config, host->ioaddr +
				msm_offset->core_dll_config);
639

640 641
		config = readl_relaxed(host->ioaddr +
				msm_offset->core_dll_config_2);
642
		config |= CORE_DLL_CLOCK_DISABLE;
643 644
		writel_relaxed(config, host->ioaddr +
				msm_offset->core_dll_config_2);
645 646
	}

647 648
	config = readl_relaxed(host->ioaddr +
			msm_offset->core_dll_config);
649
	config |= CORE_DLL_RST;
650 651
	writel_relaxed(config, host->ioaddr +
			msm_offset->core_dll_config);
652

653 654
	config = readl_relaxed(host->ioaddr +
			msm_offset->core_dll_config);
655
	config |= CORE_DLL_PDN;
656 657
	writel_relaxed(config, host->ioaddr +
			msm_offset->core_dll_config);
658 659 660

	if (!msm_host->dll_config)
		msm_cm_dll_set_freq(host);
661

662 663 664 665
	if (msm_host->use_14lpp_dll_reset &&
	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
		u32 mclk_freq = 0;

666 667
		config = readl_relaxed(host->ioaddr +
				msm_offset->core_dll_config_2);
668 669 670
		config &= CORE_FLL_CYCLE_CNT;
		if (config)
			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
671
					xo_clk);
672 673
		else
			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
674
					xo_clk);
675

676 677
		config = readl_relaxed(host->ioaddr +
				msm_offset->core_dll_config_2);
678 679 680
		config &= ~(0xFF << 10);
		config |= mclk_freq << 10;

681 682
		writel_relaxed(config, host->ioaddr +
				msm_offset->core_dll_config_2);
683 684 685 686
		/* wait for 5us before enabling DLL clock */
		udelay(5);
	}

687 688
	config = readl_relaxed(host->ioaddr +
			msm_offset->core_dll_config);
689
	config &= ~CORE_DLL_RST;
690 691
	writel_relaxed(config, host->ioaddr +
			msm_offset->core_dll_config);
692

693 694
	config = readl_relaxed(host->ioaddr +
			msm_offset->core_dll_config);
695
	config &= ~CORE_DLL_PDN;
696 697
	writel_relaxed(config, host->ioaddr +
			msm_offset->core_dll_config);
698

699
	if (msm_host->use_14lpp_dll_reset) {
700 701
		if (!msm_host->dll_config)
			msm_cm_dll_set_freq(host);
702 703
		config = readl_relaxed(host->ioaddr +
				msm_offset->core_dll_config_2);
704
		config &= ~CORE_DLL_CLOCK_DISABLE;
705 706
		writel_relaxed(config, host->ioaddr +
				msm_offset->core_dll_config_2);
707 708
	}

709 710 711 712 713 714 715 716 717
	/*
	 * Configure DLL user control register to enable DLL status.
	 * This setting is applicable to SDCC v5.1 onwards only.
	 */
	if (msm_host->uses_tassadar_dll) {
		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
		writel_relaxed(config, host->ioaddr +
				msm_offset->core_dll_usr_ctl);
718 719 720 721 722 723 724 725 726 727

		config = readl_relaxed(host->ioaddr +
				msm_offset->core_dll_config_3);
		config &= ~0xFF;
		if (msm_host->clk_rate < 150000000)
			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
		else
			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
		writel_relaxed(config, host->ioaddr +
			msm_offset->core_dll_config_3);
728 729
	}

730 731
	config = readl_relaxed(host->ioaddr +
			msm_offset->core_dll_config);
732
	config |= CORE_DLL_EN;
733 734
	writel_relaxed(config, host->ioaddr +
			msm_offset->core_dll_config);
735

736 737
	config = readl_relaxed(host->ioaddr +
			msm_offset->core_dll_config);
738
	config |= CORE_CK_OUT_EN;
739 740
	writel_relaxed(config, host->ioaddr +
			msm_offset->core_dll_config);
741 742

	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
743
	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
744 745 746 747 748 749 750 751 752 753 754 755
		 CORE_DLL_LOCK)) {
		/* max. wait for 50us sec for LOCK bit to be set */
		if (--wait_cnt == 0) {
			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
			       mmc_hostname(mmc));
			spin_unlock_irqrestore(&host->lock, flags);
			return -ETIMEDOUT;
		}
		udelay(1);
	}

	spin_unlock_irqrestore(&host->lock, flags);
756 757 758
	return 0;
}

759 760 761 762 763
static void msm_hc_select_default(struct sdhci_host *host)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
	u32 config;
764 765
	const struct sdhci_msm_offset *msm_offset =
					msm_host->offset;
766 767 768

	if (!msm_host->use_cdclp533) {
		config = readl_relaxed(host->ioaddr +
769
				msm_offset->core_vendor_spec3);
770 771
		config &= ~CORE_PWRSAVE_DLL;
		writel_relaxed(config, host->ioaddr +
772
				msm_offset->core_vendor_spec3);
773 774
	}

775
	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
776 777
	config &= ~CORE_HC_MCLK_SEL_MASK;
	config |= CORE_HC_MCLK_SEL_DFLT;
778
	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
779 780 781 782 783 784 785 786

	/*
	 * Disable HC_SELECT_IN to be able to use the UHS mode select
	 * configuration from Host Control2 register for all other
	 * modes.
	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
	 * in VENDOR_SPEC_FUNC
	 */
787
	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
788 789
	config &= ~CORE_HC_SELECT_IN_EN;
	config &= ~CORE_HC_SELECT_IN_MASK;
790
	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
791 792 793 794 795 796 797 798 799 800 801 802

	/*
	 * Make sure above writes impacting free running MCLK are completed
	 * before changing the clk_rate at GCC.
	 */
	wmb();
}

static void msm_hc_select_hs400(struct sdhci_host *host)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
803
	struct mmc_ios ios = host->mmc->ios;
804 805
	u32 config, dll_lock;
	int rc;
806 807
	const struct sdhci_msm_offset *msm_offset =
					msm_host->offset;
808 809

	/* Select the divided clock (free running MCLK/2) */
810
	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
811 812 813
	config &= ~CORE_HC_MCLK_SEL_MASK;
	config |= CORE_HC_MCLK_SEL_HS400;

814
	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
815 816 817 818
	/*
	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
	 * register
	 */
819 820
	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
	    !msm_host->calibration_done) {
821 822
		config = readl_relaxed(host->ioaddr +
				msm_offset->core_vendor_spec);
823 824
		config |= CORE_HC_SELECT_IN_HS400;
		config |= CORE_HC_SELECT_IN_EN;
825 826
		writel_relaxed(config, host->ioaddr +
				msm_offset->core_vendor_spec);
827 828 829 830
	}
	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
		/*
		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
831
		 * core_dll_status to be set. This should get set
832 833 834
		 * within 15 us at 200 MHz.
		 */
		rc = readl_relaxed_poll_timeout(host->ioaddr +
835
						msm_offset->core_dll_status,
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
						dll_lock,
						(dll_lock &
						(CORE_DLL_LOCK |
						CORE_DDR_DLL_LOCK)), 10,
						1000);
		if (rc == -ETIMEDOUT)
			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
			       mmc_hostname(host->mmc), dll_lock);
	}
	/*
	 * Make sure above writes impacting free running MCLK are completed
	 * before changing the clk_rate at GCC.
	 */
	wmb();
}

