ks8851_mll.c 34.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/**
3
 * drivers/net/ethernet/micrel/ks8851_mll.c
4 5 6
 * Copyright (c) 2009 Micrel Inc.
 */

7
/* Supports:
8 9 10
 * KS8851 16bit MLL chip from Micrel Inc.
 */

11 12
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

13
#include <linux/interrupt.h>
14 15 16 17 18 19 20
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/cache.h>
#include <linux/crc32.h>
21
#include <linux/crc32poly.h>
22 23 24
#include <linux/mii.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
25
#include <linux/slab.h>
26
#include <linux/ks8851_mll.h>
27 28 29
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_net.h>
30

31 32
#include "ks8851.h"

33 34 35
#define	DRV_NAME	"ks8851_mll"

static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
36
#define MAX_RECV_FRAMES			255
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#define MAX_BUF_SIZE			2048
#define TX_BUF_SIZE			2000
#define RX_BUF_SIZE			2000

#define RXCR1_FILTER_MASK    		(RXCR1_RXINVF | RXCR1_RXAE | \
					 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
#define RXQCR_CMD_CNTL                	(RXQCR_RXFCTE|RXQCR_ADRFE)

#define	ENUM_BUS_NONE			0
#define	ENUM_BUS_8BIT			1
#define	ENUM_BUS_16BIT			2
#define	ENUM_BUS_32BIT			3

#define MAX_MCAST_LST			32
#define HW_MCAST_SIZE			8

/**
 * union ks_tx_hdr - tx header data
 * @txb: The header as bytes
 * @txw: The header as 16bit, little-endian words
 *
 * A dual representation of the tx header data to allow
 * access to individual bytes, and to allow 16bit accesses
 * with 16bit alignment.
 */
union ks_tx_hdr {
	u8      txb[4];
	__le16  txw[2];
};

/**
 * struct ks_net - KS8851 driver private data
 * @net_device 	: The network device we're bound to
 * @hw_addr	: start address of data register.
 * @hw_addr_cmd	: start address of command register.
 * @txh    	: temporaly buffer to save status/length.
 * @lock	: Lock to ensure that the device is not accessed when busy.
 * @pdev	: Pointer to platform device.
 * @mii		: The MII state information for the mii calls.
 * @frame_head_info   	: frame header information for multi-pkt rx.
 * @statelock	: Lock on this structure for tx list.
 * @msg_enable	: The message flags controlling driver output (see ethtool).
 * @frame_cnt  	: number of frames received.
 * @bus_width  	: i/o bus width.
 * @rc_rxqcr	: Cached copy of KS_RXQCR.
 * @rc_txcr	: Cached copy of KS_TXCR.
 * @rc_ier	: Cached copy of KS_IER.
 * @sharedbus  	: Multipex(addr and data bus) mode indicator.
 * @cmd_reg_cache	: command register cached.
 * @cmd_reg_cache_int	: command register cached. Used in the irq handler.
 * @promiscuous	: promiscuous mode indicator.
 * @all_mcast  	: mutlicast indicator.
 * @mcast_lst_size   	: size of multicast list.
 * @mcast_lst    	: multicast list.
 * @mcast_bits    	: multicast enabed.
 * @mac_addr   		: MAC address assigned to this device.
 * @fid    		: frame id.
 * @extra_byte    	: number of extra byte prepended rx pkt.
 * @enabled    		: indicator this device works.
 *
 * The @lock ensures that the chip is protected when certain operations are
 * in progress. When the read or write packet transfer is in progress, most
 * of the chip registers are not accessible until the transfer is finished and
 * the DMA has been de-asserted.
 *
 * The @statelock is used to protect information in the structure which may
 * need to be accessed via several sources, such as the network driver layer
 * or one of the work queues.
 *
 */

/* Receive multiplex framer header info */
struct type_frame_head {
	u16	sts;         /* Frame status */
	u16	len;         /* Byte count */
};

struct ks_net {
	struct net_device	*netdev;
	void __iomem    	*hw_addr;
	void __iomem    	*hw_addr_cmd;
	union ks_tx_hdr		txh ____cacheline_aligned;
	struct mutex      	lock; /* spinlock to be interrupt safe */
	struct platform_device *pdev;
	struct mii_if_info	mii;
	struct type_frame_head	*frame_head_info;
	spinlock_t		statelock;
	u32			msg_enable;
	u32			frame_cnt;
	int			bus_width;

	u16			rc_rxqcr;
	u16			rc_txcr;
	u16			rc_ier;
	u16			sharedbus;
	u16			cmd_reg_cache;
	u16			cmd_reg_cache_int;
	u16			promiscuous;
	u16			all_mcast;
	u16			mcast_lst_size;
137
	u8			mcast_lst[MAX_MCAST_LST][ETH_ALEN];
138 139 140 141 142 143 144 145 146 147 148 149 150 151
	u8			mcast_bits[HW_MCAST_SIZE];
	u8			mac_addr[6];
	u8                      fid;
	u8			extra_byte;
	u8			enabled;
};

static int msg_enable;

#define BE3             0x8000      /* Byte Enable 3 */
#define BE2             0x4000      /* Byte Enable 2 */
#define BE1             0x2000      /* Byte Enable 1 */
#define BE0             0x1000      /* Byte Enable 0 */

