intel_ring_submission.c 52.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31

32
#include <drm/i915_drm.h>
33

34 35
#include "gem/i915_gem_context.h"

36
#include "i915_drv.h"
37
#include "i915_trace.h"
38
#include "intel_context.h"
39
#include "intel_gt.h"
40
#include "intel_gt_irq.h"
41
#include "intel_gt_pm_irq.h"
42
#include "intel_reset.h"
43
#include "intel_ring.h"
44
#include "intel_workarounds.h"
45

46 47 48 49 50
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

51
static int
52
gen2_render_ring_flush(struct i915_request *rq, u32 mode)
53
{
54
	unsigned int num_store_dw;
55
	u32 cmd, *cs;
56 57

	cmd = MI_FLUSH;
58
	num_store_dw = 0;
59
	if (mode & EMIT_INVALIDATE)
60
		cmd |= MI_READ_FLUSH;
61 62
	if (mode & EMIT_FLUSH)
		num_store_dw = 4;
63

64
	cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
65 66
	if (IS_ERR(cs))
		return PTR_ERR(cs);
67

68
	*cs++ = cmd;
69 70
	while (num_store_dw--) {
		*cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
71 72
		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
						INTEL_GT_SCRATCH_FIELD_DEFAULT);
73 74 75 76
		*cs++ = 0;
	}
	*cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;

77
	intel_ring_advance(rq, cs);
78 79 80 81 82

	return 0;
}

static int
83
gen4_render_ring_flush(struct i915_request *rq, u32 mode)
84
{
85
	u32 cmd, *cs;
86
	int i;
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

116
	cmd = MI_FLUSH;
117
	if (mode & EMIT_INVALIDATE) {
118
		cmd |= MI_EXE_FLUSH;
119
		if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
120 121
			cmd |= MI_INVALIDATE_ISP;
	}
122

123 124 125 126 127
	i = 2;
	if (mode & EMIT_INVALIDATE)
		i += 20;

	cs = intel_ring_begin(rq, i);
128 129
	if (IS_ERR(cs))
		return PTR_ERR(cs);
130

131
	*cs++ = cmd;
132 133 134 135 136 137 138 139 140 141 142 143 144

	/*
	 * A random delay to let the CS invalidate take effect? Without this
	 * delay, the GPU relocation path fails as the CS does not see
	 * the updated contents. Just as important, if we apply the flushes
	 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
	 * write and before the invalidate on the next batch), the relocations
	 * still fail. This implies that is a delay following invalidation
	 * that is required to reset the caches as opposed to a delay to
	 * ensure the memory is written.
	 */
	if (mode & EMIT_INVALIDATE) {
		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
145 146
		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
147
			PIPE_CONTROL_GLOBAL_GTT;
148 149 150 151 152 153 154
		*cs++ = 0;
		*cs++ = 0;

		for (i = 0; i < 12; i++)
			*cs++ = MI_FLUSH;

		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
155 156
		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
157
			PIPE_CONTROL_GLOBAL_GTT;
158 159 160 161 162 163
		*cs++ = 0;
		*cs++ = 0;
	}

	*cs++ = cmd;

164
	intel_ring_advance(rq, cs);
165 166

	return 0;
167 168
}

169
/*
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
207
gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
208
{
209
	u32 scratch_addr =
210 211
		intel_gt_scratch_offset(rq->engine->gt,
					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
212 213
	u32 *cs;

214
	cs = intel_ring_begin(rq, 6);
215 216 217 218 219 220 221 222 223
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0; /* low dword */
	*cs++ = 0; /* high dword */
	*cs++ = MI_NOOP;
224
	intel_ring_advance(rq, cs);
225

226
	cs = intel_ring_begin(rq, 6);
227 228 229 230 231 232 233 234 235
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_QW_WRITE;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;
236
	intel_ring_advance(rq, cs);
237 238 239 240 241

	return 0;
}

static int
242
gen6_render_ring_flush(struct i915_request *rq, u32 mode)
243
{
244
	u32 scratch_addr =
245 246
		intel_gt_scratch_offset(rq->engine->gt,
					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
247
	u32 *cs, flags = 0;
248 249
	int ret;

250
	/* Force SNB workarounds for PIPE_CONTROL flushes */
251
	ret = gen6_emit_post_sync_nonzero_flush(rq);
252 253 254
	if (ret)
		return ret;

255 256 257 258
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
259
	if (mode & EMIT_FLUSH) {
260 261 262 263 264 265
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
266
		flags |= PIPE_CONTROL_CS_STALL;
267
	}
268
	if (mode & EMIT_INVALIDATE) {
269 270 271 272 273 274 275 276 277
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
278
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
279
	}
280

281
	cs = intel_ring_begin(rq, 4);
282 283
	if (IS_ERR(cs))
		return PTR_ERR(cs);
284

285 286 287 288
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
289
	intel_ring_advance(rq, cs);
290 291 292 293

	return 0;
}

294
static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
295 296 297 298 299 300 301 302 303
{
	/* First we do the gen6_emit_post_sync_nonzero_flush w/a */
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;

	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_QW_WRITE;
304 305
	*cs++ = intel_gt_scratch_offset(rq->engine->gt,
					INTEL_GT_SCRATCH_FIELD_DEFAULT) |
306
		PIPE_CONTROL_GLOBAL_GTT;
307 308 309 310 311 312 313 314 315
	*cs++ = 0;

	/* Finally we can flush and with it emit the breadcrumb */
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
		 PIPE_CONTROL_DC_FLUSH_ENABLE |
		 PIPE_CONTROL_QW_WRITE |
		 PIPE_CONTROL_CS_STALL);
316 317
	*cs++ = i915_request_active_timeline(rq)->hwsp_offset |
		PIPE_CONTROL_GLOBAL_GTT;
318 319
	*cs++ = rq->fence.seqno;

320 321 322 323 324
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
325 326

	return cs;
327 328
}

329
static int
330
gen7_render_ring_cs_stall_wa(struct i915_request *rq)
331
{
332
	u32 *cs;
333

334
	cs = intel_ring_begin(rq, 4);
335 336
	if (IS_ERR(cs))
		return PTR_ERR(cs);
337

338 339 340 341
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;
342
	intel_ring_advance(rq, cs);
343 344 345 346

	return 0;
}

347
static int
348
gen7_render_ring_flush(struct i915_request *rq, u32 mode)
349
{
350
	u32 scratch_addr =
351 352
		intel_gt_scratch_offset(rq->engine->gt,
					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
353
	u32 *cs, flags = 0;
354

355 356 357 358 359 360 361 362 363 364
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

365 366 367 368 369 370
	/*
	 * CS_STALL suggests at least a post-sync write.
	 */
	flags |= PIPE_CONTROL_QW_WRITE;
	flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