/*
 * sdhci_msm_hc_select_mode :- In general all timing modes are
 * controlled via UHS mode select in Host Control2 register.
 * eMMC specific HS200/HS400 doesn't have their respective modes
 * defined here, hence we use these values.
 *
 * HS200 - SDR104 (Since they both are equivalent in functionality)
 * HS400 - This involves multiple configurations
 *		Initially SDR104 - when tuning is required as HS200
 *		Then when switching to DDR @ 400MHz (HS400) we use
 *		the vendor specific HC_SELECT_IN to control the mode.
 *
 * In addition to controlling the modes we also need to select the
 * correct input clock for DLL depending on the mode.
 *
 * HS400 - divided clock (free running MCLK/2)
 * All other modes - default (free running MCLK)
 */
870
static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
871 872 873
{
	struct mmc_ios ios = host->mmc->ios;

874 875
	if (ios.timing == MMC_TIMING_MMC_HS400 ||
	    host->flags & SDHCI_HS400_TUNING)
876 877 878 879 880
		msm_hc_select_hs400(host);
	else
		msm_hc_select_default(host);
}

881 882 883 884 885 886
static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
	u32 config, calib_done;
	int ret;
887 888
	const struct sdhci_msm_offset *msm_offset =
					msm_host->offset;
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904

	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);

	/*
	 * Retuning in HS400 (DDR mode) will fail, just reset the
	 * tuning block and restore the saved tuning phase.
	 */
	ret = msm_init_cm_dll(host);
	if (ret)
		goto out;

	/* Set the selected phase in delay line hw block */
	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
	if (ret)
		goto out;

905
	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
906
	config |= CORE_CMD_DAT_TRACK_SEL;
907
	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
908

909
	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
910
	config &= ~CORE_CDC_T4_DLY_SEL;
911
	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
912 913 914 915 916 917 918 919 920

	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);

	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
	config |= CORE_CDC_SWITCH_RC_EN;
	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);

921
	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
922
	config &= ~CORE_START_CDC_TRAFFIC;
923
	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
924

925
	/* Perform CDC Register Initialization Sequence */
926 927 928 929 930 931 932

	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
933
	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);

	/* CDC HW Calibration */

	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
	config |= CORE_SW_TRIG_FULL_CALIB;
	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);

	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
	config &= ~CORE_SW_TRIG_FULL_CALIB;
	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);

	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
	config |= CORE_HW_AUTOCAL_ENA;
	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);

	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
	config |= CORE_TIMER_ENA;
	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);

	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
					 calib_done,
					 (calib_done & CORE_CALIBRATION_DONE),
					 1, 50);

	if (ret == -ETIMEDOUT) {
		pr_err("%s: %s: CDC calibration was not completed\n",
		       mmc_hostname(host->mmc), __func__);
		goto out;
	}

	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
			& CORE_CDC_ERROR_CODE_MASK;
	if (ret) {
		pr_err("%s: %s: CDC error code %d\n",
		       mmc_hostname(host->mmc), __func__, ret);
		ret = -EINVAL;
		goto out;
	}

975
	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
976
	config |= CORE_START_CDC_TRAFFIC;
977
	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
978 979 980 981 982 983
out:
	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
		 __func__, ret);
	return ret;
}

984 985
static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
{
986
	struct mmc_host *mmc = host->mmc;
987
	u32 dll_status, config, ddr_cfg_offset;
988
	int ret;
989 990
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
991 992
	const struct sdhci_msm_offset *msm_offset =
					sdhci_priv_msm_offset(host);
993 994 995 996

	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);

	/*
997
	 * Currently the core_ddr_config register defaults to desired
998 999 1000 1001 1002
	 * configuration on reset. Currently reprogramming the power on
	 * reset (POR) value in case it might have been modified by
	 * bootloaders. In the future, if this changes, then the desired
	 * values will need to be programmed appropriately.
	 */
1003 1004 1005 1006
	if (msm_host->updated_ddr_cfg)
		ddr_cfg_offset = msm_offset->core_ddr_config;
	else
		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1007
	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1008

1009
	if (mmc->ios.enhanced_strobe) {
1010 1011
		config = readl_relaxed(host->ioaddr +
				msm_offset->core_ddr_200_cfg);
1012
		config |= CORE_CMDIN_RCLK_EN;
1013 1014
		writel_relaxed(config, host->ioaddr +
				msm_offset->core_ddr_200_cfg);
1015 1016
	}

1017
	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1018
	config |= CORE_DDR_CAL_EN;
1019
	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1020

1021 1022 1023 1024 1025
	ret = readl_relaxed_poll_timeout(host->ioaddr +
					msm_offset->core_dll_status,
					dll_status,
					(dll_status & CORE_DDR_DLL_LOCK),
					10, 1000);
1026 1027 1028 1029 1030 1031 1032

	if (ret == -ETIMEDOUT) {
		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
		       mmc_hostname(host->mmc), __func__);
		goto out;
	}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	/*
	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
	 * When MCLK is gated OFF, it is not gated for less than 0.5us
	 * and MCLK must be switched on for at-least 1us before DATA
	 * starts coming. Controllers with 14lpp and later tech DLL cannot
	 * guarantee above requirement. So PWRSAVE_DLL should not be
	 * turned on for host controllers using this DLL.
	 */
	if (!msm_host->use_14lpp_dll_reset) {
		config = readl_relaxed(host->ioaddr +
				msm_offset->core_vendor_spec3);
		config |= CORE_PWRSAVE_DLL;
		writel_relaxed(config, host->ioaddr +
				msm_offset->core_vendor_spec3);
	}
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	/*
	 * Drain writebuffer to ensure above DLL calibration
	 * and PWRSAVE DLL is enabled.
	 */
	wmb();
out:
	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
		 __func__, ret);
	return ret;
}

static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1064
	struct mmc_host *mmc = host->mmc;
1065 1066
	int ret;
	u32 config;
1067 1068
	const struct sdhci_msm_offset *msm_offset =
					msm_host->offset;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);

	/*
	 * Retuning in HS400 (DDR mode) will fail, just reset the
	 * tuning block and restore the saved tuning phase.
	 */
	ret = msm_init_cm_dll(host);
	if (ret)
		goto out;

1080 1081 1082 1083 1084 1085
	if (!mmc->ios.enhanced_strobe) {
		/* Set the selected phase in delay line hw block */
		ret = msm_config_cm_dll_phase(host,
					      msm_host->saved_tuning_phase);
		if (ret)
			goto out;
1086 1087
		config = readl_relaxed(host->ioaddr +
				msm_offset->core_dll_config);
1088
		config |= CORE_CMD_DAT_TRACK_SEL;
1089 1090
		writel_relaxed(config, host->ioaddr +
				msm_offset->core_dll_config);
1091
	}
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

	if (msm_host->use_cdclp533)
		ret = sdhci_msm_cdclp533_calibration(host);
	else
		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
out:
	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
		 __func__, ret);
	return ret;
}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
{
	struct mmc_ios *ios = &host->mmc->ios;