152
/* register read/write calls.
153 154 155
 *
 * All these calls issue transactions to access the chip's registers. They
 * all require that the necessary lock is held to prevent accesses when the
L
Lucas De Marchi 已提交
156
 * chip is busy transferring packet data (RX/TX FIFO accesses).
157 158
 */

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/**
 * ks_check_endian - Check whether endianness of the bus is correct
 * @ks	  : The chip information
 *
 * The KS8851-16MLL EESK pin allows selecting the endianness of the 16bit
 * bus. To maintain optimum performance, the bus endianness should be set
 * such that it matches the endianness of the CPU.
 */

static int ks_check_endian(struct ks_net *ks)
{
	u16 cider;

	/*
	 * Read CIDER register first, however read it the "wrong" way around.
	 * If the endian strap on the KS8851-16MLL in incorrect and the chip
	 * is operating in different endianness than the CPU, then the meaning
	 * of BE[3:0] byte-enable bits is also swapped such that:
	 *    BE[3,2,1,0] becomes BE[1,0,3,2]
	 *
	 * Luckily for us, the byte-enable bits are the top four MSbits of
	 * the address register and the CIDER register is at offset 0xc0.
	 * Hence, by reading address 0xc0c0, which is not impacted by endian
	 * swapping, we assert either BE[3:2] or BE[1:0] while reading the
	 * CIDER register.
	 *
	 * If the bus configuration is correct, reading 0xc0c0 asserts
	 * BE[3:2] and this read returns 0x0000, because to read register
	 * with bottom two LSbits of address set to 0, BE[1:0] must be
	 * asserted.
	 *
	 * If the bus configuration is NOT correct, reading 0xc0c0 asserts
	 * BE[1:0] and this read returns non-zero 0x8872 value.
	 */
	iowrite16(BE3 | BE2 | KS_CIDER, ks->hw_addr_cmd);
	cider = ioread16(ks->hw_addr);
	if (!cider)
		return 0;

	netdev_err(ks->netdev, "incorrect EESK endian strap setting\n");

	return -EINVAL;
}

203 204 205 206 207 208 209 210 211 212
/**
 * ks_rdreg16 - read 16 bit register from device
 * @ks	  : The chip information
 * @offset: The register address
 *
 * Read a 16bit register from the chip, returning the result
 */

static u16 ks_rdreg16(struct ks_net *ks, int offset)
{
213
	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
214 215 216 217 218 219 220 221 222 223 224 225 226 227
	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
	return ioread16(ks->hw_addr);
}

/**
 * ks_wrreg16 - write 16bit register value to chip
 * @ks: The chip information
 * @offset: The register address
 * @value: The value to write
 *
 */

static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
{
228
	ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
	iowrite16(value, ks->hw_addr);
}

/**
 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
 * @ks: The chip state
 * @wptr: buffer address to save data
 * @len: length in byte to read
 *
 */
static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
{
	len >>= 1;
	while (len--)
244
		*wptr++ = (u16)ioread16(ks->hw_addr);
245 246 247 248 249 250 251 252 253 254 255 256 257
}

/**
 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
 * @ks: The chip information
 * @wptr: buffer address
 * @len: length in byte to write
 *
 */
static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
{
	len >>= 1;
	while (len--)
258
		iowrite16(*wptr++, ks->hw_addr);
259 260
}

261 262 263 264 265 266 267 268 269 270
static void ks_disable_int(struct ks_net *ks)
{
	ks_wrreg16(ks, KS_IER, 0x0000);
}  /* ks_disable_int */

static void ks_enable_int(struct ks_net *ks)
{
	ks_wrreg16(ks, KS_IER, ks->rc_ier);
}  /* ks_enable_int */

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/**
 * ks_tx_fifo_space - return the available hardware buffer size.
 * @ks: The chip information
 *
 */
static inline u16 ks_tx_fifo_space(struct ks_net *ks)
{
	return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
}

/**
 * ks_save_cmd_reg - save the command register from the cache.
 * @ks: The chip information
 *
 */
static inline void ks_save_cmd_reg(struct ks_net *ks)
{
	/*ks8851 MLL has a bug to read back the command register.
	* So rely on software to save the content of command register.
	*/
	ks->cmd_reg_cache_int = ks->cmd_reg_cache;
}

/**
 * ks_restore_cmd_reg - restore the command register from the cache and
 * 	write to hardware register.
 * @ks: The chip information
 *
 */
static inline void ks_restore_cmd_reg(struct ks_net *ks)
{
	ks->cmd_reg_cache = ks->cmd_reg_cache_int;
	iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
}

/**
 * ks_set_powermode - set power mode of the device
 * @ks: The chip information
 * @pwrmode: The power mode value to write to KS_PMECR.
 *
 * Change the power mode of the chip.
 */
static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
{
	unsigned pmecr;

317
	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

	ks_rdreg16(ks, KS_GRR);
	pmecr = ks_rdreg16(ks, KS_PMECR);
	pmecr &= ~PMECR_PM_MASK;
	pmecr |= pwrmode;

	ks_wrreg16(ks, KS_PMECR, pmecr);
}

/**
 * ks_read_config - read chip configuration of bus width.
 * @ks: The chip information
 *
 */
static void ks_read_config(struct ks_net *ks)
{
	u16 reg_data = 0;

