dma.c 57.0 KB
Newer Older
1 2 3 4
/*
 * linux/arch/arm/plat-omap/dma.c
 *
 * Copyright (C) 2003 Nokia Corporation
5
 * Author: Juha Yrjölä <juha.yrjola@nokia.com>
6 7 8
 * DMA channel linking for 1610 by Samuel Ortiz <samuel.ortiz@nokia.com>
 * Graphics DMA and LCD DMA graphics tranformations
 * by Imre Deak <imre.deak@nokia.com>
9
 * OMAP2/3 support Copyright (C) 2004-2007 Texas Instruments, Inc.
10
 * Merged to support both OMAP1 and OMAP2 by Tony Lindgren <tony@atomide.com>
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * Some functions based on earlier dma-omap.c Copyright (C) 2001 RidgeRun, Inc.
 *
 * Support functions for the OMAP internal DMA channels.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
27
#include <linux/irq.h>
28 29 30 31 32 33 34 35

#include <asm/system.h>
#include <asm/hardware.h>
#include <asm/dma.h>
#include <asm/io.h>

#include <asm/arch/tc.h>

36 37 38 39 40 41 42 43
#undef DEBUG

#ifndef CONFIG_ARCH_OMAP1
enum { DMA_CH_ALLOC_DONE, DMA_CH_PARAMS_SET_DONE, DMA_CH_STARTED,
	DMA_CH_QUEUED, DMA_CH_NOTSTARTED, DMA_CH_PAUSED, DMA_CH_LINK_ENABLED
};

enum { DMA_CHAIN_STARTED, DMA_CHAIN_NOTSTARTED };
44
#endif
45

46
#define OMAP_DMA_ACTIVE		0x01
47
#define OMAP_DMA_CCR_EN		(1 << 7)
48
#define OMAP2_DMA_CSR_CLEAR_MASK	0xffe
49 50 51 52 53 54 55 56 57 58 59 60 61

#define OMAP_FUNC_MUX_ARM_BASE	(0xfffe1000 + 0xec)

static int enable_1510_mode = 0;

struct omap_dma_lch {
	int next_lch;
	int dev_id;
	u16 saved_csr;
	u16 enabled_irqs;
	const char *dev_name;
	void (* callback)(int lch, u16 ch_status, void *data);
	void *data;
62 63 64 65 66 67 68 69 70 71

#ifndef CONFIG_ARCH_OMAP1
	/* required for Dynamic chaining */
	int prev_linked_ch;
	int next_linked_ch;
	int state;
	int chain_id;

	int status;
#endif
72 73 74
	long flags;
};

75 76 77 78 79 80 81 82 83 84 85 86 87
struct dma_link_info {
	int *linked_dmach_q;
	int no_of_lchs_linked;

	int q_count;
	int q_tail;
	int q_head;

	int chain_state;
	int chain_mode;

};

88 89 90
static struct dma_link_info *dma_linked_lch;

#ifndef CONFIG_ARCH_OMAP1
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

/* Chain handling macros */
#define OMAP_DMA_CHAIN_QINIT(chain_id)					\
	do {								\
		dma_linked_lch[chain_id].q_head =			\
		dma_linked_lch[chain_id].q_tail =			\
		dma_linked_lch[chain_id].q_count = 0;			\
	} while (0)
#define OMAP_DMA_CHAIN_QFULL(chain_id)					\
		(dma_linked_lch[chain_id].no_of_lchs_linked ==		\
		dma_linked_lch[chain_id].q_count)
#define OMAP_DMA_CHAIN_QLAST(chain_id)					\
	do {								\
		((dma_linked_lch[chain_id].no_of_lchs_linked-1) ==	\
		dma_linked_lch[chain_id].q_count)			\
	} while (0)
#define OMAP_DMA_CHAIN_QEMPTY(chain_id)					\
		(0 == dma_linked_lch[chain_id].q_count)
#define __OMAP_DMA_CHAIN_INCQ(end)					\
	((end) = ((end)+1) % dma_linked_lch[chain_id].no_of_lchs_linked)
#define OMAP_DMA_CHAIN_INCQHEAD(chain_id)				\
	do {								\
		__OMAP_DMA_CHAIN_INCQ(dma_linked_lch[chain_id].q_head);	\
		dma_linked_lch[chain_id].q_count--;			\
	} while (0)

#define OMAP_DMA_CHAIN_INCQTAIL(chain_id)				\
	do {								\
		__OMAP_DMA_CHAIN_INCQ(dma_linked_lch[chain_id].q_tail);	\
		dma_linked_lch[chain_id].q_count++; \
	} while (0)
#endif
123 124

static int dma_lch_count;
125 126 127
static int dma_chan_count;

static spinlock_t dma_chan_lock;
128
static struct omap_dma_lch *dma_chan;
129
static void __iomem *omap_dma_base;
130

131
static const u8 omap1_dma_irq[OMAP1_LOGICAL_DMA_CH_COUNT] = {
132 133 134 135 136 137 138
	INT_DMA_CH0_6, INT_DMA_CH1_7, INT_DMA_CH2_8, INT_DMA_CH3,
	INT_DMA_CH4, INT_DMA_CH5, INT_1610_DMA_CH6, INT_1610_DMA_CH7,
	INT_1610_DMA_CH8, INT_1610_DMA_CH9, INT_1610_DMA_CH10,
	INT_1610_DMA_CH11, INT_1610_DMA_CH12, INT_1610_DMA_CH13,
	INT_1610_DMA_CH14, INT_1610_DMA_CH15, INT_DMA_LCD
};

139 140 141 142
static inline void disable_lnk(int lch);
static void omap_disable_channel_irq(int lch);
static inline void omap_enable_channel_irq(int lch);

143
#define REVISIT_24XX()		printk(KERN_ERR "FIXME: no %s on 24xx\n", \
144
						__func__);
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
#define dma_read(reg)							\
({									\
	u32 __val;							\
	if (cpu_class_is_omap1())					\
		__val = __raw_readw(omap_dma_base + OMAP1_DMA_##reg);	\
	else								\
		__val = __raw_readl(omap_dma_base + OMAP_DMA4_##reg);	\
	__val;								\
})

#define dma_write(val, reg)						\
({									\
	if (cpu_class_is_omap1())					\
		__raw_writew((u16)(val), omap_dma_base + OMAP1_DMA_##reg); \
	else								\
		__raw_writel((val), omap_dma_base + OMAP_DMA4_##reg);	\
})

164 165 166 167 168 169 170 171 172 173 174
#ifdef CONFIG_ARCH_OMAP15XX
/* Returns 1 if the DMA module is in OMAP1510-compatible mode, 0 otherwise */
int omap_dma_in_1510_mode(void)
{
	return enable_1510_mode;
}
#else
#define omap_dma_in_1510_mode()		0
#endif

#ifdef CONFIG_ARCH_OMAP1
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static inline int get_gdma_dev(int req)
{
	u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4;
	int shift = ((req - 1) % 5) * 6;

	return ((omap_readl(reg) >> shift) & 0x3f) + 1;
}

static inline void set_gdma_dev(int req, int dev)
{
	u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4;
	int shift = ((req - 1) % 5) * 6;
	u32 l;

	l = omap_readl(reg);
	l &= ~(0x3f << shift);
	l |= (dev - 1) << shift;
	omap_writel(l, reg);
}
194 195 196
#else
#define set_gdma_dev(req, dev)	do {} while (0)
#endif
197

198
/* Omap1 only */
199 200 201
static void clear_lch_regs(int lch)
{
	int i;
202
	void __iomem *lch_base = omap_dma_base + OMAP1_DMA_CH_BASE(lch);
203 204

	for (i = 0; i < 0x2c; i += 2)
205
		__raw_writew(0, lch_base + i);
206 207
}

208
void omap_set_dma_priority(int lch, int dst_port, int priority)
209 210 211 212
{
	unsigned long reg;
	u32 l;

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	if (cpu_class_is_omap1()) {
		switch (dst_port) {
		case OMAP_DMA_PORT_OCP_T1:	/* FFFECC00 */
			reg = OMAP_TC_OCPT1_PRIOR;
			break;
		case OMAP_DMA_PORT_OCP_T2:	/* FFFECCD0 */
			reg = OMAP_TC_OCPT2_PRIOR;
			break;
		case OMAP_DMA_PORT_EMIFF:	/* FFFECC08 */
			reg = OMAP_TC_EMIFF_PRIOR;
			break;
		case OMAP_DMA_PORT_EMIFS:	/* FFFECC04 */
			reg = OMAP_TC_EMIFS_PRIOR;
			break;
		default:
			BUG();
			return;
		}
		l = omap_readl(reg);
		l &= ~(0xf << 8);
		l |= (priority & 0xf) << 8;
		omap_writel(l, reg);
	}

237
	if (cpu_class_is_omap2()) {
238 239 240
		u32 ccr;

		ccr = dma_read(CCR(lch));
241
		if (priority)
242
			ccr |= (1 << 6);
243
		else
244 245
			ccr &= ~(1 << 6);
		dma_write(ccr, CCR(lch));
246 247 248 249
	}
}

void omap_set_dma_transfer_params(int lch, int data_type, int elem_count,
250 251
				  int frame_count, int sync_mode,
				  int dma_trigger, int src_or_dst_synch)
252
{
253 254 255 256 257 258
	u32 l;

	l = dma_read(CSDP(lch));
	l &= ~0x03;
	l |= data_type;
	dma_write(l, CSDP(lch));
259

260
	if (cpu_class_is_omap1()) {
261 262 263 264
		u16 ccr;

		ccr = dma_read(CCR(lch));
		ccr &= ~(1 << 5);
265
		if (sync_mode == OMAP_DMA_SYNC_FRAME)
266 267
			ccr |= 1 << 5;
		dma_write(ccr, CCR(lch));
268

269 270
		ccr = dma_read(CCR2(lch));
		ccr &= ~(1 << 2);
271
		if (sync_mode == OMAP_DMA_SYNC_BLOCK)
272 273
			ccr |= 1 << 2;
		dma_write(ccr, CCR2(lch));
274 275
	}

276
	if (cpu_class_is_omap2() && dma_trigger) {
277
		u32 val;
278

279
		val = dma_read(CCR(lch));
280
		val &= ~(3 << 19);
281 282 283 284
		if (dma_trigger > 63)
			val |= 1 << 20;
		if (dma_trigger > 31)
			val |= 1 << 19;
285

286
		val &= ~(0x1f);
287
		val |= (dma_trigger & 0x1f);
288

289 290
		if (sync_mode & OMAP_DMA_SYNC_FRAME)
			val |= 1 << 5;
291 292
		else
			val &= ~(1 << 5);
293