	/*
	 * Tuning is required for SDR104, HS200 and HS400 cards and
	 * if clock frequency is greater than 100MHz in these modes.
	 */
	if (host->clock <= CORE_FREQ_100MHZ ||
	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
	    ios->timing == MMC_TIMING_MMC_HS200 ||
	    ios->timing == MMC_TIMING_UHS_SDR104) ||
	    ios->enhanced_strobe)
		return false;

	return true;
}

static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
	int ret;

	/*
	 * SDR DLL comes into picture only for timing modes which needs
	 * tuning.
	 */
	if (!sdhci_msm_is_tuning_needed(host))
		return 0;

	/* Reset the tuning block */
	ret = msm_init_cm_dll(host);
	if (ret)
		return ret;

	/* Restore the tuning block */
	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);

	return ret;
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
{
	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
	u32 config, oldconfig = readl_relaxed(host->ioaddr +
					      msm_offset->core_dll_config);

	config = oldconfig;
	if (enable) {
		config |= CORE_CDR_EN;
		config &= ~CORE_CDR_EXT_EN;
	} else {
		config &= ~CORE_CDR_EN;
		config |= CORE_CDR_EXT_EN;
	}

	if (config != oldconfig) {
		writel_relaxed(config, host->ioaddr +
			       msm_offset->core_dll_config);
	}
}

1166
static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1167
{
1168
	struct sdhci_host *host = mmc_priv(mmc);
1169
	int tuning_seq_cnt = 10;
1170
	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1171 1172
	int rc;
	struct mmc_ios ios = host->mmc->ios;
1173 1174
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1175

1176 1177 1178
	if (!sdhci_msm_is_tuning_needed(host)) {
		msm_host->use_cdr = false;
		sdhci_msm_set_cdr(host, false);
1179
		return 0;
1180 1181 1182 1183
	}

	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
	msm_host->use_cdr = true;
1184

1185 1186 1187 1188 1189 1190
	/*
	 * Clear tuning_done flag before tuning to ensure proper
	 * HS400 settings.
	 */
	msm_host->tuning_done = 0;

1191 1192 1193 1194 1195 1196 1197 1198
	/*
	 * For HS400 tuning in HS200 timing requires:
	 * - select MCLK/2 in VENDOR_SPEC
	 * - program MCLK to 400MHz (or nearest supported) in GCC
	 */
	if (host->flags & SDHCI_HS400_TUNING) {
		sdhci_msm_hc_select_mode(host);
		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1199
		host->flags &= ~SDHCI_HS400_TUNING;
1200 1201
	}

1202 1203 1204 1205
retry:
	/* First of all reset the tuning block */
	rc = msm_init_cm_dll(host);
	if (rc)
1206
		return rc;
1207 1208 1209 1210 1211 1212

	phase = 0;
	do {
		/* Set the phase in delay line hw block */
		rc = msm_config_cm_dll_phase(host, phase);
		if (rc)
1213
			return rc;
1214

1215
		rc = mmc_send_tuning(mmc, opcode, NULL);
1216
		if (!rc) {
1217 1218 1219 1220 1221 1222 1223 1224
			/* Tuning is successful at this tuning point */
			tuned_phases[tuned_phase_cnt++] = phase;
			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
				 mmc_hostname(mmc), phase);
		}
	} while (++phase < ARRAY_SIZE(tuned_phases));

	if (tuned_phase_cnt) {
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
			/*
			 * All phases valid is _almost_ as bad as no phases
			 * valid.  Probably all phases are not really reliable
			 * but we didn't detect where the unreliable place is.
			 * That means we'll essentially be guessing and hoping
			 * we get a good phase.  Better to try a few times.
			 */
			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
				mmc_hostname(mmc));
			if (--tuning_seq_cnt) {
				tuned_phase_cnt = 0;
				goto retry;
			}
		}

1241 1242 1243
		rc = msm_find_most_appropriate_phase(host, tuned_phases,
						     tuned_phase_cnt);
		if (rc < 0)
1244
			return rc;
1245 1246 1247 1248 1249 1250 1251 1252 1253
		else
			phase = rc;

		/*
		 * Finally set the selected phase in delay
		 * line hw block.
		 */
		rc = msm_config_cm_dll_phase(host, phase);
		if (rc)
1254
			return rc;
1255
		msm_host->saved_tuning_phase = phase;
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
			 mmc_hostname(mmc), phase);
	} else {
		if (--tuning_seq_cnt)
			goto retry;
		/* Tuning failed */
		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
		       mmc_hostname(mmc));
		rc = -EIO;
	}

1267 1268
	if (!rc)
		msm_host->tuning_done = true;
1269 1270 1271
	return rc;
}

1272 1273
/*
 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1274
 * This needs to be done for both tuning and enhanced_strobe mode.
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
 * fixed feedback clock is used.
 */
static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
	int ret;

	if (host->clock > CORE_FREQ_100MHZ &&
1285 1286
	    (msm_host->tuning_done || ios->enhanced_strobe) &&
	    !msm_host->calibration_done) {
1287 1288 1289 1290 1291 1292 1293 1294 1295
		ret = sdhci_msm_hs400_dll_calibration(host);
		if (!ret)
			msm_host->calibration_done = true;
		else
			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
			       mmc_hostname(host->mmc), ret);
	}
}

1296 1297 1298 1299
static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
					unsigned int uhs)
{
	struct mmc_host *mmc = host->mmc;
1300 1301
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1302
	u16 ctrl_2;
1303
	u32 config;
1304 1305
	const struct sdhci_msm_offset *msm_offset =
					msm_host->offset;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
	/* Select Bus Speed Mode for host */
	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
	switch (uhs) {
	case MMC_TIMING_UHS_SDR12:
		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
		break;
	case MMC_TIMING_UHS_SDR25:
		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
		break;
	case MMC_TIMING_UHS_SDR50:
		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
		break;
1320
	case MMC_TIMING_MMC_HS400:
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	case MMC_TIMING_MMC_HS200:
	case MMC_TIMING_UHS_SDR104:
		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
		break;
	case MMC_TIMING_UHS_DDR50:
	case MMC_TIMING_MMC_DDR52:
		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
		break;
	}

	/*
	 * When clock frequency is less than 100MHz, the feedback clock must be
	 * provided and DLL must not be used so that tuning can be skipped. To
	 * provide feedback clock, the mode selection can be any value less
	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
	 */
1337 1338 1339 1340 1341 1342 1343 1344 1345
	if (host->clock <= CORE_FREQ_100MHZ) {
		if (uhs == MMC_TIMING_MMC_HS400 ||
		    uhs == MMC_TIMING_MMC_HS200 ||
		    uhs == MMC_TIMING_UHS_SDR104)
			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
		/*
		 * DLL is not required for clock <= 100MHz
		 * Thus, make sure DLL it is disabled when not required
		 */
1346 1347
		config = readl_relaxed(host->ioaddr +
				msm_offset->core_dll_config);
1348
		config |= CORE_DLL_RST;
1349 1350
		writel_relaxed(config, host->ioaddr +
				msm_offset->core_dll_config);
1351