	/* Regardless of bus width, 8 bit read should always work.*/
337
	reg_data = ks_rdreg16(ks, KS_CCR);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

	/* addr/data bus are multiplexed */
	ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;

	/* There are garbage data when reading data from QMU,
	depending on bus-width.
	*/

	if (reg_data & CCR_8BIT) {
		ks->bus_width = ENUM_BUS_8BIT;
		ks->extra_byte = 1;
	} else if (reg_data & CCR_16BIT) {
		ks->bus_width = ENUM_BUS_16BIT;
		ks->extra_byte = 2;
	} else {
		ks->bus_width = ENUM_BUS_32BIT;
		ks->extra_byte = 4;
	}
}

/**
 * ks_soft_reset - issue one of the soft reset to the device
 * @ks: The device state.
 * @op: The bit(s) to set in the GRR
 *
 * Issue the relevant soft-reset command to the device's GRR register
 * specified by @op.
 *
 * Note, the delays are in there as a caution to ensure that the reset
 * has time to take effect and then complete. Since the datasheet does
 * not currently specify the exact sequence, we have chosen something
 * that seems to work with our device.
 */
static void ks_soft_reset(struct ks_net *ks, unsigned op)
{
	/* Disable interrupt first */
	ks_wrreg16(ks, KS_IER, 0x0000);
	ks_wrreg16(ks, KS_GRR, op);
	mdelay(10);	/* wait a short time to effect reset */
	ks_wrreg16(ks, KS_GRR, 0);
	mdelay(1);	/* wait for condition to clear */
}


382
static void ks_enable_qmu(struct ks_net *ks)
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
{
	u16 w;

	w = ks_rdreg16(ks, KS_TXCR);
	/* Enables QMU Transmit (TXCR). */
	ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);

	/*
	 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
	 * Enable
	 */

	w = ks_rdreg16(ks, KS_RXQCR);
	ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);

	/* Enables QMU Receive (RXCR1). */
	w = ks_rdreg16(ks, KS_RXCR1);
	ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
	ks->enabled = true;
}  /* ks_enable_qmu */

static void ks_disable_qmu(struct ks_net *ks)
{
	u16	w;

	w = ks_rdreg16(ks, KS_TXCR);

	/* Disables QMU Transmit (TXCR). */
	w  &= ~TXCR_TXE;
	ks_wrreg16(ks, KS_TXCR, w);

	/* Disables QMU Receive (RXCR1). */
	w = ks_rdreg16(ks, KS_RXCR1);
	w &= ~RXCR1_RXE ;
	ks_wrreg16(ks, KS_RXCR1, w);

	ks->enabled = false;

}  /* ks_disable_qmu */

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
/**
 * ks_read_qmu - read 1 pkt data from the QMU.
 * @ks: The chip information
 * @buf: buffer address to save 1 pkt
 * @len: Pkt length
 * Here is the sequence to read 1 pkt:
 *	1. set sudo DMA mode
 *	2. read prepend data
 *	3. read pkt data
 *	4. reset sudo DMA Mode
 */
static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
{
	u32 r =  ks->extra_byte & 0x1 ;
	u32 w = ks->extra_byte - r;

	/* 1. set sudo DMA mode */
	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
441
	ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

	/* 2. read prepend data */
	/**
	 * read 4 + extra bytes and discard them.
	 * extra bytes for dummy, 2 for status, 2 for len
	 */

	/* use likely(r) for 8 bit access for performance */
	if (unlikely(r))
		ioread8(ks->hw_addr);
	ks_inblk(ks, buf, w + 2 + 2);

	/* 3. read pkt data */
	ks_inblk(ks, buf, ALIGN(len, 4));

	/* 4. reset sudo DMA Mode */
458
	ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
}

/**
 * ks_rcv - read multiple pkts data from the QMU.
 * @ks: The chip information
 * @netdev: The network device being opened.
 *
 * Read all of header information before reading pkt content.
 * It is not allowed only port of pkts in QMU after issuing
 * interrupt ack.
 */
static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
{
	u32	i;
	struct type_frame_head *frame_hdr = ks->frame_head_info;
	struct sk_buff *skb;

	ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;

	/* read all header information */
	for (i = 0; i < ks->frame_cnt; i++) {
		/* Checking Received packet status */
		frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
		/* Get packet len from hardware */
		frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
		frame_hdr++;
	}

	frame_hdr = ks->frame_head_info;
	while (ks->frame_cnt--) {
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
		if (unlikely(!(frame_hdr->sts & RXFSHR_RXFV) ||
			     frame_hdr->len >= RX_BUF_SIZE ||
			     frame_hdr->len <= 0)) {

			/* discard an invalid packet */
			ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
			netdev->stats.rx_dropped++;
			if (!(frame_hdr->sts & RXFSHR_RXFV))
				netdev->stats.rx_frame_errors++;
			else
				netdev->stats.rx_length_errors++;
			frame_hdr++;
			continue;
		}

504
		skb = netdev_alloc_skb(netdev, frame_hdr->len + 16);
505
		if (likely(skb)) {
506 507
			skb_reserve(skb, 2);
			/* read data block including CRC 4 bytes */
508
			ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
509
			skb_put(skb, frame_hdr->len - 4);
510 511
			skb->protocol = eth_type_trans(skb, netdev);
			netif_rx(skb);
512 513 514
			/* exclude CRC size */
			netdev->stats.rx_bytes += frame_hdr->len - 4;
			netdev->stats.rx_packets++;
515 516
		} else {
			ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
517
			netdev->stats.rx_dropped++;
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		}
		frame_hdr++;
	}
}