294 295
		if (sync_mode & OMAP_DMA_SYNC_BLOCK)
			val |= 1 << 18;
296 297
		else
			val &= ~(1 << 18);
298

299 300 301 302 303
		if (src_or_dst_synch)
			val |= 1 << 24;		/* source synch */
		else
			val &= ~(1 << 24);	/* dest synch */

304
		dma_write(val, CCR(lch));
305 306
	}

307 308
	dma_write(elem_count, CEN(lch));
	dma_write(frame_count, CFN(lch));
309
}
310

311 312 313 314 315 316
void omap_set_dma_color_mode(int lch, enum omap_dma_color_mode mode, u32 color)
{
	u16 w;

	BUG_ON(omap_dma_in_1510_mode());

317
	if (cpu_class_is_omap2()) {
318 319 320 321
		REVISIT_24XX();
		return;
	}

322 323 324
	w = dma_read(CCR2(lch));
	w &= ~0x03;

325 326 327 328 329 330 331 332 333 334 335 336
	switch (mode) {
	case OMAP_DMA_CONSTANT_FILL:
		w |= 0x01;
		break;
	case OMAP_DMA_TRANSPARENT_COPY:
		w |= 0x02;
		break;
	case OMAP_DMA_COLOR_DIS:
		break;
	default:
		BUG();
	}
337
	dma_write(w, CCR2(lch));
338

339 340
	w = dma_read(LCH_CTRL(lch));
	w &= ~0x0f;
341 342
	/* Default is channel type 2D */
	if (mode) {
343 344
		dma_write((u16)color, COLOR_L(lch));
		dma_write((u16)(color >> 16), COLOR_U(lch));
345 346
		w |= 1;		/* Channel type G */
	}
347
	dma_write(w, LCH_CTRL(lch));
348 349
}

350 351
void omap_set_dma_write_mode(int lch, enum omap_dma_write_mode mode)
{
352
	if (cpu_class_is_omap2()) {
353 354 355 356 357 358
		u32 csdp;

		csdp = dma_read(CSDP(lch));
		csdp &= ~(0x3 << 16);
		csdp |= (mode << 16);
		dma_write(csdp, CSDP(lch));
359 360 361
	}
}

362 363 364 365 366 367 368 369 370 371 372 373 374
void omap_set_dma_channel_mode(int lch, enum omap_dma_channel_mode mode)
{
	if (cpu_class_is_omap1() && !cpu_is_omap15xx()) {
		u32 l;

		l = dma_read(LCH_CTRL(lch));
		l &= ~0x7;
		l |= mode;
		dma_write(l, LCH_CTRL(lch));
	}
}
EXPORT_SYMBOL(omap_set_dma_channel_mode);

375
/* Note that src_port is only for omap1 */
376
void omap_set_dma_src_params(int lch, int src_port, int src_amode,
377 378
			     unsigned long src_start,
			     int src_ei, int src_fi)
379
{
380
	if (cpu_class_is_omap1()) {
381
		u16 w;
382

383 384 385 386
		w = dma_read(CSDP(lch));
		w &= ~(0x1f << 2);
		w |= src_port << 2;
		dma_write(w, CSDP(lch));
387

388 389 390 391 392 393 394 395 396 397
		w = dma_read(CCR(lch));
		w &= ~(0x03 << 12);
		w |= src_amode << 12;
		dma_write(w, CCR(lch));

		dma_write(src_start >> 16, CSSA_U(lch));
		dma_write((u16)src_start, CSSA_L(lch));

		dma_write(src_ei, CSEI(lch));
		dma_write(src_fi, CSFI(lch));
398
	}
399

400 401 402 403 404 405 406
	if (cpu_class_is_omap2()) {
		u32 l;

		l = dma_read(CCR(lch));
		l &= ~(0x03 << 12);
		l |= src_amode << 12;
		dma_write(l, CCR(lch));
407

408 409 410 411
		dma_write(src_start, CSSA(lch));
		dma_write(src_ei, CSEI(lch));
		dma_write(src_fi, CSFI(lch));
	}
412
}
413

414 415 416 417 418 419 420 421 422 423 424 425 426
void omap_set_dma_params(int lch, struct omap_dma_channel_params * params)
{
	omap_set_dma_transfer_params(lch, params->data_type,
				     params->elem_count, params->frame_count,
				     params->sync_mode, params->trigger,
				     params->src_or_dst_synch);
	omap_set_dma_src_params(lch, params->src_port,
				params->src_amode, params->src_start,
				params->src_ei, params->src_fi);

	omap_set_dma_dest_params(lch, params->dst_port,
				 params->dst_amode, params->dst_start,
				 params->dst_ei, params->dst_fi);
427 428 429
	if (params->read_prio || params->write_prio)
		omap_dma_set_prio_lch(lch, params->read_prio,
				      params->write_prio);
430 431 432 433
}

void omap_set_dma_src_index(int lch, int eidx, int fidx)
{
434
	if (cpu_class_is_omap2()) {
435 436 437
		REVISIT_24XX();
		return;
	}
438 439
	dma_write(eidx, CSEI(lch));
	dma_write(fidx, CSFI(lch));
440 441 442 443
}

void omap_set_dma_src_data_pack(int lch, int enable)
{
444 445 446 447
	u32 l;

	l = dma_read(CSDP(lch));
	l &= ~(1 << 6);
448
	if (enable)
449 450
		l |= (1 << 6);
	dma_write(l, CSDP(lch));
451 452 453 454
}

void omap_set_dma_src_burst_mode(int lch, enum omap_dma_burst_mode burst_mode)
{
455
	unsigned int burst = 0;
456 457 458 459
	u32 l;

	l = dma_read(CSDP(lch));
	l &= ~(0x03 << 7);
460 461 462 463 464

	switch (burst_mode) {
	case OMAP_DMA_DATA_BURST_DIS:
		break;
	case OMAP_DMA_DATA_BURST_4:
465
		if (cpu_class_is_omap2())
466 467 468
			burst = 0x1;
		else
			burst = 0x2;
469 470
		break;
	case OMAP_DMA_DATA_BURST_8:
471
		if (cpu_class_is_omap2()) {
472 473 474 475
			burst = 0x2;
			break;
		}
		/* not supported by current hardware on OMAP1
476 477 478
		 * w |= (0x03 << 7);
		 * fall through
		 */
479
	case OMAP_DMA_DATA_BURST_16:
480
		if (cpu_class_is_omap2()) {
481 482 483 484 485 486
			burst = 0x3;
			break;
		}
		/* OMAP1 don't support burst 16
		 * fall through
		 */
487 488 489
	default:
		BUG();
	}
490 491 492

	l |= (burst << 7);
	dma_write(l, CSDP(lch));
493 494
}

495
/* Note that dest_port is only for OMAP1 */
496
void omap_set_dma_dest_params(int lch, int dest_port, int dest_amode,
497 498
			      unsigned long dest_start,
			      int dst_ei, int dst_fi)
499
{
500 501
	u32 l;

502
	if (cpu_class_is_omap1()) {
503 504 505 506
		l = dma_read(CSDP(lch));
		l &= ~(0x1f << 9);
		l |= dest_port << 9;
		dma_write(l, CSDP(lch));
507
	}
508

509 510 511 512
	l = dma_read(CCR(lch));
	l &= ~(0x03 << 14);
	l |= dest_amode << 14;
	dma_write(l, CCR(lch));
513 514

	if (cpu_class_is_omap1()) {
515 516
		dma_write(dest_start >> 16, CDSA_U(lch));
		dma_write(dest_start, CDSA_L(lch));
517
	}
518

519
	if (cpu_class_is_omap2())
520
		dma_write(dest_start, CDSA(lch));
521

522 523
	dma_write(dst_ei, CDEI(lch));
	dma_write(dst_fi, CDFI(lch));
524 525 526 527
}

void omap_set_dma_dest_index(int lch, int eidx, int fidx)
{
528
	if (cpu_class_is_omap2()) {
529 530 531
		REVISIT_24XX();
		return;
	}
532 533
	dma_write(eidx, CDEI(lch));
	dma_write(fidx, CDFI(lch));
534 535 536 537
}

void omap_set_dma_dest_data_pack(int lch, int enable)
{
538 539 540 541
	u32 l;

	l = dma_read(CSDP(lch));
	l &= ~(1 << 13);
542
	if (enable)
543 544
		l |= 1 << 13;
	dma_write(l, CSDP(lch));
545 546 547 548
}

void omap_set_dma_dest_burst_mode(int lch, enum omap_dma_burst_mode burst_mode)
{
549
	unsigned int burst = 0;
550 551 552 553
	u32 l;

	l = dma_read(CSDP(lch));
	l &= ~(0x03 << 14);
554 555 556 557 558

	switch (burst_mode) {
	case OMAP_DMA_DATA_BURST_DIS:
		break;
	case OMAP_DMA_DATA_BURST_4:
559
		if (cpu_class_is_omap2())
560 561 562
			burst = 0x1;
		else
			burst = 0x2;
563 564
		break;
	case OMAP_DMA_DATA_BURST_8:
565
		if (cpu_class_is_omap2())
566 567 568
			burst = 0x2;
		else
			burst = 0x3;
569
		break;
570
	case OMAP_DMA_DATA_BURST_16:
571
		if (cpu_class_is_omap2()) {
572 573 574 575 576 577
			burst = 0x3;
			break;
		}
		/* OMAP1 don't support burst 16
		 * fall through
		 */
578 579 580 581 582
	default:
		printk(KERN_ERR "Invalid DMA burst mode\n");
		BUG();
		return;
	}
583 584
	l |= (burst << 14);
	dma_write(l, CSDP(lch));
585 586
}

587
static inline void omap_enable_channel_irq(int lch)
588
{
589
	u32 status;
590

591 592
	/* Clear CSR */
	if (cpu_class_is_omap1())
593
		status = dma_read(CSR(lch));
594
	else if (cpu_class_is_omap2())
595
		dma_write(OMAP2_DMA_CSR_CLEAR_MASK, CSR(lch));
596

597
	/* Enable some nice interrupts. */
598
	dma_write(dma_chan[lch].enabled_irqs, CICR(lch));
599 600
}

601
static void omap_disable_channel_irq(int lch)
602
{
603
	if (cpu_class_is_omap2())
604
		dma_write(0, CICR(lch));
605 606 607 608 609 610
}

void omap_enable_dma_irq(int lch, u16 bits)
{
	dma_chan[lch].enabled_irqs |= bits;
}
611