1352 1353
		config = readl_relaxed(host->ioaddr +
				msm_offset->core_dll_config);
1354
		config |= CORE_DLL_PDN;
1355 1356
		writel_relaxed(config, host->ioaddr +
				msm_offset->core_dll_config);
1357 1358 1359 1360 1361 1362 1363

		/*
		 * The DLL needs to be restored and CDCLP533 recalibrated
		 * when the clock frequency is set back to 400MHz.
		 */
		msm_host->calibration_done = false;
	}
1364 1365 1366 1367

	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1368

1369 1370
	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
		sdhci_msm_hs400(host, &mmc->ios);
1371 1372
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
{
	struct platform_device *pdev = msm_host->pdev;
	int ret;

	if (level)
		ret = pinctrl_pm_select_default_state(&pdev->dev);
	else
		ret = pinctrl_pm_select_sleep_state(&pdev->dev);

	return ret;
}

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
{
	if (IS_ERR(mmc->supply.vmmc))
		return 0;

	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
}

static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
			      struct mmc_host *mmc, bool level)
{
	int ret;
	struct mmc_ios ios;

	if (msm_host->vqmmc_enabled == level)
		return 0;

	if (level) {
		/* Set the IO voltage regulator to default voltage level */
		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;

		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
			ret = mmc_regulator_set_vqmmc(mmc, &ios);
			if (ret < 0) {
				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
					mmc_hostname(mmc), ret);
				goto out;
			}
		}
		ret = regulator_enable(mmc->supply.vqmmc);
	} else {
		ret = regulator_disable(mmc->supply.vqmmc);
	}

	if (ret)
		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
			mmc_hostname(mmc), level ? "en":"dis", ret);
	else
		msm_host->vqmmc_enabled = level;
out:
	return ret;
}

static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
			      struct mmc_host *mmc, bool hpm)
{
	int load, ret;

	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
	ret = regulator_set_load(mmc->supply.vqmmc, load);
	if (ret)
		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
			mmc_hostname(mmc), ret);
	return ret;
}

static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
			      struct mmc_host *mmc, bool level)
{
	int ret;
	bool always_on;

	if (IS_ERR(mmc->supply.vqmmc) ||
			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
		return 0;
	/*
	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
	 * and HPM modes by setting the corresponding load.
	 *
	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
	 * Vqmmc should remain ON, So just set the load instead of turning it
	 * off/on.
	 */
	always_on = !mmc_card_is_removable(mmc) &&
			mmc->card && mmc_card_mmc(mmc->card);

	if (always_on)
		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
	else
		ret = msm_toggle_vqmmc(msm_host, mmc, level);

	return ret;
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
{
	init_waitqueue_head(&msm_host->pwr_irq_wait);
}

static inline void sdhci_msm_complete_pwr_irq_wait(
		struct sdhci_msm_host *msm_host)
{
	wake_up(&msm_host->pwr_irq_wait);
}

/*
 * sdhci_msm_check_power_status API should be called when registers writes
 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
 * To what state the register writes will change the IO lines should be passed
 * as the argument req_type. This API will check whether the IO line's state
 * is already the expected state and will wait for power irq only if
1492
 * power irq is expected to be triggered based on the current IO line state
1493 1494 1495 1496 1497 1498 1499
 * and expected IO line state.
 */
static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
	bool done = false;
1500 1501 1502
	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
	const struct sdhci_msm_offset *msm_offset =
					msm_host->offset;
1503 1504 1505 1506 1507

	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
			mmc_hostname(host->mmc), __func__, req_type,
			msm_host->curr_pwr_state, msm_host->curr_io_level);

1508 1509 1510
	/*
	 * The power interrupt will not be generated for signal voltage
	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1511 1512
	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
	 * it as always set.
1513
	 */
1514 1515 1516
	if (!msm_host->mci_removed)
		val = msm_host_readl(msm_host, host,
				msm_offset->core_generics);
1517 1518 1519 1520 1521
	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
		return;
	}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	/*
	 * The IRQ for request type IO High/LOW will be generated when -
	 * there is a state change in 1.8V enable bit (bit 3) of
	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
	 * to set it to 3.3V before card detection happens, the
	 * IRQ doesn't get triggered as there is no state change in this bit.
	 * The driver already handles this case by changing the IO voltage
	 * level to high as part of controller power up sequence. Hence, check
	 * for host->pwr to handle a case where IO voltage high request is
	 * issued even before controller power up.
	 */
	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
				mmc_hostname(host->mmc), req_type);
		return;
	}
	if ((req_type & msm_host->curr_pwr_state) ||
			(req_type & msm_host->curr_io_level))
		done = true;
	/*
	 * This is needed here to handle cases where register writes will
	 * not change the current bus state or io level of the controller.
	 * In this case, no power irq will be triggerred and we should
	 * not wait.
	 */
	if (!done) {
		if (!wait_event_timeout(msm_host->pwr_irq_wait,
				msm_host->pwr_irq_flag,
				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1552 1553 1554
			dev_warn(&msm_host->pdev->dev,
				 "%s: pwr_irq for req: (%d) timed out\n",
				 mmc_hostname(host->mmc), req_type);
1555 1556 1557 1558 1559
	}
	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
			__func__, req_type);
}

1560 1561 1562 1563
static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1564 1565
	const struct sdhci_msm_offset *msm_offset =
					msm_host->offset;
1566 1567

	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1568 1569 1570 1571
		mmc_hostname(host->mmc),
		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1572 1573 1574
}

static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1575 1576 1577
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1578
	struct mmc_host *mmc = host->mmc;
1579
	u32 irq_status, irq_ack = 0;
1580
	int retry = 10, ret;
1581
	u32 pwr_state = 0, io_level = 0;
1582
	u32 config;
1583
	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1584

1585 1586
	irq_status = msm_host_readl(msm_host, host,
			msm_offset->core_pwrctl_status);
1587 1588
	irq_status &= INT_MASK;

1589 1590
	msm_host_writel(msm_host, irq_status, host,
			msm_offset->core_pwrctl_clear);
1591

1592 1593 1594 1595 1596 1597 1598
	/*
	 * There is a rare HW scenario where the first clear pulse could be
	 * lost when actual reset and clear/read of status register is
	 * happening at a time. Hence, retry for at least 10 times to make
	 * sure status register is cleared. Otherwise, this will result in
	 * a spurious power IRQ resulting in system instability.
	 */
1599 1600
	while (irq_status & msm_host_readl(msm_host, host,
				msm_offset->core_pwrctl_status)) {
1601 1602 1603 1604 1605 1606 1607
		if (retry == 0) {
			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
					mmc_hostname(host->mmc), irq_status);
			sdhci_msm_dump_pwr_ctrl_regs(host);
			WARN_ON(1);
			break;
		}
1608 1609
		msm_host_writel(msm_host, irq_status, host,
			msm_offset->core_pwrctl_clear);
1610 1611 1612 1613
		retry--;
		udelay(10);
	}