/**
 * ks_update_link_status - link status update.
 * @netdev: The network device being opened.
 * @ks: The chip information
 *
 */

static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
{
	/* check the status of the link */
	u32 link_up_status;
	if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
		netif_carrier_on(netdev);
		link_up_status = true;
	} else {
		netif_carrier_off(netdev);
		link_up_status = false;
	}
541 542
	netif_dbg(ks, link, ks->netdev,
		  "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
543 544 545 546
}

/**
 * ks_irq - device interrupt handler
547
 * @irq: Interrupt number passed from the IRQ handler.
548 549 550 551 552 553 554 555 556 557
 * @pw: The private word passed to register_irq(), our struct ks_net.
 *
 * This is the handler invoked to find out what happened
 *
 * Read the interrupt status, work out what needs to be done and then clear
 * any of the interrupts that are not needed.
 */

static irqreturn_t ks_irq(int irq, void *pw)
{
558 559
	struct net_device *netdev = pw;
	struct ks_net *ks = netdev_priv(netdev);
560
	unsigned long flags;
561 562
	u16 status;

563
	spin_lock_irqsave(&ks->statelock, flags);
564 565 566 567 568 569
	/*this should be the first in IRQ handler */
	ks_save_cmd_reg(ks);

	status = ks_rdreg16(ks, KS_ISR);
	if (unlikely(!status)) {
		ks_restore_cmd_reg(ks);
570
		spin_unlock_irqrestore(&ks->statelock, flags);
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
		return IRQ_NONE;
	}

	ks_wrreg16(ks, KS_ISR, status);

	if (likely(status & IRQ_RXI))
		ks_rcv(ks, netdev);

	if (unlikely(status & IRQ_LCI))
		ks_update_link_status(netdev, ks);

	if (unlikely(status & IRQ_TXI))
		netif_wake_queue(netdev);

	if (unlikely(status & IRQ_LDI)) {

		u16 pmecr = ks_rdreg16(ks, KS_PMECR);
		pmecr &= ~PMECR_WKEVT_MASK;
		ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
	}

592 593
	if (unlikely(status & IRQ_RXOI))
		ks->netdev->stats.rx_over_errors++;
594 595
	/* this should be the last in IRQ handler*/
	ks_restore_cmd_reg(ks);
596
	spin_unlock_irqrestore(&ks->statelock, flags);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	return IRQ_HANDLED;
}


/**
 * ks_net_open - open network device
 * @netdev: The network device being opened.
 *
 * Called when the network device is marked active, such as a user executing
 * 'ifconfig up' on the device.
 */
static int ks_net_open(struct net_device *netdev)
{
	struct ks_net *ks = netdev_priv(netdev);
	int err;

613
#define	KS_INT_FLAGS	IRQF_TRIGGER_LOW
614 615 616 617
	/* lock the card, even if we may not actually do anything
	 * else at the moment.
	 */

618
	netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
619 620

	/* reset the HW */
621
	err = request_irq(netdev->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
622 623

	if (err) {
624
		pr_err("Failed to request IRQ: %d: %d\n", netdev->irq, err);
625 626 627
		return err;
	}

628 629 630 631 632 633 634 635 636
	/* wake up powermode to normal mode */
	ks_set_powermode(ks, PMECR_PM_NORMAL);
	mdelay(1);	/* wait for normal mode to take effect */

	ks_wrreg16(ks, KS_ISR, 0xffff);
	ks_enable_int(ks);
	ks_enable_qmu(ks);
	netif_start_queue(ks->netdev);

637
	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

	return 0;
}

/**
 * ks_net_stop - close network device
 * @netdev: The device being closed.
 *
 * Called to close down a network device which has been active. Cancell any
 * work, shutdown the RX and TX process and then place the chip into a low
 * power state whilst it is not being used.
 */
static int ks_net_stop(struct net_device *netdev)
{
	struct ks_net *ks = netdev_priv(netdev);

654
	netif_info(ks, ifdown, netdev, "shutting down\n");
655 656 657 658 659 660 661 662 663

	netif_stop_queue(netdev);

	mutex_lock(&ks->lock);

	/* turn off the IRQs and ack any outstanding */
	ks_wrreg16(ks, KS_IER, 0x0000);
	ks_wrreg16(ks, KS_ISR, 0xffff);

664 665
	/* shutdown RX/TX QMU */
	ks_disable_qmu(ks);
666
	ks_disable_int(ks);
667 668 669

	/* set powermode to soft power down to save power */
	ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
670
	free_irq(netdev->irq, netdev);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	mutex_unlock(&ks->lock);
	return 0;
}


/**
 * ks_write_qmu - write 1 pkt data to the QMU.
 * @ks: The chip information
 * @pdata: buffer address to save 1 pkt
 * @len: Pkt length in byte
 * Here is the sequence to write 1 pkt:
 *	1. set sudo DMA mode
 *	2. write status/length
 *	3. write pkt data
 *	4. reset sudo DMA Mode
 *	5. reset sudo DMA mode
 *	6. Wait until pkt is out
 */
static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
{
	/* start header at txb[0] to align txw entries */
692
	ks->txh.txw[0] = 0;
693 694 695
	ks->txh.txw[1] = cpu_to_le16(len);