371 372 373 374
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
375
	if (mode & EMIT_FLUSH) {
376 377
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
378
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
379
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
380
	}
381
	if (mode & EMIT_INVALIDATE) {
382 383 384 385 386 387
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
388
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
389

390 391 392
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
393
		gen7_render_ring_cs_stall_wa(rq);
394 395
	}

396
	cs = intel_ring_begin(rq, 4);
397 398
	if (IS_ERR(cs))
		return PTR_ERR(cs);
399

400 401 402 403
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr;
	*cs++ = 0;
404
	intel_ring_advance(rq, cs);
405 406 407 408

	return 0;
}

409
static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
410 411 412 413 414 415 416 417 418
{
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
		 PIPE_CONTROL_DC_FLUSH_ENABLE |
		 PIPE_CONTROL_FLUSH_ENABLE |
		 PIPE_CONTROL_QW_WRITE |
		 PIPE_CONTROL_GLOBAL_GTT_IVB |
		 PIPE_CONTROL_CS_STALL);
419
	*cs++ = i915_request_active_timeline(rq)->hwsp_offset;
420 421
	*cs++ = rq->fence.seqno;

422 423 424 425 426
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
427 428

	return cs;
429 430
}

431
static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
432
{
433 434
	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
435 436 437 438 439

	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = rq->fence.seqno;

440 441 442 443
	*cs++ = MI_USER_INTERRUPT;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
444 445

	return cs;
446 447
}

448
#define GEN7_XCS_WA 32
449
static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
450 451 452
{
	int i;

453 454
	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
455

456 457
	*cs++ = MI_FLUSH_DW | MI_INVALIDATE_TLB |
		MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
458 459 460
	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = rq->fence.seqno;

461 462
	for (i = 0; i < GEN7_XCS_WA; i++) {
		*cs++ = MI_STORE_DWORD_INDEX;
463 464
		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
		*cs++ = rq->fence.seqno;
465 466 467 468 469 470 471
	}

	*cs++ = MI_FLUSH_DW;
	*cs++ = 0;
	*cs++ = 0;

	*cs++ = MI_USER_INTERRUPT;
472
	*cs++ = MI_NOOP;
473 474 475

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
476 477

	return cs;
478 479 480
}
#undef GEN7_XCS_WA

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Keep the render interrupt unmasked as this papers over
	 * lost interrupts following a reset.
	 */
	if (engine->class == RENDER_CLASS) {
		if (INTEL_GEN(engine->i915) >= 6)
			mask &= ~BIT(0);
		else
			mask &= ~I915_USER_INTERRUPT;
	}

	intel_engine_set_hwsp_writemask(engine, mask);
}

static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
498 499 500
{
	u32 addr;

501
	addr = lower_32_bits(phys);
502
	if (INTEL_GEN(engine->i915) >= 4)
503 504
		addr |= (phys >> 28) & 0xf0;

505
	intel_uncore_write(engine->uncore, HWS_PGA, addr);
506 507
}

508
static struct page *status_page(struct intel_engine_cs *engine)
509
{
510
	struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
511

512 513 514 515 516 517 518
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
	return sg_page(obj->mm.pages->sgl);
}

static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
{
	set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
519 520 521 522
	set_hwstam(engine, ~0u);
}

static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
523
{
524
	i915_reg_t hwsp;
525

526 527
	/*
	 * The ring status page addresses are no longer next to the rest of
528 529
	 * the ring registers as of gen7.
	 */
530
	if (IS_GEN(engine->i915, 7)) {
531
		switch (engine->id) {
532 533 534 535 536 537
		/*
		 * No more rings exist on Gen7. Default case is only to shut up
		 * gcc switch check warning.
		 */
		default:
			GEM_BUG_ON(engine->id);
538 539
			/* fallthrough */
		case RCS0:
540
			hwsp = RENDER_HWS_PGA_GEN7;
541
			break;
542
		case BCS0:
543
			hwsp = BLT_HWS_PGA_GEN7;
544
			break;
545
		case VCS0:
546
			hwsp = BSD_HWS_PGA_GEN7;
547
			break;
548
		case VECS0:
549
			hwsp = VEBOX_HWS_PGA_GEN7;
550 551
			break;
		}
552
	} else if (IS_GEN(engine->i915, 6)) {
553
		hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
554
	} else {
555
		hwsp = RING_HWS_PGA(engine->mmio_base);
556
	}
557

558 559
	intel_uncore_write(engine->uncore, hwsp, offset);
	intel_uncore_posting_read(engine->uncore, hwsp);
560
}
561

562 563 564 565 566 567 568 569
static void flush_cs_tlb(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (!IS_GEN_RANGE(dev_priv, 6, 7))
		return;

	/* ring should be idle before issuing a sync flush*/
570 571 572 573 574 575 576 577
	WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);

	ENGINE_WRITE(engine, RING_INSTPM,
		     _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					INSTPM_SYNC_FLUSH));
	if (intel_wait_for_register(engine->uncore,
				    RING_INSTPM(engine->mmio_base),
				    INSTPM_SYNC_FLUSH, 0,
578 579 580 581
				    1000))
		DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
			  engine->name);
}
582

583 584
static void ring_setup_status_page(struct intel_engine_cs *engine)
{
585
	set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
586
	set_hwstam(engine, ~0u);
587

588
	flush_cs_tlb(engine);
589 590
}

591
static bool stop_ring(struct intel_engine_cs *engine)
592
{
593
	struct drm_i915_private *dev_priv = engine->i915;
594

595
	if (INTEL_GEN(dev_priv) > 2) {
596 597 598
		ENGINE_WRITE(engine,
			     RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
		if (intel_wait_for_register(engine->uncore,
599 600 601 602
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
603 604
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
605 606 607

			/*
			 * Sometimes we observe that the idle flag is not
608 609 610
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
611 612
			if (ENGINE_READ(engine, RING_HEAD) !=
			    ENGINE_READ(engine, RING_TAIL))
613
				return false;
614 615
		}
	}
616

617
	ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
618

619 620
	ENGINE_WRITE(engine, RING_HEAD, 0);
	ENGINE_WRITE(engine, RING_TAIL, 0);
621

622
	/* The ring must be empty before it is disabled */
623
	ENGINE_WRITE(engine, RING_CTL, 0);
624

625
	return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
626
}
627

628
static int xcs_resume(struct intel_engine_cs *engine)
629
{
630
	struct drm_i915_private *dev_priv = engine->i915;
631
	struct intel_ring *ring = engine->legacy.ring;
632 633
	int ret = 0;

634 635
	ENGINE_TRACE(engine, "ring:{HEAD:%04x, TAIL:%04x}\n",
		     ring->head, ring->tail);
636