612 613 614 615 616 617 618
void omap_disable_dma_irq(int lch, u16 bits)
{
	dma_chan[lch].enabled_irqs &= ~bits;
}

static inline void enable_lnk(int lch)
{
619 620 621 622
	u32 l;

	l = dma_read(CLNK_CTRL(lch));

623
	if (cpu_class_is_omap1())
624
		l &= ~(1 << 14);
625

626
	/* Set the ENABLE_LNK bits */
627
	if (dma_chan[lch].next_lch != -1)
628
		l = dma_chan[lch].next_lch | (1 << 15);
629 630 631

#ifndef CONFIG_ARCH_OMAP1
	if (dma_chan[lch].next_linked_ch != -1)
632
		l = dma_chan[lch].next_linked_ch | (1 << 15);
633
#endif
634 635

	dma_write(l, CLNK_CTRL(lch));
636 637 638 639
}

static inline void disable_lnk(int lch)
{
640 641 642 643
	u32 l;

	l = dma_read(CLNK_CTRL(lch));

644
	/* Disable interrupts */
645
	if (cpu_class_is_omap1()) {
646
		dma_write(0, CICR(lch));
647
		/* Set the STOP_LNK bit */
648
		l |= 1 << 14;
649
	}
650

651
	if (cpu_class_is_omap2()) {
652 653
		omap_disable_channel_irq(lch);
		/* Clear the ENABLE_LNK bit */
654
		l &= ~(1 << 15);
655
	}
656

657
	dma_write(l, CLNK_CTRL(lch));
658 659 660
	dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE;
}

661
static inline void omap2_enable_irq_lch(int lch)
662
{
663 664
	u32 val;

665
	if (!cpu_class_is_omap2())
666 667
		return;

668
	val = dma_read(IRQENABLE_L0);
669
	val |= 1 << lch;
670
	dma_write(val, IRQENABLE_L0);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
}

int omap_request_dma(int dev_id, const char *dev_name,
		     void (* callback)(int lch, u16 ch_status, void *data),
		     void *data, int *dma_ch_out)
{
	int ch, free_ch = -1;
	unsigned long flags;
	struct omap_dma_lch *chan;

	spin_lock_irqsave(&dma_chan_lock, flags);
	for (ch = 0; ch < dma_chan_count; ch++) {
		if (free_ch == -1 && dma_chan[ch].dev_id == -1) {
			free_ch = ch;
			if (dev_id == 0)
				break;
		}
	}
	if (free_ch == -1) {
		spin_unlock_irqrestore(&dma_chan_lock, flags);
		return -EBUSY;
	}
	chan = dma_chan + free_ch;
	chan->dev_id = dev_id;

	if (cpu_class_is_omap1())
		clear_lch_regs(free_ch);
698

699
	if (cpu_class_is_omap2())
700 701 702 703 704 705 706
		omap_clear_dma(free_ch);

	spin_unlock_irqrestore(&dma_chan_lock, flags);

	chan->dev_name = dev_name;
	chan->callback = callback;
	chan->data = data;
707 708
#ifndef CONFIG_ARCH_OMAP1
	chan->chain_id = -1;
709
	chan->next_linked_ch = -1;
710
#endif
711
	chan->enabled_irqs = OMAP_DMA_DROP_IRQ | OMAP_DMA_BLOCK_IRQ;
712

713 714
	if (cpu_class_is_omap1())
		chan->enabled_irqs |= OMAP1_DMA_TOUT_IRQ;
715
	else if (cpu_class_is_omap2())
716 717
		chan->enabled_irqs |= OMAP2_DMA_MISALIGNED_ERR_IRQ |
			OMAP2_DMA_TRANS_ERR_IRQ;
718 719 720 721 722 723 724 725 726

	if (cpu_is_omap16xx()) {
		/* If the sync device is set, configure it dynamically. */
		if (dev_id != 0) {
			set_gdma_dev(free_ch + 1, dev_id);
			dev_id = free_ch + 1;
		}
		/* Disable the 1510 compatibility mode and set the sync device
		 * id. */
727
		dma_write(dev_id | (1 << 10), CCR(free_ch));
728
	} else if (cpu_is_omap730() || cpu_is_omap15xx()) {
729
		dma_write(dev_id, CCR(free_ch));
730 731
	}

732
	if (cpu_class_is_omap2()) {
733 734 735 736
		omap2_enable_irq_lch(free_ch);

		omap_enable_channel_irq(free_ch);
		/* Clear the CSR register and IRQ status register */
737 738
		dma_write(OMAP2_DMA_CSR_CLEAR_MASK, CSR(free_ch));
		dma_write(1 << free_ch, IRQSTATUS_L0);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	}

	*dma_ch_out = free_ch;

	return 0;
}

void omap_free_dma(int lch)
{
	unsigned long flags;

	spin_lock_irqsave(&dma_chan_lock, flags);
	if (dma_chan[lch].dev_id == -1) {
		printk("omap_dma: trying to free nonallocated DMA channel %d\n",
		       lch);
		spin_unlock_irqrestore(&dma_chan_lock, flags);
		return;
	}
	dma_chan[lch].dev_id = -1;
	dma_chan[lch].next_lch = -1;
	dma_chan[lch].callback = NULL;
	spin_unlock_irqrestore(&dma_chan_lock, flags);

	if (cpu_class_is_omap1()) {
		/* Disable all DMA interrupts for the channel. */
764
		dma_write(0, CICR(lch));
765
		/* Make sure the DMA transfer is stopped. */
766
		dma_write(0, CCR(lch));
767 768
	}

769
	if (cpu_class_is_omap2()) {
770 771
		u32 val;
		/* Disable interrupts */
772
		val = dma_read(IRQENABLE_L0);
773
		val &= ~(1 << lch);
774
		dma_write(val, IRQENABLE_L0);
775 776

		/* Clear the CSR register and IRQ status register */
777 778
		dma_write(OMAP2_DMA_CSR_CLEAR_MASK, CSR(lch));
		dma_write(1 << lch, IRQSTATUS_L0);
779 780

		/* Disable all DMA interrupts for the channel. */
781
		dma_write(0, CICR(lch));
782 783

		/* Make sure the DMA transfer is stopped. */
784
		dma_write(0, CCR(lch));
785 786 787 788
		omap_clear_dma(lch);
	}
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
/**
 * @brief omap_dma_set_global_params : Set global priority settings for dma
 *
 * @param arb_rate
 * @param max_fifo_depth
 * @param tparams - Number of thereads to reserve : DMA_THREAD_RESERVE_NORM
 * 						    DMA_THREAD_RESERVE_ONET
 * 						    DMA_THREAD_RESERVE_TWOT
 * 						    DMA_THREAD_RESERVE_THREET
 */
void
omap_dma_set_global_params(int arb_rate, int max_fifo_depth, int tparams)
{
	u32 reg;

	if (!cpu_class_is_omap2()) {
805
		printk(KERN_ERR "FIXME: no %s on 15xx/16xx\n", __func__);
806 807 808 809 810 811 812 813 814
		return;
	}

	if (arb_rate == 0)
		arb_rate = 1;

	reg = (arb_rate & 0xff) << 16;
	reg |= (0xff & max_fifo_depth);

815
	dma_write(reg, GCR);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
}
EXPORT_SYMBOL(omap_dma_set_global_params);

/**
 * @brief omap_dma_set_prio_lch : Set channel wise priority settings
 *
 * @param lch
 * @param read_prio - Read priority
 * @param write_prio - Write priority
 * Both of the above can be set with one of the following values :
 * 	DMA_CH_PRIO_HIGH/DMA_CH_PRIO_LOW
 */
int
omap_dma_set_prio_lch(int lch, unsigned char read_prio,
		      unsigned char write_prio)
{
832
	u32 l;
833

834
	if (unlikely((lch < 0 || lch >= dma_lch_count))) {
835 836 837
		printk(KERN_ERR "Invalid channel id\n");
		return -EINVAL;
	}
838 839
	l = dma_read(CCR(lch));
	l &= ~((1 << 6) | (1 << 26));
840
	if (cpu_is_omap2430() || cpu_is_omap34xx())
841
		l |= ((read_prio & 0x1) << 6) | ((write_prio & 0x1) << 26);
842
	else
843 844 845
		l |= ((read_prio & 0x1) << 6);

	dma_write(l, CCR(lch));
846 847 848 849 850

	return 0;
}
EXPORT_SYMBOL(omap_dma_set_prio_lch);

851 852 853 854 855 856 857 858 859 860 861
/*
 * Clears any DMA state so the DMA engine is ready to restart with new buffers
 * through omap_start_dma(). Any buffers in flight are discarded.
 */
void omap_clear_dma(int lch)
{
	unsigned long flags;

	local_irq_save(flags);

	if (cpu_class_is_omap1()) {
862 863 864 865 866
		u32 l;

		l = dma_read(CCR(lch));
		l &= ~OMAP_DMA_CCR_EN;
		dma_write(l, CCR(lch));
867 868

		/* Clear pending interrupts */
869
		l = dma_read(CSR(lch));
870 871
	}

872
	if (cpu_class_is_omap2()) {
873
		int i;
874
		void __iomem *lch_base = omap_dma_base + OMAP_DMA4_CH_BASE(lch);
875
		for (i = 0; i < 0x44; i += 4)
876
			__raw_writel(0, lch_base + i);
877 878 879 880 881 882 883
	}

	local_irq_restore(flags);
}

void omap_start_dma(int lch)
{
884 885
	u32 l;

886 887
	if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) {
		int next_lch, cur_lch;
888
		char dma_chan_link_map[OMAP_DMA4_LOGICAL_DMA_CH_COUNT];
889 890 891 892 893 894 895 896 897 898

		dma_chan_link_map[lch] = 1;
		/* Set the link register of the first channel */
		enable_lnk(lch);

		memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map));
		cur_lch = dma_chan[lch].next_lch;
		do {
			next_lch = dma_chan[cur_lch].next_lch;

899
			/* The loop case: we've been here already */
900 901 902 903 904 905
			if (dma_chan_link_map[cur_lch])
				break;
			/* Mark the current channel */
			dma_chan_link_map[cur_lch] = 1;

			enable_lnk(cur_lch);
906
			omap_enable_channel_irq(cur_lch);
907 908 909

			cur_lch = next_lch;
		} while (next_lch != -1);
910
	} else if (cpu_class_is_omap2()) {
911
		/* Errata: Need to write lch even if not using chaining */
912
		dma_write(lch, CLNK_CTRL(lch));
913 914
	}

915 916
	omap_enable_channel_irq(lch);

917 918
	l = dma_read(CCR(lch));

919 920
	/* Errata: On ES2.0 BUFFERING disable must be set.
	 * This will always fail on ES1.0 */
921 922
	if (cpu_is_omap24xx())
		l |= OMAP_DMA_CCR_EN;
923