1614 1615 1616 1617 1618 1619 1620 1621 1622
	/* Handle BUS ON/OFF*/
	if (irq_status & CORE_PWRCTL_BUS_ON) {
		pwr_state = REQ_BUS_ON;
		io_level = REQ_IO_HIGH;
	}
	if (irq_status & CORE_PWRCTL_BUS_OFF) {
		pwr_state = REQ_BUS_OFF;
		io_level = REQ_IO_LOW;
	}
1623 1624 1625 1626 1627 1628

	if (pwr_state) {
		ret = sdhci_msm_set_vmmc(mmc);
		if (!ret)
			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
					pwr_state & REQ_BUS_ON);
1629 1630 1631
		if (!ret)
			ret = sdhci_msm_set_pincfg(msm_host,
					pwr_state & REQ_BUS_ON);
1632 1633 1634 1635 1636 1637
		if (!ret)
			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
		else
			irq_ack |= CORE_PWRCTL_BUS_FAIL;
	}

1638
	/* Handle IO LOW/HIGH */
1639
	if (irq_status & CORE_PWRCTL_IO_LOW)
1640
		io_level = REQ_IO_LOW;
1641 1642

	if (irq_status & CORE_PWRCTL_IO_HIGH)
1643
		io_level = REQ_IO_HIGH;
1644 1645

	if (io_level)
1646
		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
		if (ret < 0) {
			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
					mmc_hostname(mmc), ret,
					mmc->ios.signal_voltage, mmc->ios.vdd,
					irq_status);
			irq_ack |= CORE_PWRCTL_IO_FAIL;
		}
1657
	}
1658 1659 1660 1661 1662 1663

	/*
	 * The driver has to acknowledge the interrupt, switch voltages and
	 * report back if it succeded or not to this register. The voltage
	 * switches are handled by the sdhci core, so just report success.
	 */
1664 1665
	msm_host_writel(msm_host, irq_ack, host,
			msm_offset->core_pwrctl_ctl);
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	/*
	 * If we don't have info regarding the voltage levels supported by
	 * regulators, don't change the IO PAD PWR SWITCH.
	 */
	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
		u32 new_config;
		/*
		 * We should unset IO PAD PWR switch only if the register write
		 * can set IO lines high and the regulator also switches to 3 V.
		 * Else, we should keep the IO PAD PWR switch set.
		 * This is applicable to certain targets where eMMC vccq supply
		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
		 * IO PAD PWR switch must be kept set to reflect actual
		 * regulator voltage. This way, during initialization of
		 * controllers with only 1.8V, we will set the IO PAD bit
		 * without waiting for a REQ_IO_LOW.
		 */
1684 1685
		config = readl_relaxed(host->ioaddr +
				msm_offset->core_vendor_spec);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		new_config = config;

		if ((io_level & REQ_IO_HIGH) &&
				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
		else if ((io_level & REQ_IO_LOW) ||
				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
			new_config |= CORE_IO_PAD_PWR_SWITCH;

		if (config ^ new_config)
1696 1697
			writel_relaxed(new_config, host->ioaddr +
					msm_offset->core_vendor_spec);
1698 1699
	}

1700 1701 1702 1703 1704
	if (pwr_state)
		msm_host->curr_pwr_state = pwr_state;
	if (io_level)
		msm_host->curr_io_level = io_level;

1705
	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1706 1707
		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
		irq_ack);
1708 1709 1710 1711 1712
}

static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
{
	struct sdhci_host *host = (struct sdhci_host *)data;
1713 1714
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1715

1716
	sdhci_msm_handle_pwr_irq(host, irq);
1717 1718 1719
	msm_host->pwr_irq_flag = 1;
	sdhci_msm_complete_pwr_irq_wait(msm_host);

1720 1721 1722 1723

	return IRQ_HANDLED;
}

1724 1725 1726 1727
static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1728
	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1729

1730
	return clk_round_rate(core_clk, ULONG_MAX);
1731 1732 1733 1734 1735 1736 1737
}

static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
{
	return SDHCI_MSM_MIN_CLOCK;
}

1738
/*
1739 1740 1741 1742 1743 1744 1745
 * __sdhci_msm_set_clock - sdhci_msm clock control.
 *
 * Description:
 * MSM controller does not use internal divider and
 * instead directly control the GCC clock as per
 * HW recommendation.
 **/
1746
static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
{
	u16 clk;
	/*
	 * Keep actual_clock as zero -
	 * - since there is no divider used so no need of having actual_clock.
	 * - MSM controller uses SDCLK for data timeout calculation. If
	 *   actual_clock is zero, host->clock is taken for calculation.
	 */
	host->mmc->actual_clock = 0;

	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);

	if (clock == 0)
		return;

	/*
	 * MSM controller do not use clock divider.
	 * Thus read SDHCI_CLOCK_CONTROL and only enable
	 * clock with no divider value programmed.
	 */
	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
	sdhci_enable_clk(host, clk);
}

/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);

	if (!clock) {
		msm_host->clk_rate = clock;
		goto out;
	}

1782
	sdhci_msm_hc_select_mode(host);
1783

1784
	msm_set_clock_rate_for_bus_mode(host, clock);
1785 1786 1787 1788
out:
	__sdhci_msm_set_clock(host, clock);
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
/*****************************************************************************\
 *                                                                           *
 * MSM Command Queue Engine (CQE)                                            *
 *                                                                           *
\*****************************************************************************/

static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
{
	int cmd_error = 0;
	int data_error = 0;

	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
		return intmask;

	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
	return 0;
}

1807
static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
{
	struct sdhci_host *host = mmc_priv(mmc);
	unsigned long flags;
	u32 ctrl;

	/*
	 * When CQE is halted, the legacy SDHCI path operates only
	 * on 16-byte descriptors in 64bit mode.
	 */
	if (host->flags & SDHCI_USE_64_BIT_DMA)
		host->desc_sz = 16;

	spin_lock_irqsave(&host->lock, flags);

	/*
	 * During CQE command transfers, command complete bit gets latched.
	 * So s/w should clear command complete interrupt status when CQE is
	 * either halted or disabled. Otherwise unexpected SDCHI legacy
	 * interrupt gets triggered when CQE is halted/disabled.
	 */
	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
	ctrl |= SDHCI_INT_RESPONSE;
	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);

	spin_unlock_irqrestore(&host->lock, flags);

	sdhci_cqe_disable(mmc, recovery);
}

static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
	.enable		= sdhci_cqe_enable,
	.disable	= sdhci_msm_cqe_disable,
};

static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
				struct platform_device *pdev)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
	struct cqhci_host *cq_host;
	bool dma64;
	u32 cqcfg;
	int ret;