637
	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
638

639
	/* WaClearRingBufHeadRegAtInit:ctg,elk */
640
	if (!stop_ring(engine)) {
641
		/* G45 ring initialization often fails to reset head to zero */
642 643 644
		DRM_DEBUG_DRIVER("%s head not reset to zero "
				"ctl %08x head %08x tail %08x start %08x\n",
				engine->name,
645 646 647 648
				ENGINE_READ(engine, RING_CTL),
				ENGINE_READ(engine, RING_HEAD),
				ENGINE_READ(engine, RING_TAIL),
				ENGINE_READ(engine, RING_START));
649

650
		if (!stop_ring(engine)) {
651 652
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
653
				  engine->name,
654 655 656 657
				  ENGINE_READ(engine, RING_CTL),
				  ENGINE_READ(engine, RING_HEAD),
				  ENGINE_READ(engine, RING_TAIL),
				  ENGINE_READ(engine, RING_START));
658 659
			ret = -EIO;
			goto out;
660
		}
661 662
	}

663
	if (HWS_NEEDS_PHYSICAL(dev_priv))
664
		ring_setup_phys_status_page(engine);
665
	else
666
		ring_setup_status_page(engine);
667

668
	intel_engine_reset_breadcrumbs(engine);
669

670
	/* Enforce ordering by reading HEAD register back */
671
	ENGINE_POSTING_READ(engine, RING_HEAD);
672

673 674
	/*
	 * Initialize the ring. This must happen _after_ we've cleared the ring
675 676
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
677 678
	 * register values.
	 */
679
	ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
680

681 682 683
	/* Check that the ring offsets point within the ring! */
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
684
	intel_ring_update_space(ring);
C
Chris Wilson 已提交
685 686

	/* First wake the ring up to an empty/idle ring */
687 688 689
	ENGINE_WRITE(engine, RING_HEAD, ring->head);
	ENGINE_WRITE(engine, RING_TAIL, ring->head);
	ENGINE_POSTING_READ(engine, RING_TAIL);
690

691
	ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
692 693

	/* If the head is still not zero, the ring is dead */
694
	if (intel_wait_for_register(engine->uncore,
695
				    RING_CTL(engine->mmio_base),
696 697
				    RING_VALID, RING_VALID,
				    50)) {
698
		DRM_ERROR("%s initialization failed "
699
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
700
			  engine->name,
701 702 703 704 705
			  ENGINE_READ(engine, RING_CTL),
			  ENGINE_READ(engine, RING_CTL) & RING_VALID,
			  ENGINE_READ(engine, RING_HEAD), ring->head,
			  ENGINE_READ(engine, RING_TAIL), ring->tail,
			  ENGINE_READ(engine, RING_START),
706
			  i915_ggtt_offset(ring->vma));
707 708
		ret = -EIO;
		goto out;
709 710
	}

711
	if (INTEL_GEN(dev_priv) > 2)
712 713
		ENGINE_WRITE(engine,
			     RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
714

C
Chris Wilson 已提交
715 716
	/* Now awake, let it get started */
	if (ring->tail != ring->head) {
717 718
		ENGINE_WRITE(engine, RING_TAIL, ring->tail);
		ENGINE_POSTING_READ(engine, RING_TAIL);
C
Chris Wilson 已提交
719 720
	}

721
	/* Papering over lost _interrupts_ immediately following the restart */
722
	intel_engine_signal_breadcrumbs(engine);
723
out:
724
	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
725 726

	return ret;
727 728
}

729
static void reset_prepare(struct intel_engine_cs *engine)
730
{
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	struct intel_uncore *uncore = engine->uncore;
	const u32 base = engine->mmio_base;

	/*
	 * We stop engines, otherwise we might get failed reset and a
	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
	 * from system hang if batchbuffer is progressing when
	 * the reset is issued, regardless of READY_TO_RESET ack.
	 * Thus assume it is best to stop engines on all gens
	 * where we have a gpu reset.
	 *
	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
	 *
	 * WaMediaResetMainRingCleanup:ctg,elk (presumably)
	 *
	 * FIXME: Wa for more modern gens needs to be validated
	 */
748
	ENGINE_TRACE(engine, "\n");
749 750

	if (intel_engine_stop_cs(engine))
751
		ENGINE_TRACE(engine, "timed out on STOP_RING\n");
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

	intel_uncore_write_fw(uncore,
			      RING_HEAD(base),
			      intel_uncore_read_fw(uncore, RING_TAIL(base)));
	intel_uncore_posting_read_fw(uncore, RING_HEAD(base)); /* paranoia */

	intel_uncore_write_fw(uncore, RING_HEAD(base), 0);
	intel_uncore_write_fw(uncore, RING_TAIL(base), 0);
	intel_uncore_posting_read_fw(uncore, RING_TAIL(base));

	/* The ring must be empty before it is disabled */
	intel_uncore_write_fw(uncore, RING_CTL(base), 0);

	/* Check acts as a post */
	if (intel_uncore_read_fw(uncore, RING_HEAD(base)))
767 768
		ENGINE_TRACE(engine, "ring head [%x] not parked\n",
			     intel_uncore_read_fw(uncore, RING_HEAD(base)));
769 770
}

771
static void reset_rewind(struct intel_engine_cs *engine, bool stalled)
772
{
773 774
	struct i915_request *pos, *rq;
	unsigned long flags;
775
	u32 head;
776

777
	rq = NULL;
778 779
	spin_lock_irqsave(&engine->active.lock, flags);
	list_for_each_entry(pos, &engine->active.requests, sched.link) {
780
		if (!i915_request_completed(pos)) {
781 782 783
			rq = pos;
			break;
		}
784
	}
785 786

	/*
787
	 * The guilty request will get skipped on a hung engine.
788
	 *
789 790 791 792 793 794 795 796 797 798 799 800 801
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
802
	 *
803 804 805
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
806
	 */
807

808
	if (rq) {
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
		/*
		 * Try to restore the logical GPU state to match the
		 * continuation of the request queue. If we skip the
		 * context/PD restore, then the next request may try to execute
		 * assuming that its context is valid and loaded on the GPU and
		 * so may try to access invalid memory, prompting repeated GPU
		 * hangs.
		 *
		 * If the request was guilty, we still restore the logical
		 * state in case the next request requires it (e.g. the
		 * aliasing ppgtt), but skip over the hung batch.
		 *
		 * If the request was innocent, we try to replay the request
		 * with the restored context.
		 */
824
		__i915_request_reset(rq, stalled);
825

826
		GEM_BUG_ON(rq->ring != engine->legacy.ring);
827 828
		head = rq->head;
	} else {
829
		head = engine->legacy.ring->tail;
830
	}
831
	engine->legacy.ring->head = intel_ring_wrap(engine->legacy.ring, head);
832