	/* 1. set sudo-DMA mode */
696
	ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
697 698 699 700 701
	/* 2. write status/lenth info */
	ks_outblk(ks, ks->txh.txw, 4);
	/* 3. write pkt data */
	ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
	/* 4. reset sudo-DMA mode */
702
	ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
	ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
	/* 6. wait until TXQCR_METFE is auto-cleared */
	while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
		;
}

/**
 * ks_start_xmit - transmit packet
 * @skb		: The buffer to transmit
 * @netdev	: The device used to transmit the packet.
 *
 * Called by the network layer to transmit the @skb.
 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
 * So while tx is in-progress, prevent IRQ interrupt from happenning.
 */
719
static netdev_tx_t ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
720
{
721
	netdev_tx_t retv = NETDEV_TX_OK;
722
	struct ks_net *ks = netdev_priv(netdev);
723
	unsigned long flags;
724

725
	spin_lock_irqsave(&ks->statelock, flags);
726 727 728 729 730 731 732

	/* Extra space are required:
	*  4 byte for alignment, 4 for status/length, 4 for CRC
	*/

	if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
		ks_write_qmu(ks, skb->data, skb->len);
733 734 735
		/* add tx statistics */
		netdev->stats.tx_bytes += skb->len;
		netdev->stats.tx_packets++;
736 737 738
		dev_kfree_skb(skb);
	} else
		retv = NETDEV_TX_BUSY;
739
	spin_unlock_irqrestore(&ks->statelock, flags);
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
	return retv;
}

/**
 * ks_start_rx - ready to serve pkts
 * @ks		: The chip information
 *
 */
static void ks_start_rx(struct ks_net *ks)
{
	u16 cntl;

	/* Enables QMU Receive (RXCR1). */
	cntl = ks_rdreg16(ks, KS_RXCR1);
	cntl |= RXCR1_RXE ;
	ks_wrreg16(ks, KS_RXCR1, cntl);
}  /* ks_start_rx */

/**
 * ks_stop_rx - stop to serve pkts
 * @ks		: The chip information
 *
 */
static void ks_stop_rx(struct ks_net *ks)
{
	u16 cntl;

	/* Disables QMU Receive (RXCR1). */
	cntl = ks_rdreg16(ks, KS_RXCR1);
	cntl &= ~RXCR1_RXE ;
	ks_wrreg16(ks, KS_RXCR1, cntl);

}  /* ks_stop_rx */

774
static unsigned long const ethernet_polynomial = CRC32_POLY_BE;
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819

static unsigned long ether_gen_crc(int length, u8 *data)
{
	long crc = -1;
	while (--length >= 0) {
		u8 current_octet = *data++;
		int bit;

		for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
			crc = (crc << 1) ^
				((crc < 0) ^ (current_octet & 1) ?
			ethernet_polynomial : 0);
		}
	}
	return (unsigned long)crc;
}  /* ether_gen_crc */

/**
* ks_set_grpaddr - set multicast information
* @ks : The chip information
*/

static void ks_set_grpaddr(struct ks_net *ks)
{
	u8	i;
	u32	index, position, value;

	memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);

	for (i = 0; i < ks->mcast_lst_size; i++) {
		position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
		index = position >> 3;
		value = 1 << (position & 7);
		ks->mcast_bits[index] |= (u8)value;
	}

	for (i  = 0; i < HW_MCAST_SIZE; i++) {
		if (i & 1) {
			ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
				(ks->mcast_bits[i] << 8) |
				ks->mcast_bits[i - 1]);
		}
	}
}  /* ks_set_grpaddr */

820
/**
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
* ks_clear_mcast - clear multicast information
*
* @ks : The chip information
* This routine removes all mcast addresses set in the hardware.
*/

static void ks_clear_mcast(struct ks_net *ks)
{
	u16	i, mcast_size;
	for (i = 0; i < HW_MCAST_SIZE; i++)
		ks->mcast_bits[i] = 0;

	mcast_size = HW_MCAST_SIZE >> 2;
	for (i = 0; i < mcast_size; i++)
		ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
}

static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
{
	u16		cntl;
	ks->promiscuous = promiscuous_mode;
	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
	cntl = ks_rdreg16(ks, KS_RXCR1);

	cntl &= ~RXCR1_FILTER_MASK;
	if (promiscuous_mode)
		/* Enable Promiscuous mode */
		cntl |= RXCR1_RXAE | RXCR1_RXINVF;
	else
		/* Disable Promiscuous mode (default normal mode) */
		cntl |= RXCR1_RXPAFMA;

	ks_wrreg16(ks, KS_RXCR1, cntl);

	if (ks->enabled)
		ks_start_rx(ks);

}  /* ks_set_promis */

static void ks_set_mcast(struct ks_net *ks, u16 mcast)
{
	u16	cntl;

	ks->all_mcast = mcast;
	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
	cntl = ks_rdreg16(ks, KS_RXCR1);
	cntl &= ~RXCR1_FILTER_MASK;
	if (mcast)
		/* Enable "Perfect with Multicast address passed mode" */
		cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
	else
		/**
		 * Disable "Perfect with Multicast address passed
		 * mode" (normal mode).
		 */
		cntl |= RXCR1_RXPAFMA;

	ks_wrreg16(ks, KS_RXCR1, cntl);

	if (ks->enabled)
		ks_start_rx(ks);
}  /* ks_set_mcast */

static void ks_set_rx_mode(struct net_device *netdev)
{
	struct ks_net *ks = netdev_priv(netdev);
887
	struct netdev_hw_addr *ha;
888 889 890 891 892 893 894 895 896 897 898 899