	/*
	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
	 * So ensure ADMA table is allocated for 16byte descriptors.
	 */
	if (host->caps & SDHCI_CAN_64BIT)
		host->alloc_desc_sz = 16;

	ret = sdhci_setup_host(host);
	if (ret)
		return ret;

	cq_host = cqhci_pltfm_init(pdev);
	if (IS_ERR(cq_host)) {
		ret = PTR_ERR(cq_host);
		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
		goto cleanup;
	}

	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
	cq_host->ops = &sdhci_msm_cqhci_ops;

	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;

	ret = cqhci_init(cq_host, host->mmc, dma64);
	if (ret) {
		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
				mmc_hostname(host->mmc), ret);
		goto cleanup;
	}

	/* Disable cqe reset due to cqe enable signal */
	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);

	/*
	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
	 * So limit desc_sz to 12 so that the data commands that are sent
	 * during card initialization (before CQE gets enabled) would
	 * get executed without any issues.
	 */
	if (host->flags & SDHCI_USE_64_BIT_DMA)
		host->desc_sz = 12;

	ret = __sdhci_add_host(host);
	if (ret)
		goto cleanup;

	dev_info(&pdev->dev, "%s: CQE init: success\n",
			mmc_hostname(host->mmc));
	return ret;

cleanup:
	sdhci_cleanup_host(host);
	return ret;
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
/*
 * Platform specific register write functions. This is so that, if any
 * register write needs to be followed up by platform specific actions,
 * they can be added here. These functions can go to sleep when writes
 * to certain registers are done.
 * These functions are relying on sdhci_set_ios not using spinlock.
 */
static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
	u32 req_type = 0;

	switch (reg) {
	case SDHCI_HOST_CONTROL2:
		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
			REQ_IO_HIGH;
		break;
	case SDHCI_SOFTWARE_RESET:
		if (host->pwr && (val & SDHCI_RESET_ALL))
			req_type = REQ_BUS_OFF;
		break;
	case SDHCI_POWER_CONTROL:
		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
		break;
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	case SDHCI_TRANSFER_MODE:
		msm_host->transfer_mode = val;
		break;
	case SDHCI_COMMAND:
		if (!msm_host->use_cdr)
			break;
		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
			sdhci_msm_set_cdr(host, true);
		else
			sdhci_msm_set_cdr(host, false);
		break;
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	}

	if (req_type) {
		msm_host->pwr_irq_flag = 0;
		/*
		 * Since this register write may trigger a power irq, ensure
		 * all previous register writes are complete by this point.
		 */
		mb();
	}
	return req_type;
}

/* This function may sleep*/
static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
{
	u32 req_type = 0;

	req_type = __sdhci_msm_check_write(host, val, reg);
	writew_relaxed(val, host->ioaddr + reg);

	if (req_type)
		sdhci_msm_check_power_status(host, req_type);
}

/* This function may sleep*/
static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
{
	u32 req_type = 0;

	req_type = __sdhci_msm_check_write(host, val, reg);

	writeb_relaxed(val, host->ioaddr + reg);

	if (req_type)
		sdhci_msm_check_power_status(host, req_type);
}

1986 1987 1988 1989
static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
{
	struct mmc_host *mmc = msm_host->mmc;
	struct regulator *supply = mmc->supply.vqmmc;
1990 1991
	u32 caps = 0, config;
	struct sdhci_host *host = mmc_priv(mmc);
1992
	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

	if (!IS_ERR(mmc->supply.vqmmc)) {
		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
			caps |= CORE_1_8V_SUPPORT;
		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
			caps |= CORE_3_0V_SUPPORT;

		if (!caps)
			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
					mmc_hostname(mmc));
	}

2005 2006 2007 2008 2009 2010 2011
	if (caps) {
		/*
		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
		 * bit can be used as required later on.
		 */
		u32 io_level = msm_host->curr_io_level;

2012 2013
		config = readl_relaxed(host->ioaddr +
				msm_offset->core_vendor_spec);
2014 2015 2016 2017 2018 2019 2020
		config |= CORE_IO_PAD_PWR_SWITCH_EN;

		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
			config &= ~CORE_IO_PAD_PWR_SWITCH;
		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
			config |= CORE_IO_PAD_PWR_SWITCH;

2021 2022
		writel_relaxed(config,
				host->ioaddr + msm_offset->core_vendor_spec);
2023
	}
2024 2025 2026 2027
	msm_host->caps_0 |= caps;
	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
}

2028 2029 2030 2031 2032 2033 2034
static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
{
	if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
		cqhci_deactivate(host->mmc);
	sdhci_reset(host, mask);
}

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
{
	int ret;

	ret = mmc_regulator_get_supply(msm_host->mmc);
	if (ret)
		return ret;

	sdhci_msm_set_regulator_caps(msm_host);

	return 0;
}

static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
				      struct mmc_ios *ios)
{
	struct sdhci_host *host = mmc_priv(mmc);
	u16 ctrl, status;

	/*
	 * Signal Voltage Switching is only applicable for Host Controllers
	 * v3.00 and above.
	 */
	if (host->version < SDHCI_SPEC_300)
		return 0;

	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);

	switch (ios->signal_voltage) {
	case MMC_SIGNAL_VOLTAGE_330:
		if (!(host->flags & SDHCI_SIGNALING_330))
			return -EINVAL;

		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
		ctrl &= ~SDHCI_CTRL_VDD_180;
		break;
	case MMC_SIGNAL_VOLTAGE_180:
		if (!(host->flags & SDHCI_SIGNALING_180))
			return -EINVAL;

		/* Enable 1.8V Signal Enable in the Host Control2 register */
		ctrl |= SDHCI_CTRL_VDD_180;
		break;

	default:
		return -EINVAL;
	}

	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);

	/* Wait for 5ms */
	usleep_range(5000, 5500);

	/* regulator output should be stable within 5 ms */
	status = ctrl & SDHCI_CTRL_VDD_180;
	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
		return 0;

	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
		mmc_hostname(mmc));

	return -EAGAIN;
}

2100 2101 2102 2103
#define DRIVER_NAME "sdhci_msm"
#define SDHCI_MSM_DUMP(f, x...) \
	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)

2104
static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
{
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
	const struct sdhci_msm_offset *msm_offset = msm_host->offset;

	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");

	SDHCI_MSM_DUMP(
			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
	SDHCI_MSM_DUMP(
			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
	SDHCI_MSM_DUMP(
			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
		readl_relaxed(host->ioaddr +
			msm_offset->core_vendor_spec_func2),
		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
}

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
static const struct sdhci_msm_variant_ops mci_var_ops = {
	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
};

static const struct sdhci_msm_variant_ops v5_var_ops = {
	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
};

static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
	.var_ops = &mci_var_ops,
	.offset = &sdhci_msm_mci_offset,
};

static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
	.mci_removed = true,
	.var_ops = &v5_var_ops,
	.offset = &sdhci_msm_v5_offset,
};

2151 2152 2153 2154 2155 2156 2157
static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
	.mci_removed = true,
	.restore_dll_config = true,
	.var_ops = &v5_var_ops,
	.offset = &sdhci_msm_v5_offset,
};