833
	spin_unlock_irqrestore(&engine->active.lock, flags);
834 835
}

836 837 838 839
static void reset_finish(struct intel_engine_cs *engine)
{
}

840
static int rcs_resume(struct intel_engine_cs *engine)
841
{
842 843
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
844

845 846 847 848 849 850 851 852 853 854
	/*
	 * Disable CONSTANT_BUFFER before it is loaded from the context
	 * image. For as it is loaded, it is executed and the stored
	 * address may no longer be valid, leading to a GPU hang.
	 *
	 * This imposes the requirement that userspace reload their
	 * CONSTANT_BUFFER on every batch, fortunately a requirement
	 * they are already accustomed to from before contexts were
	 * enabled.
	 */
855 856
	if (IS_GEN(i915, 4))
		intel_uncore_write(uncore, ECOSKPD,
857 858
			   _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE));

859
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
860 861 862
	if (IS_GEN_RANGE(i915, 4, 6))
		intel_uncore_write(uncore, MI_MODE,
				   _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
863 864 865 866

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
867
	 *
868
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
869
	 */
870 871 872
	if (IS_GEN_RANGE(i915, 6, 7))
		intel_uncore_write(uncore, MI_MODE,
				   _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
873

874
	/* Required for the hardware to program scanline values for waiting */
875
	/* WaEnableFlushTlbInvalidationMode:snb */
876 877
	if (IS_GEN(i915, 6))
		intel_uncore_write(uncore, GFX_MODE,
878
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
879

880
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
881 882
	if (IS_GEN(i915, 7))
		intel_uncore_write(uncore, GFX_MODE_GEN7,
883
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
884
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
885

886
	if (IS_GEN(i915, 6)) {
887 888 889 890 891
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
892
		intel_uncore_write(uncore, CACHE_MODE_0,
893
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
894 895
	}

896 897 898
	if (IS_GEN_RANGE(i915, 6, 7))
		intel_uncore_write(uncore, INSTPM,
				   _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
899

900
	return xcs_resume(engine);
901 902
}

903
static void reset_cancel(struct intel_engine_cs *engine)
904
{
905
	struct i915_request *request;
906 907
	unsigned long flags;

908
	spin_lock_irqsave(&engine->active.lock, flags);
909 910

	/* Mark all submitted requests as skipped. */
911
	list_for_each_entry(request, &engine->active.requests, sched.link) {
912 913
		if (!i915_request_signaled(request))
			dma_fence_set_error(&request->fence, -EIO);
914

915
		i915_request_mark_complete(request);
916
	}
917

918 919
	/* Remaining _unready_ requests will be nop'ed when submitted */

920
	spin_unlock_irqrestore(&engine->active.lock, flags);
921 922
}

923
static void i9xx_submit_request(struct i915_request *request)
924
{
925
	i915_request_submit(request);
926
	wmb(); /* paranoid flush writes out of the WCB before mmio */
927

928 929
	ENGINE_WRITE(request->engine, RING_TAIL,
		     intel_ring_set_tail(request->ring, request->tail));
930 931
}

932
static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
933
{
934 935
	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
936

937 938
	*cs++ = MI_FLUSH;

939 940 941 942
	*cs++ = MI_STORE_DWORD_INDEX;
	*cs++ = I915_GEM_HWS_SEQNO_ADDR;
	*cs++ = rq->fence.seqno;

943
	*cs++ = MI_USER_INTERRUPT;
944
	*cs++ = MI_NOOP;
945

946 947
	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
948 949

	return cs;
950
}
951

952
#define GEN5_WA_STORES 8 /* must be at least 1! */
953
static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
954
{
955 956
	int i;

957 958
	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
959

960 961 962 963 964
	*cs++ = MI_FLUSH;

	BUILD_BUG_ON(GEN5_WA_STORES < 1);
	for (i = 0; i < GEN5_WA_STORES; i++) {
		*cs++ = MI_STORE_DWORD_INDEX;
965 966
		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
		*cs++ = rq->fence.seqno;
967 968 969 970 971 972
	}

	*cs++ = MI_USER_INTERRUPT;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
973 974

	return cs;
975
}
976
#undef GEN5_WA_STORES
977

978 979
static void
gen5_irq_enable(struct intel_engine_cs *engine)
980
{
981
	gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
982 983 984
}

static void
985
gen5_irq_disable(struct intel_engine_cs *engine)
986
{
987
	gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
988 989
}

990 991
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
992
{
993
	engine->i915->irq_mask &= ~engine->irq_enable_mask;
994 995
	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
	intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
996 997
}

998
static void
999
i9xx_irq_disable(struct intel_engine_cs *engine)
1000
{
1001
	engine->i915->irq_mask |= engine->irq_enable_mask;
1002
	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1003 1004
}

1005 1006
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1007
{
T
Tvrtko Ursulin 已提交
1008
	struct drm_i915_private *i915 = engine->i915;
C
Chris Wilson 已提交
1009

T
Tvrtko Ursulin 已提交
1010 1011 1012
	i915->irq_mask &= ~engine->irq_enable_mask;
	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
	ENGINE_POSTING_READ16(engine, RING_IMR);
C
Chris Wilson 已提交
1013 1014 1015
}

static void
1016
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1017
{
1018
	struct drm_i915_private *i915 = engine->i915;
C
Chris Wilson 已提交
1019

1020 1021
	i915->irq_mask |= engine->irq_enable_mask;
	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
C
Chris Wilson 已提交
1022 1023
}

1024
static int
1025
bsd_ring_flush(struct i915_request *rq, u32 mode)
1026
{
1027
	u32 *cs;
1028

1029
	cs = intel_ring_begin(rq, 2);
1030 1031
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1032

1033 1034
	*cs++ = MI_FLUSH;
	*cs++ = MI_NOOP;
1035
	intel_ring_advance(rq, cs);
1036
	return 0;
1037 1038
}

1039 1040
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1041
{
1042 1043
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
1044 1045

	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1046
	ENGINE_POSTING_READ(engine, RING_IMR);
1047

1048
	gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
1049 1050 1051
}

static void
1052
gen6_irq_disable(struct intel_engine_cs *engine)
1053
{
1054
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
1055
	gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
1056 1057
}

1058 1059
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1060
{
1061
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1062 1063

	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1064
	ENGINE_POSTING_READ(engine, RING_IMR);
1065

1066
	gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1067 1068 1069
}

static void
1070
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1071
{
1072
	ENGINE_WRITE(engine, RING_IMR, ~0);
1073
	gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1074 1075
}

1076
static int
1077
i965_emit_bb_start(struct i915_request *rq,
1078 1079
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1080
{
1081
	u32 *cs;
1082

1083
	cs = intel_ring_begin(rq, 2);
1084 1085
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1086

1087 1088 1089
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
	*cs++ = offset;
1090
	intel_ring_advance(rq, cs);
1091