924 925
	l |= OMAP_DMA_CCR_EN;
	dma_write(l, CCR(lch));
926 927 928 929 930 931

	dma_chan[lch].flags |= OMAP_DMA_ACTIVE;
}

void omap_stop_dma(int lch)
{
932 933
	u32 l;

934 935
	if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) {
		int next_lch, cur_lch = lch;
936
		char dma_chan_link_map[OMAP_DMA4_LOGICAL_DMA_CH_COUNT];
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953

		memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map));
		do {
			/* The loop case: we've been here already */
			if (dma_chan_link_map[cur_lch])
				break;
			/* Mark the current channel */
			dma_chan_link_map[cur_lch] = 1;

			disable_lnk(cur_lch);

			next_lch = dma_chan[cur_lch].next_lch;
			cur_lch = next_lch;
		} while (next_lch != -1);

		return;
	}
954

955
	/* Disable all interrupts on the channel */
956
	if (cpu_class_is_omap1())
957 958 959 960 961
		dma_write(0, CICR(lch));

	l = dma_read(CCR(lch));
	l &= ~OMAP_DMA_CCR_EN;
	dma_write(l, CCR(lch));
962 963 964 965

	dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE;
}

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
/*
 * Allows changing the DMA callback function or data. This may be needed if
 * the driver shares a single DMA channel for multiple dma triggers.
 */
int omap_set_dma_callback(int lch,
			  void (* callback)(int lch, u16 ch_status, void *data),
			  void *data)
{
	unsigned long flags;

	if (lch < 0)
		return -ENODEV;

	spin_lock_irqsave(&dma_chan_lock, flags);
	if (dma_chan[lch].dev_id == -1) {
		printk(KERN_ERR "DMA callback for not set for free channel\n");
		spin_unlock_irqrestore(&dma_chan_lock, flags);
		return -EINVAL;
	}
	dma_chan[lch].callback = callback;
	dma_chan[lch].data = data;
	spin_unlock_irqrestore(&dma_chan_lock, flags);

	return 0;
}

992 993 994 995 996 997 998 999 1000
/*
 * Returns current physical source address for the given DMA channel.
 * If the channel is running the caller must disable interrupts prior calling
 * this function and process the returned value before re-enabling interrupt to
 * prevent races with the interrupt handler. Note that in continuous mode there
 * is a chance for CSSA_L register overflow inbetween the two reads resulting
 * in incorrect return value.
 */
dma_addr_t omap_get_dma_src_pos(int lch)
1001
{
T
Tony Lindgren 已提交
1002
	dma_addr_t offset = 0;
1003

1004 1005 1006 1007
	if (cpu_is_omap15xx())
		offset = dma_read(CPC(lch));
	else
		offset = dma_read(CSAC(lch));
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * omap 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
	 * read before the DMA controller finished disabling the channel.
	 */
	if (!cpu_is_omap15xx() && offset == 0)
		offset = dma_read(CSAC(lch));

	if (cpu_class_is_omap1())
		offset |= (dma_read(CSSA_U(lch)) << 16);
1018

1019
	return offset;
1020 1021
}

1022 1023 1024 1025 1026 1027 1028 1029 1030
/*
 * Returns current physical destination address for the given DMA channel.
 * If the channel is running the caller must disable interrupts prior calling
 * this function and process the returned value before re-enabling interrupt to
 * prevent races with the interrupt handler. Note that in continuous mode there
 * is a chance for CDSA_L register overflow inbetween the two reads resulting
 * in incorrect return value.
 */
dma_addr_t omap_get_dma_dst_pos(int lch)
1031
{
T
Tony Lindgren 已提交
1032
	dma_addr_t offset = 0;
1033

1034 1035 1036 1037
	if (cpu_is_omap15xx())
		offset = dma_read(CPC(lch));
	else
		offset = dma_read(CDAC(lch));
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047
	/*
	 * omap 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
	 * read before the DMA controller finished disabling the channel.
	 */
	if (!cpu_is_omap15xx() && offset == 0)
		offset = dma_read(CDAC(lch));

	if (cpu_class_is_omap1())
		offset |= (dma_read(CDSA_U(lch)) << 16);
1048

1049
	return offset;
1050 1051
}

1052 1053 1054 1055 1056 1057
/*
 * Returns current source transfer counting for the given DMA channel.
 * Can be used to monitor the progress of a transfer inside a block.
 * It must be called with disabled interrupts.
 */
int omap_get_dma_src_addr_counter(int lch)
1058
{
1059 1060 1061 1062 1063 1064
	return (dma_addr_t)dma_read(CSAC(lch));
}

int omap_get_dma_active_status(int lch)
{
	return (dma_read(CCR(lch)) & OMAP_DMA_CCR_EN) != 0;
1065
}
1066
EXPORT_SYMBOL(omap_get_dma_active_status);
1067

1068
int omap_dma_running(void)
1069
{
1070
	int lch;
1071

1072 1073 1074 1075
	/* Check if LCD DMA is running */
	if (cpu_is_omap16xx())
		if (omap_readw(OMAP1610_DMA_LCD_CCR) & OMAP_DMA_CCR_EN)
			return 1;
1076

1077
	for (lch = 0; lch < dma_chan_count; lch++)
1078
		if (dma_read(CCR(lch)) & OMAP_DMA_CCR_EN)
1079
			return 1;
1080

1081
	return 0;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
}

/*
 * lch_queue DMA will start right after lch_head one is finished.
 * For this DMA link to start, you still need to start (see omap_start_dma)
 * the first one. That will fire up the entire queue.
 */
void omap_dma_link_lch (int lch_head, int lch_queue)
{
	if (omap_dma_in_1510_mode()) {
		printk(KERN_ERR "DMA linking is not supported in 1510 mode\n");
		BUG();
		return;
	}

	if ((dma_chan[lch_head].dev_id == -1) ||
	    (dma_chan[lch_queue].dev_id == -1)) {
1099 1100
		printk(KERN_ERR "omap_dma: trying to link "
		       "non requested channels\n");
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		dump_stack();
	}

	dma_chan[lch_head].next_lch = lch_queue;
}

/*
 * Once the DMA queue is stopped, we can destroy it.
 */
void omap_dma_unlink_lch (int lch_head, int lch_queue)
{
	if (omap_dma_in_1510_mode()) {
		printk(KERN_ERR "DMA linking is not supported in 1510 mode\n");
		BUG();
		return;
	}

	if (dma_chan[lch_head].next_lch != lch_queue ||
	    dma_chan[lch_head].next_lch == -1) {
1120 1121
		printk(KERN_ERR "omap_dma: trying to unlink "
		       "non linked channels\n");
1122 1123 1124 1125 1126 1127
		dump_stack();
	}


	if ((dma_chan[lch_head].flags & OMAP_DMA_ACTIVE) ||
	    (dma_chan[lch_head].flags & OMAP_DMA_ACTIVE)) {
1128 1129
		printk(KERN_ERR "omap_dma: You need to stop the DMA channels "
		       "before unlinking\n");
1130 1131 1132 1133 1134 1135
		dump_stack();
	}

	dma_chan[lch_head].next_lch = -1;
}

1136 1137 1138 1139
#ifndef CONFIG_ARCH_OMAP1
/* Create chain of DMA channesls */
static void create_dma_lch_chain(int lch_head, int lch_queue)
{
1140
	u32 l;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	/* Check if this is the first link in chain */
	if (dma_chan[lch_head].next_linked_ch == -1) {
		dma_chan[lch_head].next_linked_ch = lch_queue;
		dma_chan[lch_head].prev_linked_ch = lch_queue;
		dma_chan[lch_queue].next_linked_ch = lch_head;
		dma_chan[lch_queue].prev_linked_ch = lch_head;
	}

	/* a link exists, link the new channel in circular chain */
	else {
		dma_chan[lch_queue].next_linked_ch =
					dma_chan[lch_head].next_linked_ch;
		dma_chan[lch_queue].prev_linked_ch = lch_head;
		dma_chan[lch_head].next_linked_ch = lch_queue;
		dma_chan[dma_chan[lch_queue].next_linked_ch].prev_linked_ch =
					lch_queue;
	}

1160 1161 1162 1163
	l = dma_read(CLNK_CTRL(lch_head));
	l &= ~(0x1f);
	l |= lch_queue;
	dma_write(l, CLNK_CTRL(lch_head));
1164

1165 1166 1167 1168
	l = dma_read(CLNK_CTRL(lch_queue));
	l &= ~(0x1f);
	l |= (dma_chan[lch_queue].next_linked_ch);
	dma_write(l, CLNK_CTRL(lch_queue));
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
}

/**
 * @brief omap_request_dma_chain : Request a chain of DMA channels
 *
 * @param dev_id - Device id using the dma channel
 * @param dev_name - Device name
 * @param callback - Call back function
 * @chain_id -
 * @no_of_chans - Number of channels requested
 * @chain_mode - Dynamic or static chaining : OMAP_DMA_STATIC_CHAIN
 * 					      OMAP_DMA_DYNAMIC_CHAIN
 * @params - Channel parameters
 *
 * @return - Succes : 0
 * 	     Failure: -EINVAL/-ENOMEM
 */
int omap_request_dma_chain(int dev_id, const char *dev_name,
			   void (*callback) (int chain_id, u16 ch_status,
					     void *data),
			   int *chain_id, int no_of_chans, int chain_mode,
			   struct omap_dma_channel_params params)
{
	int *channels;
	int i, err;

	/* Is the chain mode valid ? */
	if (chain_mode != OMAP_DMA_STATIC_CHAIN
			&& chain_mode != OMAP_DMA_DYNAMIC_CHAIN) {
		printk(KERN_ERR "Invalid chain mode requested\n");
		return -EINVAL;
	}

	if (unlikely((no_of_chans < 1
1203
			|| no_of_chans > dma_lch_count))) {
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		printk(KERN_ERR "Invalid Number of channels requested\n");
		return -EINVAL;
	}

	/* Allocate a queue to maintain the status of the channels
	 * in the chain */
	channels = kmalloc(sizeof(*channels) * no_of_chans, GFP_KERNEL);
	if (channels == NULL) {
		printk(KERN_ERR "omap_dma: No memory for channel queue\n");
		return -ENOMEM;
	}

	/* request and reserve DMA channels for the chain */
	for (i = 0; i < no_of_chans; i++) {
		err = omap_request_dma(dev_id, dev_name,
					callback, 0, &channels[i]);
		if (err < 0) {
			int j;
			for (j = 0; j < i; j++)
				omap_free_dma(channels[j]);
			kfree(channels);
			printk(KERN_ERR "omap_dma: Request failed %d\n", err);
			return err;
		}
		dma_chan[channels[i]].prev_linked_ch = -1;
		dma_chan[channels[i]].state = DMA_CH_NOTSTARTED;