2158 2159 2160 2161 2162 2163 2164
static const struct sdhci_msm_variant_info sm8250_sdhci_var = {
	.mci_removed = true,
	.uses_tassadar_dll = true,
	.var_ops = &v5_var_ops,
	.offset = &sdhci_msm_v5_offset,
};

2165
static const struct of_device_id sdhci_msm_dt_match[] = {
2166 2167
	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2168
	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2169
	{.compatible = "qcom,sm8250-sdhci", .data = &sm8250_sdhci_var},
2170 2171 2172 2173 2174
	{},
};

MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);

2175
static const struct sdhci_ops sdhci_msm_ops = {
2176
	.reset = sdhci_msm_reset,
2177
	.set_clock = sdhci_msm_set_clock,
2178 2179
	.get_min_clock = sdhci_msm_get_min_clock,
	.get_max_clock = sdhci_msm_get_max_clock,
2180
	.set_bus_width = sdhci_set_bus_width,
2181
	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2182 2183
	.write_w = sdhci_msm_writew,
	.write_b = sdhci_msm_writeb,
2184
	.irq	= sdhci_msm_cqe_irq,
2185
	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2186
	.set_power = sdhci_set_power_noreg,
2187 2188
};

2189 2190
static const struct sdhci_pltfm_data sdhci_msm_pdata = {
	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
R
Ritesh Harjani 已提交
2191
		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2192 2193 2194
		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,

R
Ritesh Harjani 已提交
2195
	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2196 2197 2198
	.ops = &sdhci_msm_ops,
};

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
		struct sdhci_host *host)
{
	struct device_node *node = pdev->dev.of_node;
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);

	if (of_property_read_u32(node, "qcom,ddr-config",
				&msm_host->ddr_config))
		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2209 2210

	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2211 2212 2213
}


2214 2215 2216 2217 2218
static int sdhci_msm_probe(struct platform_device *pdev)
{
	struct sdhci_host *host;
	struct sdhci_pltfm_host *pltfm_host;
	struct sdhci_msm_host *msm_host;
2219
	struct clk *clk;
2220
	int ret;
2221
	u16 host_version, core_minor;
2222
	u32 core_version, config;
2223
	u8 core_major;
2224 2225
	const struct sdhci_msm_offset *msm_offset;
	const struct sdhci_msm_variant_info *var_info;
2226
	struct device_node *node = pdev->dev.of_node;
2227

2228
	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2229 2230 2231
	if (IS_ERR(host))
		return PTR_ERR(host);

2232
	host->sdma_boundary = 0;
2233
	pltfm_host = sdhci_priv(host);
2234
	msm_host = sdhci_pltfm_priv(pltfm_host);
2235 2236 2237 2238 2239 2240 2241
	msm_host->mmc = host->mmc;
	msm_host->pdev = pdev;

	ret = mmc_of_parse(host->mmc);
	if (ret)
		goto pltfm_free;

2242 2243 2244 2245 2246 2247 2248
	/*
	 * Based on the compatible string, load the required msm host info from
	 * the data associated with the version info.
	 */
	var_info = of_device_get_match_data(&pdev->dev);

	msm_host->mci_removed = var_info->mci_removed;
2249
	msm_host->restore_dll_config = var_info->restore_dll_config;
2250 2251
	msm_host->var_ops = var_info->var_ops;
	msm_host->offset = var_info->offset;
2252
	msm_host->uses_tassadar_dll = var_info->uses_tassadar_dll;
2253 2254 2255

	msm_offset = msm_host->offset;

2256
	sdhci_get_of_property(pdev);
2257
	sdhci_msm_get_of_property(pdev, host);
2258

2259 2260
	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	/* Setup SDCC bus voter clock. */
	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
	if (!IS_ERR(msm_host->bus_clk)) {
		/* Vote for max. clk rate for max. performance */
		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
		if (ret)
			goto pltfm_free;
		ret = clk_prepare_enable(msm_host->bus_clk);
		if (ret)
			goto pltfm_free;
	}

	/* Setup main peripheral bus clock */
2274 2275 2276
	clk = devm_clk_get(&pdev->dev, "iface");
	if (IS_ERR(clk)) {
		ret = PTR_ERR(clk);
2277
		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2278 2279
		goto bus_clk_disable;
	}
2280
	msm_host->bulk_clks[1].clk = clk;
2281 2282

	/* Setup SDC MMC clock */
2283 2284 2285
	clk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(clk)) {
		ret = PTR_ERR(clk);
2286
		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2287
		goto bus_clk_disable;
2288
	}
2289 2290
	msm_host->bulk_clks[0].clk = clk;

2291 2292 2293 2294 2295
	 /* Check for optional interconnect paths */
	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
	if (ret)
		goto bus_clk_disable;

2296 2297 2298
	msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "core");
	if (IS_ERR(msm_host->opp_table)) {
		ret = PTR_ERR(msm_host->opp_table);
2299 2300 2301 2302
		goto bus_clk_disable;
	}

	/* OPP table is optional */
2303 2304 2305 2306 2307 2308 2309
	ret = dev_pm_opp_of_add_table(&pdev->dev);
	if (!ret) {
		msm_host->has_opp_table = true;
	} else if (ret != -ENODEV) {
		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
		goto opp_cleanup;
	}
2310

2311
	/* Vote for maximum clock rate for maximum performance */
2312
	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2313 2314 2315
	if (ret)
		dev_warn(&pdev->dev, "core clock boost failed\n");

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	clk = devm_clk_get(&pdev->dev, "cal");
	if (IS_ERR(clk))
		clk = NULL;
	msm_host->bulk_clks[2].clk = clk;

	clk = devm_clk_get(&pdev->dev, "sleep");
	if (IS_ERR(clk))
		clk = NULL;
	msm_host->bulk_clks[3].clk = clk;

2326 2327 2328
	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
				      msm_host->bulk_clks);
	if (ret)
2329
		goto opp_cleanup;
2330

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	/*
	 * xo clock is needed for FLL feature of cm_dll.
	 * In case if xo clock is not mentioned in DT, warn and proceed.
	 */
	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
	if (IS_ERR(msm_host->xo_clk)) {
		ret = PTR_ERR(msm_host->xo_clk);
		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
	}

2341
	if (!msm_host->mci_removed) {
2342
		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2343 2344 2345 2346
		if (IS_ERR(msm_host->core_mem)) {
			ret = PTR_ERR(msm_host->core_mem);
			goto clk_disable;
		}
2347 2348
	}

2349 2350
	/* Reset the vendor spec register to power on reset state */
	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
			host->ioaddr + msm_offset->core_vendor_spec);

	if (!msm_host->mci_removed) {
		/* Set HC_MODE_EN bit in HC_MODE register */
		msm_host_writel(msm_host, HC_MODE_EN, host,
				msm_offset->core_hc_mode);
		config = msm_host_readl(msm_host, host,
				msm_offset->core_hc_mode);
		config |= FF_CLK_SW_RST_DIS;
		msm_host_writel(msm_host, config, host,
				msm_offset->core_hc_mode);
	}
2363