1092 1093 1094
	return 0;
}

1095
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1096
#define I830_BATCH_LIMIT SZ_256K
1097 1098
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1099
static int
1100
i830_emit_bb_start(struct i915_request *rq,
1101 1102
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1103
{
1104 1105 1106
	u32 *cs, cs_offset =
		intel_gt_scratch_offset(rq->engine->gt,
					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1107

1108
	GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE);
1109

1110
	cs = intel_ring_begin(rq, 6);
1111 1112
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1113

1114
	/* Evict the invalid PTE TLBs */
1115 1116 1117 1118 1119 1120
	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
	*cs++ = cs_offset;
	*cs++ = 0xdeadbeef;
	*cs++ = MI_NOOP;
1121
	intel_ring_advance(rq, cs);
1122

1123
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1124 1125 1126
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1127
		cs = intel_ring_begin(rq, 6 + 2);
1128 1129
		if (IS_ERR(cs))
			return PTR_ERR(cs);
1130 1131 1132 1133 1134

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1135
		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
1136 1137 1138 1139 1140 1141 1142 1143
		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
		*cs++ = cs_offset;
		*cs++ = 4096;
		*cs++ = offset;

		*cs++ = MI_FLUSH;
		*cs++ = MI_NOOP;
1144
		intel_ring_advance(rq, cs);
1145 1146

		/* ... and execute it. */
1147
		offset = cs_offset;
1148
	}
1149

1150
	cs = intel_ring_begin(rq, 2);
1151 1152
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1153

1154 1155 1156
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
1157
	intel_ring_advance(rq, cs);
1158

1159 1160 1161 1162
	return 0;
}

static int
1163
i915_emit_bb_start(struct i915_request *rq,
1164 1165
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1166
{
1167
	u32 *cs;
1168

1169
	cs = intel_ring_begin(rq, 2);
1170 1171
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1172

1173 1174 1175
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
1176
	intel_ring_advance(rq, cs);
1177 1178 1179 1180

	return 0;
}

1181 1182
static void __ring_context_fini(struct intel_context *ce)
{
1183
	i915_vma_put(ce->state);
1184 1185
}

1186
static void ring_context_destroy(struct kref *ref)
1187
{
1188 1189
	struct intel_context *ce = container_of(ref, typeof(*ce), ref);

1190
	GEM_BUG_ON(intel_context_is_pinned(ce));
1191

1192 1193
	if (ce->state)
		__ring_context_fini(ce);
1194

1195
	intel_context_fini(ce);
1196
	intel_context_free(ce);
1197 1198
}

1199 1200 1201 1202
static struct i915_address_space *vm_alias(struct intel_context *ce)
{
	struct i915_address_space *vm;

1203 1204 1205
	vm = ce->vm;
	if (i915_is_ggtt(vm))
		vm = &i915_vm_to_ggtt(vm)->alias->vm;
1206 1207 1208 1209 1210

	return vm;
}

static int __context_pin_ppgtt(struct intel_context *ce)
1211
{
1212
	struct i915_address_space *vm;
1213 1214
	int err = 0;

1215
	vm = vm_alias(ce);
1216 1217
	if (vm)
		err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm)));
1218 1219 1220 1221

	return err;
}

1222
static void __context_unpin_ppgtt(struct intel_context *ce)
1223
{
1224
	struct i915_address_space *vm;
1225

1226
	vm = vm_alias(ce);
1227 1228
	if (vm)
		gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm));
1229 1230
}

1231
static void ring_context_unpin(struct intel_context *ce)
1232
{
1233
	__context_unpin_ppgtt(ce);
1234 1235
}

1236 1237 1238 1239 1240 1241
static struct i915_vma *
alloc_context_vma(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
1242
	int err;
1243

1244
	obj = i915_gem_object_create_shmem(i915, engine->context_size);
1245 1246 1247
	if (IS_ERR(obj))
		return ERR_CAST(obj);

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	/*
	 * Try to make the context utilize L3 as well as LLC.
	 *
	 * On VLV we don't have L3 controls in the PTEs so we
	 * shouldn't touch the cache level, especially as that
	 * would make the object snooped which might have a
	 * negative performance impact.
	 *
	 * Snooping is required on non-llc platforms in execlist
	 * mode, but since all GGTT accesses use PAT entry 0 we
	 * get snooping anyway regardless of cache_level.
	 *
	 * This is only applicable for Ivy Bridge devices since
	 * later platforms don't have L3 control bits in the PTE.
	 */
	if (IS_IVYBRIDGE(i915))
		i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	if (engine->default_state) {
		void *defaults, *vaddr;

		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_obj;
		}

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults)) {
			err = PTR_ERR(defaults);
			goto err_map;
		}

		memcpy(vaddr, defaults, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);

1285 1286
		i915_gem_object_flush_map(obj);
		i915_gem_object_unpin_map(obj);
1287 1288
	}

1289
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1290 1291 1292 1293
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err_obj;
	}
1294 1295

	return vma;
1296 1297 1298 1299 1300 1301

err_map:
	i915_gem_object_unpin_map(obj);
err_obj:
	i915_gem_object_put(obj);
	return ERR_PTR(err);
1302 1303
}

1304
static int ring_context_alloc(struct intel_context *ce)
1305
{
1306
	struct intel_engine_cs *engine = ce->engine;
1307

1308
	/* One ringbuffer to rule them all */
1309 1310 1311
	GEM_BUG_ON(!engine->legacy.ring);
	ce->ring = engine->legacy.ring;
	ce->timeline = intel_timeline_get(engine->legacy.timeline);
1312

1313 1314
	GEM_BUG_ON(ce->state);
	if (engine->context_size) {
1315 1316 1317
		struct i915_vma *vma;

		vma = alloc_context_vma(engine);
1318 1319
		if (IS_ERR(vma))
			return PTR_ERR(vma);
1320 1321

		ce->state = vma;
1322 1323
		if (engine->default_state)
			__set_bit(CONTEXT_VALID_BIT, &ce->flags);
1324 1325
	}

1326 1327 1328 1329 1330 1331 1332
	return 0;
}

static int ring_context_pin(struct intel_context *ce)
{
	int err;

1333
	err = intel_context_active_acquire(ce);
1334
	if (err)
1335
		return err;
1336

1337
	err = __context_pin_ppgtt(ce);
1338
	if (err)
1339
		goto err_active;
1340

1341
	return 0;
1342

1343 1344
err_active:
	intel_context_active_release(ce);
1345
	return err;
1346 1347
}

1348 1349
static void ring_context_reset(struct intel_context *ce)
{
1350
	intel_ring_reset(ce->ring, ce->ring->emit);
1351 1352
}

1353
static const struct intel_context_ops ring_context_ops = {
1354 1355
	.alloc = ring_context_alloc,