	/* Turn on/off promiscuous mode. */
	if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
		ks_set_promis(ks,
			(u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
	/* Turn on/off all mcast mode. */
	else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
		ks_set_mcast(ks,
			(u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
	else
		ks_set_promis(ks, false);

900 901
	if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
		if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
902
			int i = 0;
903

904
			netdev_for_each_mc_addr(ha, netdev) {
905 906
				if (i >= MAX_MCAST_LST)
					break;
907
				memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
			}
			ks->mcast_lst_size = (u8)i;
			ks_set_grpaddr(ks);
		} else {
			/**
			 * List too big to support so
			 * turn on all mcast mode.
			 */
			ks->mcast_lst_size = MAX_MCAST_LST;
			ks_set_mcast(ks, true);
		}
	} else {
		ks->mcast_lst_size = 0;
		ks_clear_mcast(ks);
	}
} /* ks_set_rx_mode */

static void ks_set_mac(struct ks_net *ks, u8 *data)
{
	u16 *pw = (u16 *)data;
	u16 w, u;

	ks_stop_rx(ks);  /* Stop receiving for reconfiguration */

	u = *pw++;
	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
	ks_wrreg16(ks, KS_MARH, w);

	u = *pw++;
	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
	ks_wrreg16(ks, KS_MARM, w);

	u = *pw;
	w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
	ks_wrreg16(ks, KS_MARL, w);

944
	memcpy(ks->mac_addr, data, ETH_ALEN);
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

	if (ks->enabled)
		ks_start_rx(ks);
}

static int ks_set_mac_address(struct net_device *netdev, void *paddr)
{
	struct ks_net *ks = netdev_priv(netdev);
	struct sockaddr *addr = paddr;
	u8 *da;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);

	da = (u8 *)netdev->dev_addr;

	ks_set_mac(ks, da);
	return 0;
}

static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
{
	struct ks_net *ks = netdev_priv(netdev);

	if (!netif_running(netdev))
		return -EINVAL;

	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
}

static const struct net_device_ops ks_netdev_ops = {
	.ndo_open		= ks_net_open,
	.ndo_stop		= ks_net_stop,
	.ndo_do_ioctl		= ks_net_ioctl,
	.ndo_start_xmit		= ks_start_xmit,
	.ndo_set_mac_address	= ks_set_mac_address,
	.ndo_set_rx_mode	= ks_set_rx_mode,
	.ndo_validate_addr	= eth_validate_addr,
};

/* ethtool support */

static void ks_get_drvinfo(struct net_device *netdev,
			       struct ethtool_drvinfo *di)
{
	strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
	strlcpy(di->version, "1.00", sizeof(di->version));
	strlcpy(di->bus_info, dev_name(netdev->dev.parent),
		sizeof(di->bus_info));
}

static u32 ks_get_msglevel(struct net_device *netdev)
{
	struct ks_net *ks = netdev_priv(netdev);
	return ks->msg_enable;
}

static void ks_set_msglevel(struct net_device *netdev, u32 to)
{
	struct ks_net *ks = netdev_priv(netdev);
	ks->msg_enable = to;
}

1007 1008
static int ks_get_link_ksettings(struct net_device *netdev,
				 struct ethtool_link_ksettings *cmd)
1009 1010
{
	struct ks_net *ks = netdev_priv(netdev);
1011 1012 1013 1014

	mii_ethtool_get_link_ksettings(&ks->mii, cmd);

	return 0;
1015 1016
}

1017 1018
static int ks_set_link_ksettings(struct net_device *netdev,
				 const struct ethtool_link_ksettings *cmd)
1019 1020
{
	struct ks_net *ks = netdev_priv(netdev);
1021
	return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
}

static u32 ks_get_link(struct net_device *netdev)
{
	struct ks_net *ks = netdev_priv(netdev);
	return mii_link_ok(&ks->mii);
}

static int ks_nway_reset(struct net_device *netdev)
{
	struct ks_net *ks = netdev_priv(netdev);
	return mii_nway_restart(&ks->mii);
}

static const struct ethtool_ops ks_ethtool_ops = {
	.get_drvinfo	= ks_get_drvinfo,
	.get_msglevel	= ks_get_msglevel,
	.set_msglevel	= ks_set_msglevel,
	.get_link	= ks_get_link,
	.nway_reset	= ks_nway_reset,
1042 1043
	.get_link_ksettings = ks_get_link_ksettings,
	.set_link_ksettings = ks_set_link_ksettings,
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
};