		/*
		 * Allowing client drivers to set common parameters now,
		 * so that later only relevant (src_start, dest_start
		 * and element count) can be set
		 */
		omap_set_dma_params(channels[i], &params);
	}

	*chain_id = channels[0];
	dma_linked_lch[*chain_id].linked_dmach_q = channels;
	dma_linked_lch[*chain_id].chain_mode = chain_mode;
	dma_linked_lch[*chain_id].chain_state = DMA_CHAIN_NOTSTARTED;
	dma_linked_lch[*chain_id].no_of_lchs_linked = no_of_chans;

	for (i = 0; i < no_of_chans; i++)
		dma_chan[channels[i]].chain_id = *chain_id;

	/* Reset the Queue pointers */
	OMAP_DMA_CHAIN_QINIT(*chain_id);

	/* Set up the chain */
	if (no_of_chans == 1)
		create_dma_lch_chain(channels[0], channels[0]);
	else {
		for (i = 0; i < (no_of_chans - 1); i++)
			create_dma_lch_chain(channels[i], channels[i + 1]);
	}
	return 0;
}
EXPORT_SYMBOL(omap_request_dma_chain);

/**
 * @brief omap_modify_dma_chain_param : Modify the chain's params - Modify the
 * params after setting it. Dont do this while dma is running!!
 *
 * @param chain_id - Chained logical channel id.
 * @param params
 *
 * @return - Success : 0
 * 	     Failure : -EINVAL
 */
int omap_modify_dma_chain_params(int chain_id,
				struct omap_dma_channel_params params)
{
	int *channels;
	u32 i;

	/* Check for input params */
	if (unlikely((chain_id < 0
1280
			|| chain_id >= dma_lch_count))) {
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		printk(KERN_ERR "Invalid chain id\n");
		return -EINVAL;
	}

	/* Check if the chain exists */
	if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
		printk(KERN_ERR "Chain doesn't exists\n");
		return -EINVAL;
	}
	channels = dma_linked_lch[chain_id].linked_dmach_q;

	for (i = 0; i < dma_linked_lch[chain_id].no_of_lchs_linked; i++) {
		/*
		 * Allowing client drivers to set common parameters now,
		 * so that later only relevant (src_start, dest_start
		 * and element count) can be set
		 */
		omap_set_dma_params(channels[i], &params);
	}
	return 0;
}
EXPORT_SYMBOL(omap_modify_dma_chain_params);

/**
 * @brief omap_free_dma_chain - Free all the logical channels in a chain.
 *
 * @param chain_id
 *
 * @return - Success : 0
 * 	     Failure : -EINVAL
 */
int omap_free_dma_chain(int chain_id)
{
	int *channels;
	u32 i;

	/* Check for input params */
1318
	if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		printk(KERN_ERR "Invalid chain id\n");
		return -EINVAL;
	}

	/* Check if the chain exists */
	if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
		printk(KERN_ERR "Chain doesn't exists\n");
		return -EINVAL;
	}

	channels = dma_linked_lch[chain_id].linked_dmach_q;
	for (i = 0; i < dma_linked_lch[chain_id].no_of_lchs_linked; i++) {
		dma_chan[channels[i]].next_linked_ch = -1;
		dma_chan[channels[i]].prev_linked_ch = -1;
		dma_chan[channels[i]].chain_id = -1;
		dma_chan[channels[i]].state = DMA_CH_NOTSTARTED;
		omap_free_dma(channels[i]);
	}

	kfree(channels);

	dma_linked_lch[chain_id].linked_dmach_q = NULL;
	dma_linked_lch[chain_id].chain_mode = -1;
	dma_linked_lch[chain_id].chain_state = -1;
	return (0);
}
EXPORT_SYMBOL(omap_free_dma_chain);

/**
 * @brief omap_dma_chain_status - Check if the chain is in
 * active / inactive state.
 * @param chain_id
 *
 * @return - Success : OMAP_DMA_CHAIN_ACTIVE/OMAP_DMA_CHAIN_INACTIVE
 * 	     Failure : -EINVAL
 */
int omap_dma_chain_status(int chain_id)
{
	/* Check for input params */
1358
	if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		printk(KERN_ERR "Invalid chain id\n");
		return -EINVAL;
	}

	/* Check if the chain exists */
	if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
		printk(KERN_ERR "Chain doesn't exists\n");
		return -EINVAL;
	}
	pr_debug("CHAINID=%d, qcnt=%d\n", chain_id,
			dma_linked_lch[chain_id].q_count);

	if (OMAP_DMA_CHAIN_QEMPTY(chain_id))
		return OMAP_DMA_CHAIN_INACTIVE;
	return OMAP_DMA_CHAIN_ACTIVE;
}
EXPORT_SYMBOL(omap_dma_chain_status);

/**
 * @brief omap_dma_chain_a_transfer - Get a free channel from a chain,
 * set the params and start the transfer.
 *
 * @param chain_id
 * @param src_start - buffer start address
 * @param dest_start - Dest address
 * @param elem_count
 * @param frame_count
 * @param callbk_data - channel callback parameter data.
 *
1388
 * @return  - Success : 0
1389 1390 1391 1392 1393 1394
 * 	      Failure: -EINVAL/-EBUSY
 */
int omap_dma_chain_a_transfer(int chain_id, int src_start, int dest_start,
			int elem_count, int frame_count, void *callbk_data)
{
	int *channels;
1395
	u32 l, lch;
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	int start_dma = 0;

	/* if buffer size is less than 1 then there is
	 * no use of starting the chain */
	if (elem_count < 1) {
		printk(KERN_ERR "Invalid buffer size\n");
		return -EINVAL;
	}

	/* Check for input params */
	if (unlikely((chain_id < 0
1407
			|| chain_id >= dma_lch_count))) {
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
		printk(KERN_ERR "Invalid chain id\n");
		return -EINVAL;
	}

	/* Check if the chain exists */
	if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
		printk(KERN_ERR "Chain doesn't exist\n");
		return -EINVAL;
	}

	/* Check if all the channels in chain are in use */
	if (OMAP_DMA_CHAIN_QFULL(chain_id))
		return -EBUSY;

	/* Frame count may be negative in case of indexed transfers */
	channels = dma_linked_lch[chain_id].linked_dmach_q;

	/* Get a free channel */
	lch = channels[dma_linked_lch[chain_id].q_tail];

	/* Store the callback data */
	dma_chan[lch].data = callbk_data;

	/* Increment the q_tail */
	OMAP_DMA_CHAIN_INCQTAIL(chain_id);

	/* Set the params to the free channel */
	if (src_start != 0)
1436
		dma_write(src_start, CSSA(lch));
1437
	if (dest_start != 0)
1438
		dma_write(dest_start, CDSA(lch));
1439 1440

	/* Write the buffer size */
1441 1442
	dma_write(elem_count, CEN(lch));
	dma_write(frame_count, CFN(lch));
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

	/* If the chain is dynamically linked,
	 * then we may have to start the chain if its not active */
	if (dma_linked_lch[chain_id].chain_mode == OMAP_DMA_DYNAMIC_CHAIN) {

		/* In Dynamic chain, if the chain is not started,
		 * queue the channel */
		if (dma_linked_lch[chain_id].chain_state ==
						DMA_CHAIN_NOTSTARTED) {
			/* Enable the link in previous channel */
			if (dma_chan[dma_chan[lch].prev_linked_ch].state ==
								DMA_CH_QUEUED)
				enable_lnk(dma_chan[lch].prev_linked_ch);
			dma_chan[lch].state = DMA_CH_QUEUED;
		}

		/* Chain is already started, make sure its active,
		 * if not then start the chain */
		else {
			start_dma = 1;

			if (dma_chan[dma_chan[lch].prev_linked_ch].state ==
							DMA_CH_STARTED) {
				enable_lnk(dma_chan[lch].prev_linked_ch);
				dma_chan[lch].state = DMA_CH_QUEUED;
				start_dma = 0;
1469 1470
				if (0 == ((1 << 7) & dma_read(
					CCR(dma_chan[lch].prev_linked_ch)))) {
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
					disable_lnk(dma_chan[lch].
						    prev_linked_ch);
					pr_debug("\n prev ch is stopped\n");
					start_dma = 1;
				}
			}

			else if (dma_chan[dma_chan[lch].prev_linked_ch].state
							== DMA_CH_QUEUED) {
				enable_lnk(dma_chan[lch].prev_linked_ch);
				dma_chan[lch].state = DMA_CH_QUEUED;
				start_dma = 0;
			}
			omap_enable_channel_irq(lch);

1486
			l = dma_read(CCR(lch));
1487

1488 1489
			if ((0 == (l & (1 << 24))))
				l &= ~(1 << 25);
1490
			else
1491
				l |= (1 << 25);
1492
			if (start_dma == 1) {
1493 1494
				if (0 == (l & (1 << 7))) {
					l |= (1 << 7);
1495 1496
					dma_chan[lch].state = DMA_CH_STARTED;
					pr_debug("starting %d\n", lch);
1497
					dma_write(l, CCR(lch));
1498 1499 1500
				} else
					start_dma = 0;
			} else {
1501 1502
				if (0 == (l & (1 << 7)))
					dma_write(l, CCR(lch));
1503 1504 1505 1506
			}
			dma_chan[lch].flags |= OMAP_DMA_ACTIVE;
		}
	}
1507
	return 0;
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
}
EXPORT_SYMBOL(omap_dma_chain_a_transfer);

/**
 * @brief omap_start_dma_chain_transfers - Start the chain
 *
 * @param chain_id
 *
 * @return - Success : 0
 * 	     Failure : -EINVAL/-EBUSY
 */
int omap_start_dma_chain_transfers(int chain_id)
{
	int *channels;
1522
	u32 l, i;
1523

1524
	if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
		printk(KERN_ERR "Invalid chain id\n");
		return -EINVAL;
	}

	channels = dma_linked_lch[chain_id].linked_dmach_q;

	if (dma_linked_lch[channels[0]].chain_state == DMA_CHAIN_STARTED) {
		printk(KERN_ERR "Chain is already started\n");
		return -EBUSY;
	}

	if (dma_linked_lch[chain_id].chain_mode == OMAP_DMA_STATIC_CHAIN) {
		for (i = 0; i < dma_linked_lch[chain_id].no_of_lchs_linked;
									i++) {
			enable_lnk(channels[i]);
			omap_enable_channel_irq(channels[i]);
		}
	} else {
		omap_enable_channel_irq(channels[0]);
	}