1356
	.pin = ring_context_pin,
1357
	.unpin = ring_context_unpin,
1358

1359 1360 1361
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1362
	.reset = ring_context_reset,
1363 1364 1365
	.destroy = ring_context_destroy,
};

1366 1367 1368
static int load_pd_dir(struct i915_request *rq,
		       const struct i915_ppgtt *ppgtt,
		       u32 valid)
1369 1370 1371 1372
{
	const struct intel_engine_cs * const engine = rq->engine;
	u32 *cs;

1373
	cs = intel_ring_begin(rq, 12);
1374 1375 1376
	if (IS_ERR(cs))
		return PTR_ERR(cs);

1377
	*cs++ = MI_LOAD_REGISTER_IMM(1);
1378
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1379
	*cs++ = valid;
1380 1381

	*cs++ = MI_LOAD_REGISTER_IMM(1);
1382
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1383
	*cs++ = px_base(ppgtt->pd)->ggtt_offset << 10;
1384

1385
	/* Stall until the page table load is complete? */
1386
	*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1387
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1388
	*cs++ = intel_gt_scratch_offset(engine->gt,
1389
					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1390

1391 1392 1393 1394
	*cs++ = MI_LOAD_REGISTER_IMM(1);
	*cs++ = i915_mmio_reg_offset(RING_INSTPM(engine->mmio_base));
	*cs++ = _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE);

1395
	intel_ring_advance(rq, cs);
1396

1397
	return rq->engine->emit_flush(rq, EMIT_FLUSH);
1398 1399
}

1400
static inline int mi_set_context(struct i915_request *rq, u32 flags)
1401 1402 1403 1404
{
	struct drm_i915_private *i915 = rq->i915;
	struct intel_engine_cs *engine = rq->engine;
	enum intel_engine_id id;
1405
	const int num_engines =
1406
		IS_HASWELL(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1407
	bool force_restore = false;
1408 1409 1410 1411
	int len;
	u32 *cs;

	len = 4;
1412
	if (IS_GEN(i915, 7))
1413
		len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1414 1415
	else if (IS_GEN(i915, 5))
		len += 2;
1416 1417 1418 1419 1420 1421
	if (flags & MI_FORCE_RESTORE) {
		GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
		flags &= ~MI_FORCE_RESTORE;
		force_restore = true;
		len += 2;
	}
1422 1423 1424 1425 1426 1427

	cs = intel_ring_begin(rq, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1428
	if (IS_GEN(i915, 7)) {
1429
		*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1430
		if (num_engines) {
1431 1432
			struct intel_engine_cs *signaller;

1433
			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1434
			for_each_engine(signaller, engine->gt, id) {
1435 1436 1437 1438 1439 1440 1441 1442 1443
				if (signaller == engine)
					continue;

				*cs++ = i915_mmio_reg_offset(
					   RING_PSMI_CTL(signaller->mmio_base));
				*cs++ = _MASKED_BIT_ENABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}
		}
1444 1445 1446 1447 1448 1449 1450 1451
	} else if (IS_GEN(i915, 5)) {
		/*
		 * This w/a is only listed for pre-production ilk a/b steppings,
		 * but is also mentioned for programming the powerctx. To be
		 * safe, just apply the workaround; we do not use SyncFlush so
		 * this should never take effect and so be a no-op!
		 */
		*cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN;
1452 1453
	}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	if (force_restore) {
		/*
		 * The HW doesn't handle being told to restore the current
		 * context very well. Quite often it likes goes to go off and
		 * sulk, especially when it is meant to be reloading PP_DIR.
		 * A very simple fix to force the reload is to simply switch
		 * away from the current context and back again.
		 *
		 * Note that the kernel_context will contain random state
		 * following the INHIBIT_RESTORE. We accept this since we
		 * never use the kernel_context state; it is merely a
		 * placeholder we use to flush other contexts.
		 */
		*cs++ = MI_SET_CONTEXT;
1468
		*cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1469 1470 1471 1472
			MI_MM_SPACE_GTT |
			MI_RESTORE_INHIBIT;
	}

1473 1474
	*cs++ = MI_NOOP;
	*cs++ = MI_SET_CONTEXT;
1475
	*cs++ = i915_ggtt_offset(rq->context->state) | flags;
1476 1477 1478 1479 1480 1481
	/*
	 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
	 * WaMiSetContext_Hang:snb,ivb,vlv
	 */
	*cs++ = MI_NOOP;

1482
	if (IS_GEN(i915, 7)) {
1483
		if (num_engines) {
1484 1485 1486
			struct intel_engine_cs *signaller;
			i915_reg_t last_reg = {}; /* keep gcc quiet */

1487
			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1488
			for_each_engine(signaller, engine->gt, id) {
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
				if (signaller == engine)
					continue;

				last_reg = RING_PSMI_CTL(signaller->mmio_base);
				*cs++ = i915_mmio_reg_offset(last_reg);
				*cs++ = _MASKED_BIT_DISABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}

			/* Insert a delay before the next switch! */
			*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
			*cs++ = i915_mmio_reg_offset(last_reg);
1501
			*cs++ = intel_gt_scratch_offset(engine->gt,
1502
							INTEL_GT_SCRATCH_FIELD_DEFAULT);
1503 1504 1505
			*cs++ = MI_NOOP;
		}
		*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1506 1507
	} else if (IS_GEN(i915, 5)) {
		*cs++ = MI_SUSPEND_FLUSH;
1508 1509 1510 1511 1512 1513 1514
	}

	intel_ring_advance(rq, cs);

	return 0;
}

1515
static int remap_l3_slice(struct i915_request *rq, int slice)
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
{
	u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
	int i;

	if (!remap_info)
		return 0;

	cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
	for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
		*cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
		*cs++ = remap_info[i];
	}
	*cs++ = MI_NOOP;
	intel_ring_advance(rq, cs);

	return 0;
}

1543 1544
static int remap_l3(struct i915_request *rq)
{
1545
	struct i915_gem_context *ctx = i915_request_gem_context(rq);
1546 1547
	int i, err;

1548
	if (!ctx || !ctx->remap_slice)
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		return 0;

	for (i = 0; i < MAX_L3_SLICES; i++) {
		if (!(ctx->remap_slice & BIT(i)))
			continue;

		err = remap_l3_slice(rq, i);
		if (err)
			return err;
	}

	ctx->remap_slice = 0;
	return 0;
}

1564
static int switch_mm(struct i915_request *rq, struct i915_address_space *vm)
1565
{
1566
	int ret;
1567

1568 1569
	if (!vm)
		return 0;
1570

1571 1572 1573
	ret = rq->engine->emit_flush(rq, EMIT_FLUSH);
	if (ret)
		return ret;
1574