/* MII interface controls */

/**
 * ks_phy_reg - convert MII register into a KS8851 register
 * @reg: MII register number.
 *
 * Return the KS8851 register number for the corresponding MII PHY register
 * if possible. Return zero if the MII register has no direct mapping to the
 * KS8851 register set.
 */
static int ks_phy_reg(int reg)
{
	switch (reg) {
	case MII_BMCR:
		return KS_P1MBCR;
	case MII_BMSR:
		return KS_P1MBSR;
	case MII_PHYSID1:
		return KS_PHY1ILR;
	case MII_PHYSID2:
		return KS_PHY1IHR;
	case MII_ADVERTISE:
		return KS_P1ANAR;
	case MII_LPA:
		return KS_P1ANLPR;
	}

	return 0x0;
}

/**
 * ks_phy_read - MII interface PHY register read.
 * @netdev: The network device the PHY is on.
 * @phy_addr: Address of PHY (ignored as we only have one)
 * @reg: The register to read.
 *
 * This call reads data from the PHY register specified in @reg. Since the
L
Lucas De Marchi 已提交
1083
 * device does not support all the MII registers, the non-existent values
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
 * are always returned as zero.
 *
 * We return zero for unsupported registers as the MII code does not check
 * the value returned for any error status, and simply returns it to the
 * caller. The mii-tool that the driver was tested with takes any -ve error
 * as real PHY capabilities, thus displaying incorrect data to the user.
 */
static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
{
	struct ks_net *ks = netdev_priv(netdev);
	int ksreg;
	int result;

	ksreg = ks_phy_reg(reg);
	if (!ksreg)
		return 0x0;	/* no error return allowed, so use zero */

	mutex_lock(&ks->lock);
	result = ks_rdreg16(ks, ksreg);
	mutex_unlock(&ks->lock);

	return result;
}

static void ks_phy_write(struct net_device *netdev,
			     int phy, int reg, int value)
{
	struct ks_net *ks = netdev_priv(netdev);
	int ksreg;

	ksreg = ks_phy_reg(reg);
	if (ksreg) {
		mutex_lock(&ks->lock);
		ks_wrreg16(ks, ksreg, value);
		mutex_unlock(&ks->lock);
	}
}

/**
 * ks_read_selftest - read the selftest memory info.
 * @ks: The device state
 *
 * Read and check the TX/RX memory selftest information.
 */
static int ks_read_selftest(struct ks_net *ks)
{
	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
	int ret = 0;
	unsigned rd;

	rd = ks_rdreg16(ks, KS_MBIR);

	if ((rd & both_done) != both_done) {
1137
		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1138 1139 1140 1141
		return 0;
	}

	if (rd & MBIR_TXMBFA) {
1142
		netdev_err(ks->netdev, "TX memory selftest fails\n");
1143 1144 1145 1146
		ret |= 1;
	}

	if (rd & MBIR_RXMBFA) {
1147
		netdev_err(ks->netdev, "RX memory selftest fails\n");
1148 1149 1150
		ret |= 2;
	}

1151
	netdev_info(ks->netdev, "the selftest passes\n");
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	return ret;
}

static void ks_setup(struct ks_net *ks)
{
	u16	w;

	/**
	 * Configure QMU Transmit
	 */

	/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
	ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);

	/* Setup Receive Frame Data Pointer Auto-Increment */
	ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);

	/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1170
	ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_RXFCT_MASK);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	/* Setup RxQ Command Control (RXQCR) */
	ks->rc_rxqcr = RXQCR_CMD_CNTL;
	ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);

	/**
	 * set the force mode to half duplex, default is full duplex
	 *  because if the auto-negotiation fails, most switch uses
	 *  half-duplex.
	 */

	w = ks_rdreg16(ks, KS_P1MBCR);
1183
	w &= ~BMCR_FULLDPLX;
1184 1185 1186 1187 1188
	ks_wrreg16(ks, KS_P1MBCR, w);

	w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
	ks_wrreg16(ks, KS_TXCR, w);

1189
	w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

	if (ks->promiscuous)         /* bPromiscuous */
		w |= (RXCR1_RXAE | RXCR1_RXINVF);
	else if (ks->all_mcast) /* Multicast address passed mode */
		w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
	else                                   /* Normal mode */
		w |= RXCR1_RXPAFMA;

	ks_wrreg16(ks, KS_RXCR1, w);
}  /*ks_setup */


static void ks_setup_int(struct ks_net *ks)
{
	ks->rc_ier = 0x00;
	/* Clear the interrupts status of the hardware. */
	ks_wrreg16(ks, KS_ISR, 0xffff);

	/* Enables the interrupts of the hardware. */
	ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
}  /* ks_setup_int */

static int ks_hw_init(struct ks_net *ks)
{
#define	MHEADER_SIZE	(sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
	ks->promiscuous = 0;
	ks->all_mcast = 0;
	ks->mcast_lst_size = 0;

1219 1220
	ks->frame_head_info = devm_kmalloc(&ks->pdev->dev, MHEADER_SIZE,
					   GFP_KERNEL);
1221
	if (!ks->frame_head_info)
1222 1223 1224 1225 1226 1227
		return false;

	ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
	return true;
}

1228 1229 1230 1231 1232 1233 1234
#if defined(CONFIG_OF)
static const struct of_device_id ks8851_ml_dt_ids[] = {
	{ .compatible = "micrel,ks8851-mll" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, ks8851_ml_dt_ids);
#endif
1235

1236
static int ks8851_probe(struct platform_device *pdev)
1237
{
1238
	int err;
1239 1240 1241
	struct net_device *netdev;
	struct ks_net *ks;
	u16 id, data;
1242
	const char *mac;
1243 1244 1245

	netdev = alloc_etherdev(sizeof(struct ks_net));
	if (!netdev)
1246
		return -ENOMEM;
1247 1248 1249 1250 1251 1252