1546 1547
	l = dma_read(CCR(channels[0]));
	l |= (1 << 7);
1548 1549 1550
	dma_linked_lch[chain_id].chain_state = DMA_CHAIN_STARTED;
	dma_chan[channels[0]].state = DMA_CH_STARTED;

1551 1552
	if ((0 == (l & (1 << 24))))
		l &= ~(1 << 25);
1553
	else
1554 1555
		l |= (1 << 25);
	dma_write(l, CCR(channels[0]));
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

	dma_chan[channels[0]].flags |= OMAP_DMA_ACTIVE;
	return 0;
}
EXPORT_SYMBOL(omap_start_dma_chain_transfers);

/**
 * @brief omap_stop_dma_chain_transfers - Stop the dma transfer of a chain.
 *
 * @param chain_id
 *
 * @return - Success : 0
 * 	     Failure : EINVAL
 */
int omap_stop_dma_chain_transfers(int chain_id)
{
	int *channels;
1573
	u32 l, i;
1574 1575 1576
	u32 sys_cf;

	/* Check for input params */
1577
	if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
		printk(KERN_ERR "Invalid chain id\n");
		return -EINVAL;
	}

	/* Check if the chain exists */
	if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
		printk(KERN_ERR "Chain doesn't exists\n");
		return -EINVAL;
	}
	channels = dma_linked_lch[chain_id].linked_dmach_q;

	/* DMA Errata:
	 * Special programming model needed to disable DMA before end of block
	 */
1592 1593
	sys_cf = dma_read(OCP_SYSCONFIG);
	l = sys_cf;
1594
	/* Middle mode reg set no Standby */
1595 1596
	l &= ~((1 << 12)|(1 << 13));
	dma_write(l, OCP_SYSCONFIG);
1597 1598 1599 1600

	for (i = 0; i < dma_linked_lch[chain_id].no_of_lchs_linked; i++) {

		/* Stop the Channel transmission */
1601 1602 1603
		l = dma_read(CCR(channels[i]));
		l &= ~(1 << 7);
		dma_write(l, CCR(channels[i]));
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

		/* Disable the link in all the channels */
		disable_lnk(channels[i]);
		dma_chan[channels[i]].state = DMA_CH_NOTSTARTED;

	}
	dma_linked_lch[chain_id].chain_state = DMA_CHAIN_NOTSTARTED;

	/* Reset the Queue pointers */
	OMAP_DMA_CHAIN_QINIT(chain_id);

	/* Errata - put in the old value */
1616
	dma_write(sys_cf, OCP_SYSCONFIG);
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	return 0;
}
EXPORT_SYMBOL(omap_stop_dma_chain_transfers);

/* Get the index of the ongoing DMA in chain */
/**
 * @brief omap_get_dma_chain_index - Get the element and frame index
 * of the ongoing DMA in chain
 *
 * @param chain_id
 * @param ei - Element index
 * @param fi - Frame index
 *
 * @return - Success : 0
 * 	     Failure : -EINVAL
 */
int omap_get_dma_chain_index(int chain_id, int *ei, int *fi)
{
	int lch;
	int *channels;

	/* Check for input params */
1639
	if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
		printk(KERN_ERR "Invalid chain id\n");
		return -EINVAL;
	}

	/* Check if the chain exists */
	if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
		printk(KERN_ERR "Chain doesn't exists\n");
		return -EINVAL;
	}
	if ((!ei) || (!fi))
		return -EINVAL;

	channels = dma_linked_lch[chain_id].linked_dmach_q;

	/* Get the current channel */
	lch = channels[dma_linked_lch[chain_id].q_head];

1657 1658
	*ei = dma_read(CCEN(lch));
	*fi = dma_read(CCFN(lch));
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

	return 0;
}
EXPORT_SYMBOL(omap_get_dma_chain_index);

/**
 * @brief omap_get_dma_chain_dst_pos - Get the destination position of the
 * ongoing DMA in chain
 *
 * @param chain_id
 *
 * @return - Success : Destination position
 * 	     Failure : -EINVAL
 */
int omap_get_dma_chain_dst_pos(int chain_id)
{
	int lch;
	int *channels;

	/* Check for input params */
1679
	if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		printk(KERN_ERR "Invalid chain id\n");
		return -EINVAL;
	}

	/* Check if the chain exists */
	if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
		printk(KERN_ERR "Chain doesn't exists\n");
		return -EINVAL;
	}

	channels = dma_linked_lch[chain_id].linked_dmach_q;

	/* Get the current channel */
	lch = channels[dma_linked_lch[chain_id].q_head];

1695
	return dma_read(CDAC(lch));
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
}
EXPORT_SYMBOL(omap_get_dma_chain_dst_pos);

/**
 * @brief omap_get_dma_chain_src_pos - Get the source position
 * of the ongoing DMA in chain
 * @param chain_id
 *
 * @return - Success : Destination position
 * 	     Failure : -EINVAL
 */
int omap_get_dma_chain_src_pos(int chain_id)
{
	int lch;
	int *channels;

	/* Check for input params */
1713
	if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		printk(KERN_ERR "Invalid chain id\n");
		return -EINVAL;
	}

	/* Check if the chain exists */
	if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
		printk(KERN_ERR "Chain doesn't exists\n");
		return -EINVAL;
	}

	channels = dma_linked_lch[chain_id].linked_dmach_q;

	/* Get the current channel */
	lch = channels[dma_linked_lch[chain_id].q_head];

1729
	return dma_read(CSAC(lch));
1730 1731 1732 1733
}
EXPORT_SYMBOL(omap_get_dma_chain_src_pos);
#endif

1734 1735 1736 1737 1738 1739
/*----------------------------------------------------------------------------*/

#ifdef CONFIG_ARCH_OMAP1

static int omap1_dma_handle_ch(int ch)
{
1740
	u32 csr;
1741 1742 1743 1744 1745

	if (enable_1510_mode && ch >= 6) {
		csr = dma_chan[ch].saved_csr;
		dma_chan[ch].saved_csr = 0;
	} else
1746
		csr = dma_read(CSR(ch));
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	if (enable_1510_mode && ch <= 2 && (csr >> 7) != 0) {
		dma_chan[ch + 6].saved_csr = csr >> 7;
		csr &= 0x7f;
	}
	if ((csr & 0x3f) == 0)
		return 0;
	if (unlikely(dma_chan[ch].dev_id == -1)) {
		printk(KERN_WARNING "Spurious interrupt from DMA channel "
		       "%d (CSR %04x)\n", ch, csr);
		return 0;
	}
1758
	if (unlikely(csr & OMAP1_DMA_TOUT_IRQ))
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
		printk(KERN_WARNING "DMA timeout with device %d\n",
		       dma_chan[ch].dev_id);
	if (unlikely(csr & OMAP_DMA_DROP_IRQ))
		printk(KERN_WARNING "DMA synchronization event drop occurred "
		       "with device %d\n", dma_chan[ch].dev_id);
	if (likely(csr & OMAP_DMA_BLOCK_IRQ))
		dma_chan[ch].flags &= ~OMAP_DMA_ACTIVE;
	if (likely(dma_chan[ch].callback != NULL))
		dma_chan[ch].callback(ch, csr, dma_chan[ch].data);
	return 1;
}

1771
static irqreturn_t omap1_dma_irq_handler(int irq, void *dev_id)
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
{
	int ch = ((int) dev_id) - 1;
	int handled = 0;

	for (;;) {
		int handled_now = 0;

		handled_now += omap1_dma_handle_ch(ch);
		if (enable_1510_mode && dma_chan[ch + 6].saved_csr)
			handled_now += omap1_dma_handle_ch(ch + 6);
		if (!handled_now)
			break;
		handled += handled_now;
	}

	return handled ? IRQ_HANDLED : IRQ_NONE;
}

#else
#define omap1_dma_irq_handler	NULL
#endif

1794
#if defined(CONFIG_ARCH_OMAP2) || defined(CONFIG_ARCH_OMAP3)
1795 1796 1797

static int omap2_dma_handle_ch(int ch)
{
1798
	u32 status = dma_read(CSR(ch));
1799

1800 1801 1802
	if (!status) {
		if (printk_ratelimit())
			printk(KERN_WARNING "Spurious DMA IRQ for lch %d\n", ch);
1803
		dma_write(1 << ch, IRQSTATUS_L0);
1804
		return 0;
1805 1806 1807 1808 1809
	}
	if (unlikely(dma_chan[ch].dev_id == -1)) {
		if (printk_ratelimit())
			printk(KERN_WARNING "IRQ %04x for non-allocated DMA"
					"channel %d\n", status, ch);
1810
		return 0;
1811
	}
1812 1813 1814 1815 1816 1817 1818
	if (unlikely(status & OMAP_DMA_DROP_IRQ))
		printk(KERN_INFO
		       "DMA synchronization event drop occurred with device "
		       "%d\n", dma_chan[ch].dev_id);
	if (unlikely(status & OMAP2_DMA_TRANS_ERR_IRQ))
		printk(KERN_INFO "DMA transaction error with device %d\n",
		       dma_chan[ch].dev_id);
1819 1820 1821 1822 1823 1824
	if (unlikely(status & OMAP2_DMA_SECURE_ERR_IRQ))
		printk(KERN_INFO "DMA secure error with device %d\n",
		       dma_chan[ch].dev_id);
	if (unlikely(status & OMAP2_DMA_MISALIGNED_ERR_IRQ))
		printk(KERN_INFO "DMA misaligned error with device %d\n",
		       dma_chan[ch].dev_id);
1825

1826 1827
	dma_write(OMAP2_DMA_CSR_CLEAR_MASK, CSR(ch));
	dma_write(1 << ch, IRQSTATUS_L0);
1828

1829 1830 1831 1832
	/* If the ch is not chained then chain_id will be -1 */
	if (dma_chan[ch].chain_id != -1) {
		int chain_id = dma_chan[ch].chain_id;
		dma_chan[ch].state = DMA_CH_NOTSTARTED;
1833
		if (dma_read(CLNK_CTRL(ch)) & (1 << 15))
1834 1835 1836 1837 1838 1839 1840 1841 1842
			dma_chan[dma_chan[ch].next_linked_ch].state =
							DMA_CH_STARTED;
		if (dma_linked_lch[chain_id].chain_mode ==
						OMAP_DMA_DYNAMIC_CHAIN)
			disable_lnk(ch);

		if (!OMAP_DMA_CHAIN_QEMPTY(chain_id))
			OMAP_DMA_CHAIN_INCQHEAD(chain_id);