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * Not only do we need a full barrier (post-sync write) after
	 * invalidating the TLBs, but we need to wait a little bit
	 * longer. Whether this is merely delaying us, or the
	 * subsequent flush is a key part of serialising with the
	 * post-sync op, this extra pass appears vital before a
	 * mm switch!
	 */
	ret = load_pd_dir(rq, i915_vm_to_ppgtt(vm), PP_DIR_DCLV_2G);
	if (ret)
		return ret;
1586

1587
	return rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1588
}
1589

1590 1591
static int switch_context(struct i915_request *rq)
{
1592
	struct intel_context *ce = rq->context;
1593
	int ret;
1594

1595
	GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1596

1597 1598 1599
	ret = switch_mm(rq, vm_alias(ce));
	if (ret)
		return ret;
1600

1601
	if (ce->state) {
1602
		u32 flags;
1603

1604 1605
		GEM_BUG_ON(rq->engine->id != RCS0);

1606 1607 1608 1609 1610 1611 1612 1613 1614
		/* For resource streamer on HSW+ and power context elsewhere */
		BUILD_BUG_ON(HSW_MI_RS_SAVE_STATE_EN != MI_SAVE_EXT_STATE_EN);
		BUILD_BUG_ON(HSW_MI_RS_RESTORE_STATE_EN != MI_RESTORE_EXT_STATE_EN);

		flags = MI_SAVE_EXT_STATE_EN | MI_MM_SPACE_GTT;
		if (test_bit(CONTEXT_VALID_BIT, &ce->flags))
			flags |= MI_RESTORE_EXT_STATE_EN;
		else
			flags |= MI_RESTORE_INHIBIT;
1615

1616
		ret = mi_set_context(rq, flags);
1617 1618 1619 1620
		if (ret)
			return ret;
	}

1621 1622
	ret = remap_l3(rq);
	if (ret)
1623
		return ret;
1624 1625 1626 1627

	return 0;
}

1628
static int ring_request_alloc(struct i915_request *request)
1629
{
1630
	int ret;
1631

1632
	GEM_BUG_ON(!intel_context_is_pinned(request->context));
1633
	GEM_BUG_ON(i915_request_timeline(request)->has_initial_breadcrumb);
1634

1635 1636
	/*
	 * Flush enough space to reduce the likelihood of waiting after
1637 1638 1639
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
1640
	request->reserved_space += LEGACY_REQUEST_SIZE;
1641

1642 1643
	/* Unconditionally invalidate GPU caches and TLBs. */
	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1644 1645
	if (ret)
		return ret;
1646

1647
	ret = switch_context(request);
1648 1649 1650
	if (ret)
		return ret;

1651
	request->reserved_space -= LEGACY_REQUEST_SIZE;
1652
	return 0;
1653 1654
}

1655
static void gen6_bsd_submit_request(struct i915_request *request)
1656
{
1657
	struct intel_uncore *uncore = request->engine->uncore;
1658

1659
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1660

1661
       /* Every tail move must follow the sequence below */
1662 1663 1664 1665

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
1666 1667
	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
			      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1668 1669

	/* Clear the context id. Here be magic! */
1670
	intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
1671

1672
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1673
	if (__intel_wait_for_register_fw(uncore,
1674 1675 1676 1677
					 GEN6_BSD_SLEEP_PSMI_CONTROL,
					 GEN6_BSD_SLEEP_INDICATOR,
					 0,
					 1000, 0, NULL))
1678
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1679

1680
	/* Now that the ring is fully powered up, update the tail */
1681
	i9xx_submit_request(request);
1682 1683 1684 1685

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
1686 1687
	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
			      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1688

1689
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1690 1691
}

1692
static int mi_flush_dw(struct i915_request *rq, u32 flags)
1693
{
1694
	u32 cmd, *cs;
1695

1696
	cs = intel_ring_begin(rq, 4);
1697 1698
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1699

1700
	cmd = MI_FLUSH_DW;
1701

1702 1703
	/*
	 * We always require a command barrier so that subsequent
1704 1705 1706 1707 1708 1709
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1710
	/*
1711
	 * Bspec vol 1c.3 - blitter engine command streamer:
1712 1713 1714 1715
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
1716
	cmd |= flags;
1717

1718 1719
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1720
	*cs++ = 0;
1721
	*cs++ = MI_NOOP;
1722

1723
	intel_ring_advance(rq, cs);
1724

1725 1726 1727
	return 0;
}

1728 1729
static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
{
1730
	return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
1731 1732 1733 1734 1735 1736 1737
}

static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
{
	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
}

1738
static int
1739
hsw_emit_bb_start(struct i915_request *rq,
1740 1741
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
1742
{
1743
	u32 *cs;
1744

1745
	cs = intel_ring_begin(rq, 2);
1746 1747
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1748

1749
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1750
		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
1751
	/* bit0-7 is the length on GEN6+ */
1752
	*cs++ = offset;
1753
	intel_ring_advance(rq, cs);
1754 1755 1756 1757

	return 0;
}

1758
static int
1759
gen6_emit_bb_start(struct i915_request *rq,
1760 1761
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1762
{
1763
	u32 *cs;
1764

1765
	cs = intel_ring_begin(rq, 2);
1766 1767
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1768

1769 1770
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_NON_SECURE_I965);
1771
	/* bit0-7 is the length on GEN6+ */
1772
	*cs++ = offset;
1773
	intel_ring_advance(rq, cs);
1774

1775
	return 0;
1776 1777
}

1778 1779
/* Blitter support (SandyBridge+) */

1780
static int gen6_ring_flush(struct i915_request *rq, u32 mode)
Z
Zou Nan hai 已提交
1781
{
1782
	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
Z
Zou Nan hai 已提交
1783 1784
}

1785 1786 1787
static void i9xx_set_default_submission(struct intel_engine_cs *engine)
{
	engine->submit_request = i9xx_submit_request;
1788 1789 1790

	engine->park = NULL;
	engine->unpark = NULL;
1791 1792 1793 1794
}

static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
{
1795
	i9xx_set_default_submission(engine);
1796 1797 1798
	engine->submit_request = gen6_bsd_submit_request;
}

1799
static void ring_release(struct intel_engine_cs *engine)
1800 1801 1802 1803 1804 1805
{
	struct drm_i915_private *dev_priv = engine->i915;

	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
		(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);

1806 1807
	intel_engine_cleanup_common(engine);

1808 1809 1810 1811 1812
	intel_ring_unpin(engine->legacy.ring);
	intel_ring_put(engine->legacy.ring);

	intel_timeline_unpin(engine->legacy.timeline);
	intel_timeline_put(engine->legacy.timeline);
1813 1814
}