2364 2365 2366 2367 2368
	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
			       SDHCI_VENDOR_VER_SHIFT));

2369 2370
	core_version = msm_host_readl(msm_host, host,
			msm_offset->core_mci_version);
2371 2372 2373 2374 2375 2376
	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
		      CORE_VERSION_MAJOR_SHIFT;
	core_minor = core_version & CORE_VERSION_MINOR_MASK;
	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
		core_version, core_major, core_minor);

2377 2378 2379
	if (core_major == 1 && core_minor >= 0x42)
		msm_host->use_14lpp_dll_reset = true;

2380 2381 2382 2383 2384 2385 2386
	/*
	 * SDCC 5 controller with major version 1, minor version 0x34 and later
	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
	 */
	if (core_major == 1 && core_minor < 0x34)
		msm_host->use_cdclp533 = true;

2387 2388 2389 2390 2391
	/*
	 * Support for some capabilities is not advertised by newer
	 * controller versions and must be explicitly enabled.
	 */
	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2392 2393 2394
		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
		writel_relaxed(config, host->ioaddr +
2395
				msm_offset->core_vendor_spec_capabilities0);
2396 2397
	}

2398 2399 2400
	if (core_major == 1 && core_minor >= 0x49)
		msm_host->updated_ddr_cfg = true;

2401 2402 2403 2404
	ret = sdhci_msm_register_vreg(msm_host);
	if (ret)
		goto clk_disable;

2405 2406 2407 2408 2409 2410 2411
	/*
	 * Power on reset state may trigger power irq if previous status of
	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
	 * interrupt in GIC, any pending power irq interrupt should be
	 * acknowledged. Otherwise power irq interrupt handler would be
	 * fired prematurely.
	 */
2412
	sdhci_msm_handle_pwr_irq(host, 0);
2413 2414 2415 2416 2417 2418 2419

	/*
	 * Ensure that above writes are propogated before interrupt enablement
	 * in GIC.
	 */
	mb();

2420 2421 2422
	/* Setup IRQ for handling power/voltage tasks with PMIC */
	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
	if (msm_host->pwr_irq < 0) {
2423
		ret = msm_host->pwr_irq;
2424 2425 2426
		goto clk_disable;
	}

2427
	sdhci_msm_init_pwr_irq_wait(msm_host);
2428
	/* Enable pwr irq interrupts */
2429 2430
	msm_host_writel(msm_host, INT_MASK, host,
		msm_offset->core_pwrctl_mask);
2431

2432 2433 2434 2435 2436 2437 2438 2439
	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
					sdhci_msm_pwr_irq, IRQF_ONESHOT,
					dev_name(&pdev->dev), host);
	if (ret) {
		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
		goto clk_disable;
	}

2440 2441
	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;

2442 2443 2444 2445 2446 2447 2448
	pm_runtime_get_noresume(&pdev->dev);
	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);
	pm_runtime_set_autosuspend_delay(&pdev->dev,
					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
	pm_runtime_use_autosuspend(&pdev->dev);

2449 2450
	host->mmc_host_ops.start_signal_voltage_switch =
		sdhci_msm_start_signal_voltage_switch;
2451
	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2452 2453 2454 2455
	if (of_property_read_bool(node, "supports-cqe"))
		ret = sdhci_msm_cqe_add_host(host, pdev);
	else
		ret = sdhci_add_host(host);
2456
	if (ret)
2457 2458 2459 2460
		goto pm_runtime_disable;

	pm_runtime_mark_last_busy(&pdev->dev);
	pm_runtime_put_autosuspend(&pdev->dev);
2461 2462 2463

	return 0;

2464 2465 2466 2467
pm_runtime_disable:
	pm_runtime_disable(&pdev->dev);
	pm_runtime_set_suspended(&pdev->dev);
	pm_runtime_put_noidle(&pdev->dev);
2468
clk_disable:
2469 2470
	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
				   msm_host->bulk_clks);
2471
opp_cleanup:
2472
	if (msm_host->has_opp_table)
2473
		dev_pm_opp_of_remove_table(&pdev->dev);
2474
	dev_pm_opp_put_clkname(msm_host->opp_table);
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
bus_clk_disable:
	if (!IS_ERR(msm_host->bus_clk))
		clk_disable_unprepare(msm_host->bus_clk);
pltfm_free:
	sdhci_pltfm_free(pdev);
	return ret;
}

static int sdhci_msm_remove(struct platform_device *pdev)
{
	struct sdhci_host *host = platform_get_drvdata(pdev);
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2487
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2488 2489 2490 2491
	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
		    0xffffffff);

	sdhci_remove_host(host, dead);
2492

2493
	if (msm_host->has_opp_table)
2494
		dev_pm_opp_of_remove_table(&pdev->dev);
2495
	dev_pm_opp_put_clkname(msm_host->opp_table);
2496 2497 2498 2499
	pm_runtime_get_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
	pm_runtime_put_noidle(&pdev->dev);

2500 2501
	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
				   msm_host->bulk_clks);
2502 2503
	if (!IS_ERR(msm_host->bus_clk))
		clk_disable_unprepare(msm_host->bus_clk);
2504
	sdhci_pltfm_free(pdev);
2505 2506 2507
	return 0;
}

2508
static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2509 2510 2511 2512 2513
{
	struct sdhci_host *host = dev_get_drvdata(dev);
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);

2514 2515
	/* Drop the performance vote */
	dev_pm_opp_set_rate(dev, 0);
2516 2517
	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
				   msm_host->bulk_clks);
2518 2519 2520 2521

	return 0;
}

2522
static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2523 2524 2525 2526
{
	struct sdhci_host *host = dev_get_drvdata(dev);
	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2527
	int ret;
2528

2529
	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2530
				       msm_host->bulk_clks);
2531 2532 2533 2534 2535 2536 2537
	if (ret)
		return ret;
	/*
	 * Whenever core-clock is gated dynamically, it's needed to
	 * restore the SDR DLL settings when the clock is ungated.
	 */
	if (msm_host->restore_dll_config && msm_host->clk_rate)
2538
		ret = sdhci_msm_restore_sdr_dll_config(host);
2539

2540 2541 2542
	dev_pm_opp_set_rate(dev, msm_host->clk_rate);

	return ret;
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
}

static const struct dev_pm_ops sdhci_msm_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
				pm_runtime_force_resume)
	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
			   sdhci_msm_runtime_resume,
			   NULL)
};

2553 2554 2555 2556 2557 2558
static struct platform_driver sdhci_msm_driver = {
	.probe = sdhci_msm_probe,
	.remove = sdhci_msm_remove,
	.driver = {
		   .name = "sdhci_msm",
		   .of_match_table = sdhci_msm_dt_match,
2559
		   .pm = &sdhci_msm_pm_ops,
2560 2561 2562 2563 2564 2565 2566
	},
};

module_platform_driver(sdhci_msm_driver);

MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
MODULE_LICENSE("GPL v2");