1843
		status = dma_read(CSR(ch));
1844 1845
	}

1846 1847
	if (likely(dma_chan[ch].callback != NULL))
		dma_chan[ch].callback(ch, status, dma_chan[ch].data);
1848

1849
	dma_write(status, CSR(ch));
1850 1851 1852 1853 1854

	return 0;
}

/* STATUS register count is from 1-32 while our is 0-31 */
1855
static irqreturn_t omap2_dma_irq_handler(int irq, void *dev_id)
1856 1857 1858 1859
{
	u32 val;
	int i;

1860
	val = dma_read(IRQSTATUS_L0);
1861 1862 1863 1864 1865
	if (val == 0) {
		if (printk_ratelimit())
			printk(KERN_WARNING "Spurious DMA IRQ\n");
		return IRQ_HANDLED;
	}
1866
	for (i = 0; i < dma_lch_count && val != 0; i++) {
1867 1868 1869
		if (val & 1)
			omap2_dma_handle_ch(i);
		val >>= 1;
1870 1871 1872 1873 1874 1875 1876 1877
	}

	return IRQ_HANDLED;
}

static struct irqaction omap24xx_dma_irq = {
	.name = "DMA",
	.handler = omap2_dma_irq_handler,
1878
	.flags = IRQF_DISABLED
1879 1880 1881 1882 1883 1884 1885
};

#else
static struct irqaction omap24xx_dma_irq;
#endif

/*----------------------------------------------------------------------------*/
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

static struct lcd_dma_info {
	spinlock_t lock;
	int reserved;
	void (* callback)(u16 status, void *data);
	void *cb_data;

	int active;
	unsigned long addr, size;
	int rotate, data_type, xres, yres;
	int vxres;
	int mirror;
	int xscale, yscale;
	int ext_ctrl;
	int src_port;
	int single_transfer;
} lcd_dma;

void omap_set_lcd_dma_b1(unsigned long addr, u16 fb_xres, u16 fb_yres,
			 int data_type)
{
	lcd_dma.addr = addr;
	lcd_dma.data_type = data_type;
	lcd_dma.xres = fb_xres;
	lcd_dma.yres = fb_yres;
}

void omap_set_lcd_dma_src_port(int port)
{
	lcd_dma.src_port = port;
}

void omap_set_lcd_dma_ext_controller(int external)
{
	lcd_dma.ext_ctrl = external;
}

void omap_set_lcd_dma_single_transfer(int single)
{
	lcd_dma.single_transfer = single;
}


void omap_set_lcd_dma_b1_rotation(int rotate)
{
	if (omap_dma_in_1510_mode()) {
		printk(KERN_ERR "DMA rotation is not supported in 1510 mode\n");
		BUG();
		return;
	}
	lcd_dma.rotate = rotate;
}

void omap_set_lcd_dma_b1_mirror(int mirror)
{
	if (omap_dma_in_1510_mode()) {
		printk(KERN_ERR "DMA mirror is not supported in 1510 mode\n");
		BUG();
	}
	lcd_dma.mirror = mirror;
}

void omap_set_lcd_dma_b1_vxres(unsigned long vxres)
{
	if (omap_dma_in_1510_mode()) {
		printk(KERN_ERR "DMA virtual resulotion is not supported "
				"in 1510 mode\n");
		BUG();
	}
	lcd_dma.vxres = vxres;
}

void omap_set_lcd_dma_b1_scale(unsigned int xscale, unsigned int yscale)
{
	if (omap_dma_in_1510_mode()) {
		printk(KERN_ERR "DMA scale is not supported in 1510 mode\n");
		BUG();
	}
	lcd_dma.xscale = xscale;
	lcd_dma.yscale = yscale;
}

static void set_b1_regs(void)
{
	unsigned long top, bottom;
	int es;
	u16 w;
	unsigned long en, fn;
	long ei, fi;
	unsigned long vxres;
	unsigned int xscale, yscale;

	switch (lcd_dma.data_type) {
	case OMAP_DMA_DATA_TYPE_S8:
		es = 1;
		break;
	case OMAP_DMA_DATA_TYPE_S16:
		es = 2;
		break;
	case OMAP_DMA_DATA_TYPE_S32:
		es = 4;
		break;
	default:
		BUG();
		return;
	}

	vxres = lcd_dma.vxres ? lcd_dma.vxres : lcd_dma.xres;
	xscale = lcd_dma.xscale ? lcd_dma.xscale : 1;
	yscale = lcd_dma.yscale ? lcd_dma.yscale : 1;
	BUG_ON(vxres < lcd_dma.xres);
#define PIXADDR(x,y) (lcd_dma.addr + ((y) * vxres * yscale + (x) * xscale) * es)
#define PIXSTEP(sx, sy, dx, dy) (PIXADDR(dx, dy) - PIXADDR(sx, sy) - es + 1)
	switch (lcd_dma.rotate) {
	case 0:
		if (!lcd_dma.mirror) {
			top = PIXADDR(0, 0);
			bottom = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
			/* 1510 DMA requires the bottom address to be 2 more
			 * than the actual last memory access location. */
			if (omap_dma_in_1510_mode() &&
			    lcd_dma.data_type == OMAP_DMA_DATA_TYPE_S32)
				bottom += 2;
			ei = PIXSTEP(0, 0, 1, 0);
			fi = PIXSTEP(lcd_dma.xres - 1, 0, 0, 1);
		} else {
			top = PIXADDR(lcd_dma.xres - 1, 0);
			bottom = PIXADDR(0, lcd_dma.yres - 1);
			ei = PIXSTEP(1, 0, 0, 0);
			fi = PIXSTEP(0, 0, lcd_dma.xres - 1, 1);
		}
		en = lcd_dma.xres;
		fn = lcd_dma.yres;
		break;
	case 90:
		if (!lcd_dma.mirror) {
			top = PIXADDR(0, lcd_dma.yres - 1);
			bottom = PIXADDR(lcd_dma.xres - 1, 0);
			ei = PIXSTEP(0, 1, 0, 0);
			fi = PIXSTEP(0, 0, 1, lcd_dma.yres - 1);
		} else {
			top = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
			bottom = PIXADDR(0, 0);
			ei = PIXSTEP(0, 1, 0, 0);
			fi = PIXSTEP(1, 0, 0, lcd_dma.yres - 1);
		}
		en = lcd_dma.yres;
		fn = lcd_dma.xres;
		break;
	case 180:
		if (!lcd_dma.mirror) {
			top = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
			bottom = PIXADDR(0, 0);
			ei = PIXSTEP(1, 0, 0, 0);
			fi = PIXSTEP(0, 1, lcd_dma.xres - 1, 0);
		} else {
			top = PIXADDR(0, lcd_dma.yres - 1);
			bottom = PIXADDR(lcd_dma.xres - 1, 0);
			ei = PIXSTEP(0, 0, 1, 0);
			fi = PIXSTEP(lcd_dma.xres - 1, 1, 0, 0);
		}
		en = lcd_dma.xres;
		fn = lcd_dma.yres;
		break;
	case 270:
		if (!lcd_dma.mirror) {
			top = PIXADDR(lcd_dma.xres - 1, 0);
			bottom = PIXADDR(0, lcd_dma.yres - 1);
			ei = PIXSTEP(0, 0, 0, 1);
			fi = PIXSTEP(1, lcd_dma.yres - 1, 0, 0);
		} else {
			top = PIXADDR(0, 0);
			bottom = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
			ei = PIXSTEP(0, 0, 0, 1);
			fi = PIXSTEP(0, lcd_dma.yres - 1, 1, 0);
		}
		en = lcd_dma.yres;
		fn = lcd_dma.xres;
		break;
	default:
		BUG();
S
Simon Arlott 已提交
2067
		return;	/* Suppress warning about uninitialized vars */
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	}

	if (omap_dma_in_1510_mode()) {
		omap_writew(top >> 16, OMAP1510_DMA_LCD_TOP_F1_U);
		omap_writew(top, OMAP1510_DMA_LCD_TOP_F1_L);
		omap_writew(bottom >> 16, OMAP1510_DMA_LCD_BOT_F1_U);
		omap_writew(bottom, OMAP1510_DMA_LCD_BOT_F1_L);

		return;
	}

	/* 1610 regs */
	omap_writew(top >> 16, OMAP1610_DMA_LCD_TOP_B1_U);
	omap_writew(top, OMAP1610_DMA_LCD_TOP_B1_L);
	omap_writew(bottom >> 16, OMAP1610_DMA_LCD_BOT_B1_U);
	omap_writew(bottom, OMAP1610_DMA_LCD_BOT_B1_L);

	omap_writew(en, OMAP1610_DMA_LCD_SRC_EN_B1);
	omap_writew(fn, OMAP1610_DMA_LCD_SRC_FN_B1);

	w = omap_readw(OMAP1610_DMA_LCD_CSDP);
	w &= ~0x03;
	w |= lcd_dma.data_type;
	omap_writew(w, OMAP1610_DMA_LCD_CSDP);

	w = omap_readw(OMAP1610_DMA_LCD_CTRL);
	/* Always set the source port as SDRAM for now*/
	w &= ~(0x03 << 6);
	if (lcd_dma.callback != NULL)
2097
		w |= 1 << 1;		/* Block interrupt enable */
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	else
		w &= ~(1 << 1);
	omap_writew(w, OMAP1610_DMA_LCD_CTRL);

	if (!(lcd_dma.rotate || lcd_dma.mirror ||
	      lcd_dma.vxres || lcd_dma.xscale || lcd_dma.yscale))
		return;

	w = omap_readw(OMAP1610_DMA_LCD_CCR);
	/* Set the double-indexed addressing mode */
	w |= (0x03 << 12);
	omap_writew(w, OMAP1610_DMA_LCD_CCR);

	omap_writew(ei, OMAP1610_DMA_LCD_SRC_EI_B1);
	omap_writew(fi >> 16, OMAP1610_DMA_LCD_SRC_FI_B1_U);
	omap_writew(fi, OMAP1610_DMA_LCD_SRC_FI_B1_L);
}