	SET_NETDEV_DEV(netdev, &pdev->dev);

	ks = netdev_priv(netdev);
	ks->netdev = netdev;

1253
	ks->hw_addr = devm_platform_ioremap_resource(pdev, 0);
1254 1255 1256 1257
	if (IS_ERR(ks->hw_addr)) {
		err = PTR_ERR(ks->hw_addr);
		goto err_free;
	}
1258

1259
	ks->hw_addr_cmd = devm_platform_ioremap_resource(pdev, 1);
1260 1261 1262 1263
	if (IS_ERR(ks->hw_addr_cmd)) {
		err = PTR_ERR(ks->hw_addr_cmd);
		goto err_free;
	}
1264

1265 1266 1267 1268
	err = ks_check_endian(ks);
	if (err)
		goto err_free;

1269
	netdev->irq = platform_get_irq(pdev, 0);
1270

1271
	if ((int)netdev->irq < 0) {
1272
		err = netdev->irq;
1273
		goto err_free;
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	}

	ks->pdev = pdev;

	mutex_init(&ks->lock);
	spin_lock_init(&ks->statelock);

	netdev->netdev_ops = &ks_netdev_ops;
	netdev->ethtool_ops = &ks_ethtool_ops;

	/* setup mii state */
	ks->mii.dev             = netdev;
	ks->mii.phy_id          = 1,
	ks->mii.phy_id_mask     = 1;
	ks->mii.reg_num_mask    = 0xf;
	ks->mii.mdio_read       = ks_phy_read;
	ks->mii.mdio_write      = ks_phy_write;

1292
	netdev_info(netdev, "message enable is %d\n", msg_enable);
1293 1294 1295 1296 1297 1298 1299 1300
	/* set the default message enable */
	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
						     NETIF_MSG_PROBE |
						     NETIF_MSG_LINK));
	ks_read_config(ks);

	/* simple check for a valid chip being connected to the bus */
	if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1301
		netdev_err(netdev, "failed to read device ID\n");
1302
		err = -ENODEV;
1303
		goto err_free;
1304 1305 1306
	}

	if (ks_read_selftest(ks)) {
1307
		netdev_err(netdev, "failed to read device ID\n");
1308
		err = -ENODEV;
1309
		goto err_free;
1310 1311 1312 1313
	}

	err = register_netdev(netdev);
	if (err)
1314
		goto err_free;
1315 1316 1317 1318 1319

	platform_set_drvdata(pdev, netdev);

	ks_soft_reset(ks, GRR_GSR);
	ks_hw_init(ks);
1320
	ks_disable_qmu(ks);
1321 1322 1323 1324
	ks_setup(ks);
	ks_setup_int(ks);

	data = ks_rdreg16(ks, KS_OBCR);
1325
	ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16mA);
1326

1327
	/* overwriting the default MAC address */
1328 1329
	if (pdev->dev.of_node) {
		mac = of_get_mac_address(pdev->dev.of_node);
1330
		if (!IS_ERR(mac))
1331
			ether_addr_copy(ks->mac_addr, mac);
1332 1333 1334
	} else {
		struct ks8851_mll_platform_data *pdata;

1335
		pdata = dev_get_platdata(&pdev->dev);
1336 1337 1338 1339 1340 1341
		if (!pdata) {
			netdev_err(netdev, "No platform data\n");
			err = -ENODEV;
			goto err_pdata;
		}
		memcpy(ks->mac_addr, pdata->mac_addr, ETH_ALEN);
1342 1343 1344
	}
	if (!is_valid_ether_addr(ks->mac_addr)) {
		/* Use random MAC address if none passed */
J
Joe Perches 已提交
1345
		eth_random_addr(ks->mac_addr);
1346 1347 1348 1349
		netdev_info(netdev, "Using random mac address\n");
	}
	netdev_info(netdev, "Mac address is: %pM\n", ks->mac_addr);

1350
	memcpy(netdev->dev_addr, ks->mac_addr, ETH_ALEN);
1351 1352 1353 1354 1355

	ks_set_mac(ks, netdev->dev_addr);

	id = ks_rdreg16(ks, KS_CIDER);

1356 1357
	netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
		    (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
1358 1359
	return 0;

1360 1361
err_pdata:
	unregister_netdev(netdev);
1362
err_free:
1363 1364 1365 1366
	free_netdev(netdev);
	return err;
}

1367
static int ks8851_remove(struct platform_device *pdev)
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
{
	struct net_device *netdev = platform_get_drvdata(pdev);

	unregister_netdev(netdev);
	free_netdev(netdev);
	return 0;

}

static struct platform_driver ks8851_platform_driver = {
	.driver = {
		.name = DRV_NAME,
1380
		.of_match_table	= of_match_ptr(ks8851_ml_dt_ids),
1381 1382
	},
	.probe = ks8851_probe,
1383
	.remove = ks8851_remove,
1384 1385
};

1386
module_platform_driver(ks8851_platform_driver);
1387 1388 1389 1390 1391 1392 1393

MODULE_DESCRIPTION("KS8851 MLL Network driver");
MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
MODULE_LICENSE("GPL");
module_param_named(message, msg_enable, int, 0);
MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");