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
static void setup_irq(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (INTEL_GEN(i915) >= 6) {
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
	} else if (INTEL_GEN(i915) >= 5) {
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
	} else if (INTEL_GEN(i915) >= 3) {
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
	} else {
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
	}
}

static void setup_common(struct intel_engine_cs *engine)
1835
{
1836 1837
	struct drm_i915_private *i915 = engine->i915;

1838
	/* gen8+ are only supported with execlists */
1839
	GEM_BUG_ON(INTEL_GEN(i915) >= 8);
1840

1841
	setup_irq(engine);
1842

1843
	engine->release = ring_release;
1844

1845
	engine->resume = xcs_resume;
1846
	engine->reset.prepare = reset_prepare;
1847 1848
	engine->reset.rewind = reset_rewind;
	engine->reset.cancel = reset_cancel;
1849
	engine->reset.finish = reset_finish;
1850

1851
	engine->cops = &ring_context_ops;
1852 1853
	engine->request_alloc = ring_request_alloc;

1854 1855 1856 1857 1858 1859
	/*
	 * Using a global execution timeline; the previous final breadcrumb is
	 * equivalent to our next initial bread so we can elide
	 * engine->emit_init_breadcrumb().
	 */
	engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
1860
	if (IS_GEN(i915, 5))
1861
		engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
1862 1863

	engine->set_default_submission = i9xx_set_default_submission;
1864

1865
	if (INTEL_GEN(i915) >= 6)
1866
		engine->emit_bb_start = gen6_emit_bb_start;
1867
	else if (INTEL_GEN(i915) >= 4)
1868
		engine->emit_bb_start = i965_emit_bb_start;
1869
	else if (IS_I830(i915) || IS_I845G(i915))
1870
		engine->emit_bb_start = i830_emit_bb_start;
1871
	else
1872
		engine->emit_bb_start = i915_emit_bb_start;
1873 1874
}

1875
static void setup_rcs(struct intel_engine_cs *engine)
1876
{
1877
	struct drm_i915_private *i915 = engine->i915;
1878

1879
	if (HAS_L3_DPF(i915))
1880
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1881

1882 1883
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;

1884
	if (INTEL_GEN(i915) >= 7) {
1885
		engine->emit_flush = gen7_render_ring_flush;
1886
		engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
1887
	} else if (IS_GEN(i915, 6)) {
1888
		engine->emit_flush = gen6_render_ring_flush;
1889
		engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
1890
	} else if (IS_GEN(i915, 5)) {
1891
		engine->emit_flush = gen4_render_ring_flush;
1892
	} else {
1893
		if (INTEL_GEN(i915) < 4)
1894
			engine->emit_flush = gen2_render_ring_flush;
1895
		else
1896
			engine->emit_flush = gen4_render_ring_flush;
1897
		engine->irq_enable_mask = I915_USER_INTERRUPT;
1898
	}
B
Ben Widawsky 已提交
1899

1900
	if (IS_HASWELL(i915))
1901
		engine->emit_bb_start = hsw_emit_bb_start;
1902

1903
	engine->resume = rcs_resume;
1904 1905
}

1906
static void setup_vcs(struct intel_engine_cs *engine)
1907
{
1908
	struct drm_i915_private *i915 = engine->i915;
1909

1910
	if (INTEL_GEN(i915) >= 6) {
1911
		/* gen6 bsd needs a special wa for tail updates */
1912
		if (IS_GEN(i915, 6))
1913
			engine->set_default_submission = gen6_bsd_set_default_submission;
1914
		engine->emit_flush = gen6_bsd_ring_flush;
1915
		engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1916

1917
		if (IS_GEN(i915, 6))
1918
			engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
1919
		else
1920
			engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1921
	} else {
1922
		engine->emit_flush = bsd_ring_flush;
1923
		if (IS_GEN(i915, 5))
1924
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1925
		else
1926
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1927
	}
1928
}
1929

1930
static void setup_bcs(struct intel_engine_cs *engine)
1931
{
1932
	struct drm_i915_private *i915 = engine->i915;
1933

1934
	engine->emit_flush = gen6_ring_flush;
1935
	engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1936

1937
	if (IS_GEN(i915, 6))
1938
		engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
1939
	else
1940
		engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1941
}
1942

1943
static void setup_vecs(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1944
{
1945
	struct drm_i915_private *i915 = engine->i915;
1946

1947
	GEM_BUG_ON(INTEL_GEN(i915) < 7);
1948

1949
	engine->emit_flush = gen6_ring_flush;
1950 1951 1952
	engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
	engine->irq_enable = hsw_vebox_irq_enable;
	engine->irq_disable = hsw_vebox_irq_disable;
B
Ben Widawsky 已提交
1953

1954
	engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1955 1956 1957 1958
}

int intel_ring_submission_setup(struct intel_engine_cs *engine)
{
1959 1960 1961 1962
	struct intel_timeline *timeline;
	struct intel_ring *ring;
	int err;

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
	setup_common(engine);

	switch (engine->class) {
	case RENDER_CLASS:
		setup_rcs(engine);
		break;
	case VIDEO_DECODE_CLASS:
		setup_vcs(engine);
		break;
	case COPY_ENGINE_CLASS:
		setup_bcs(engine);
		break;
	case VIDEO_ENHANCEMENT_CLASS:
		setup_vecs(engine);
		break;
	default:
		MISSING_CASE(engine->class);
		return -ENODEV;
	}

1983
	timeline = intel_timeline_create(engine->gt, engine->status_page.vma);
1984 1985 1986 1987 1988 1989
	if (IS_ERR(timeline)) {
		err = PTR_ERR(timeline);
		goto err;
	}
	GEM_BUG_ON(timeline->has_initial_breadcrumb);

1990 1991 1992 1993 1994
	err = intel_timeline_pin(timeline);
	if (err)
		goto err_timeline;

	ring = intel_engine_create_ring(engine, SZ_16K);
1995 1996
	if (IS_ERR(ring)) {
		err = PTR_ERR(ring);
1997
		goto err_timeline_unpin;
1998 1999 2000 2001 2002
	}

	err = intel_ring_pin(ring);
	if (err)
		goto err_ring;
2003

2004 2005 2006
	GEM_BUG_ON(engine->legacy.ring);
	engine->legacy.ring = ring;
	engine->legacy.timeline = timeline;
2007

2008
	GEM_BUG_ON(timeline->hwsp_ggtt != engine->status_page.vma);
2009 2010 2011 2012 2013

	return 0;

err_ring:
	intel_ring_put(ring);
2014 2015 2016 2017
err_timeline_unpin:
	intel_timeline_unpin(timeline);
err_timeline:
	intel_timeline_put(timeline);
2018 2019 2020
err:
	intel_engine_cleanup_common(engine);
	return err;
B
Ben Widawsky 已提交
2021
}