2116
static irqreturn_t lcd_dma_irq_handler(int irq, void *dev_id)
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
{
	u16 w;

	w = omap_readw(OMAP1610_DMA_LCD_CTRL);
	if (unlikely(!(w & (1 << 3)))) {
		printk(KERN_WARNING "Spurious LCD DMA IRQ\n");
		return IRQ_NONE;
	}
	/* Ack the IRQ */
	w |= (1 << 3);
	omap_writew(w, OMAP1610_DMA_LCD_CTRL);
	lcd_dma.active = 0;
	if (lcd_dma.callback != NULL)
		lcd_dma.callback(w, lcd_dma.cb_data);

	return IRQ_HANDLED;
}

int omap_request_lcd_dma(void (* callback)(u16 status, void *data),
			 void *data)
{
	spin_lock_irq(&lcd_dma.lock);
	if (lcd_dma.reserved) {
		spin_unlock_irq(&lcd_dma.lock);
		printk(KERN_ERR "LCD DMA channel already reserved\n");
		BUG();
		return -EBUSY;
	}
	lcd_dma.reserved = 1;
	spin_unlock_irq(&lcd_dma.lock);
	lcd_dma.callback = callback;
	lcd_dma.cb_data = data;
	lcd_dma.active = 0;
	lcd_dma.single_transfer = 0;
	lcd_dma.rotate = 0;
	lcd_dma.vxres = 0;
	lcd_dma.mirror = 0;
	lcd_dma.xscale = 0;
	lcd_dma.yscale = 0;
	lcd_dma.ext_ctrl = 0;
	lcd_dma.src_port = 0;

	return 0;
}

void omap_free_lcd_dma(void)
{
	spin_lock(&lcd_dma.lock);
	if (!lcd_dma.reserved) {
		spin_unlock(&lcd_dma.lock);
		printk(KERN_ERR "LCD DMA is not reserved\n");
		BUG();
		return;
	}
	if (!enable_1510_mode)
2172 2173
		omap_writew(omap_readw(OMAP1610_DMA_LCD_CCR) & ~1,
			    OMAP1610_DMA_LCD_CCR);
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
	lcd_dma.reserved = 0;
	spin_unlock(&lcd_dma.lock);
}

void omap_enable_lcd_dma(void)
{
	u16 w;

	/* Set the Enable bit only if an external controller is
	 * connected. Otherwise the OMAP internal controller will
	 * start the transfer when it gets enabled.
	 */
	if (enable_1510_mode || !lcd_dma.ext_ctrl)
		return;
2188 2189 2190 2191 2192

	w = omap_readw(OMAP1610_DMA_LCD_CTRL);
	w |= 1 << 8;
	omap_writew(w, OMAP1610_DMA_LCD_CTRL);

2193 2194
	lcd_dma.active = 1;

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
	w = omap_readw(OMAP1610_DMA_LCD_CCR);
	w |= 1 << 7;
	omap_writew(w, OMAP1610_DMA_LCD_CCR);
}

void omap_setup_lcd_dma(void)
{
	BUG_ON(lcd_dma.active);
	if (!enable_1510_mode) {
		/* Set some reasonable defaults */
		omap_writew(0x5440, OMAP1610_DMA_LCD_CCR);
		omap_writew(0x9102, OMAP1610_DMA_LCD_CSDP);
		omap_writew(0x0004, OMAP1610_DMA_LCD_LCH_CTRL);
	}
	set_b1_regs();
	if (!enable_1510_mode) {
		u16 w;

		w = omap_readw(OMAP1610_DMA_LCD_CCR);
		/* If DMA was already active set the end_prog bit to have
		 * the programmed register set loaded into the active
		 * register set.
		 */
		w |= 1 << 11;		/* End_prog */
		if (!lcd_dma.single_transfer)
	        	w |= (3 << 8);	/* Auto_init, repeat */
		omap_writew(w, OMAP1610_DMA_LCD_CCR);
	}
}

void omap_stop_lcd_dma(void)
{
2227 2228
	u16 w;

2229
	lcd_dma.active = 0;
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	if (enable_1510_mode || !lcd_dma.ext_ctrl)
		return;

	w = omap_readw(OMAP1610_DMA_LCD_CCR);
	w &= ~(1 << 7);
	omap_writew(w, OMAP1610_DMA_LCD_CCR);

	w = omap_readw(OMAP1610_DMA_LCD_CTRL);
	w &= ~(1 << 8);
	omap_writew(w, OMAP1610_DMA_LCD_CTRL);
2240 2241
}

2242
/*----------------------------------------------------------------------------*/
2243

2244 2245 2246 2247
static int __init omap_init_dma(void)
{
	int ch, r;

2248 2249
	if (cpu_class_is_omap1()) {
		omap_dma_base = (void __iomem *)IO_ADDRESS(OMAP1_DMA_BASE);
2250
		dma_lch_count = OMAP1_LOGICAL_DMA_CH_COUNT;
2251 2252
	} else if (cpu_is_omap24xx()) {
		omap_dma_base = (void __iomem *)IO_ADDRESS(OMAP24XX_DMA4_BASE);
2253
		dma_lch_count = OMAP_DMA4_LOGICAL_DMA_CH_COUNT;
2254 2255 2256 2257 2258 2259 2260
	} else if (cpu_is_omap34xx()) {
		omap_dma_base = (void __iomem *)IO_ADDRESS(OMAP34XX_DMA4_BASE);
		dma_lch_count = OMAP_DMA4_LOGICAL_DMA_CH_COUNT;
	} else {
		pr_err("DMA init failed for unsupported omap\n");
		return -ENODEV;
	}
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

	dma_chan = kzalloc(sizeof(struct omap_dma_lch) * dma_lch_count,
				GFP_KERNEL);
	if (!dma_chan)
		return -ENOMEM;

	if (cpu_class_is_omap2()) {
		dma_linked_lch = kzalloc(sizeof(struct dma_link_info) *
						dma_lch_count, GFP_KERNEL);
		if (!dma_linked_lch) {
			kfree(dma_chan);
			return -ENOMEM;
		}
	}

2276 2277
	if (cpu_is_omap15xx()) {
		printk(KERN_INFO "DMA support for OMAP15xx initialized\n");
2278 2279 2280 2281
		dma_chan_count = 9;
		enable_1510_mode = 1;
	} else if (cpu_is_omap16xx() || cpu_is_omap730()) {
		printk(KERN_INFO "OMAP DMA hardware version %d\n",
2282
		       dma_read(HW_ID));
2283
		printk(KERN_INFO "DMA capabilities: %08x:%08x:%04x:%04x:%04x\n",
2284 2285 2286 2287 2288 2289
		       (dma_read(CAPS_0_U) << 16) |
		       dma_read(CAPS_0_L),
		       (dma_read(CAPS_1_U) << 16) |
		       dma_read(CAPS_1_L),
		       dma_read(CAPS_2), dma_read(CAPS_3),
		       dma_read(CAPS_4));
2290 2291 2292 2293
		if (!enable_1510_mode) {
			u16 w;

			/* Disable OMAP 3.0/3.1 compatibility mode. */
2294
			w = dma_read(GSCR);
2295
			w |= 1 << 3;
2296
			dma_write(w, GSCR);
2297 2298 2299
			dma_chan_count = 16;
		} else
			dma_chan_count = 9;
2300 2301 2302 2303 2304 2305 2306 2307
		if (cpu_is_omap16xx()) {
			u16 w;

			/* this would prevent OMAP sleep */
			w = omap_readw(OMAP1610_DMA_LCD_CTRL);
			w &= ~(1 << 8);
			omap_writew(w, OMAP1610_DMA_LCD_CTRL);
		}
2308
	} else if (cpu_class_is_omap2()) {
2309
		u8 revision = dma_read(REVISION) & 0xff;
2310 2311
		printk(KERN_INFO "OMAP DMA hardware revision %d.%d\n",
		       revision >> 4, revision & 0xf);
2312
		dma_chan_count = OMAP_DMA4_LOGICAL_DMA_CH_COUNT;
2313 2314 2315 2316 2317 2318 2319 2320 2321
	} else {
		dma_chan_count = 0;
		return 0;
	}

	spin_lock_init(&lcd_dma.lock);
	spin_lock_init(&dma_chan_lock);

	for (ch = 0; ch < dma_chan_count; ch++) {
2322
		omap_clear_dma(ch);
2323 2324 2325 2326 2327 2328
		dma_chan[ch].dev_id = -1;
		dma_chan[ch].next_lch = -1;

		if (ch >= 6 && enable_1510_mode)
			continue;

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
		if (cpu_class_is_omap1()) {
			/* request_irq() doesn't like dev_id (ie. ch) being
			 * zero, so we have to kludge around this. */
			r = request_irq(omap1_dma_irq[ch],
					omap1_dma_irq_handler, 0, "DMA",
					(void *) (ch + 1));
			if (r != 0) {
				int i;

				printk(KERN_ERR "unable to request IRQ %d "
				       "for DMA (error %d)\n",
				       omap1_dma_irq[ch], r);
				for (i = 0; i < ch; i++)
					free_irq(omap1_dma_irq[i],
						 (void *) (i + 1));
				return r;
			}
		}
	}

2349 2350 2351 2352 2353
	if (cpu_is_omap2430() || cpu_is_omap34xx())
		omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE,
				DMA_DEFAULT_FIFO_DEPTH, 0);

	if (cpu_class_is_omap2())
2354 2355 2356 2357 2358 2359
		setup_irq(INT_24XX_SDMA_IRQ0, &omap24xx_dma_irq);

	/* FIXME: Update LCD DMA to work on 24xx */
	if (cpu_class_is_omap1()) {
		r = request_irq(INT_DMA_LCD, lcd_dma_irq_handler, 0,
				"LCD DMA", NULL);
2360 2361 2362
		if (r != 0) {
			int i;

2363 2364 2365 2366
			printk(KERN_ERR "unable to request IRQ for LCD DMA "
			       "(error %d)\n", r);
			for (i = 0; i < dma_chan_count; i++)
				free_irq(omap1_dma_irq[i], (void *) (i + 1));
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
			return r;
		}
	}

	return 0;
}

arch_initcall(omap_init_dma);

EXPORT_SYMBOL(omap_get_dma_src_pos);
EXPORT_SYMBOL(omap_get_dma_dst_pos);
2378
EXPORT_SYMBOL(omap_get_dma_src_addr_counter);
2379 2380 2381 2382 2383 2384
EXPORT_SYMBOL(omap_clear_dma);
EXPORT_SYMBOL(omap_set_dma_priority);
EXPORT_SYMBOL(omap_request_dma);
EXPORT_SYMBOL(omap_free_dma);
EXPORT_SYMBOL(omap_start_dma);
EXPORT_SYMBOL(omap_stop_dma);
2385
EXPORT_SYMBOL(omap_set_dma_callback);
2386 2387 2388 2389 2390
EXPORT_SYMBOL(omap_enable_dma_irq);
EXPORT_SYMBOL(omap_disable_dma_irq);

EXPORT_SYMBOL(omap_set_dma_transfer_params);
EXPORT_SYMBOL(omap_set_dma_color_mode);
2391
EXPORT_SYMBOL(omap_set_dma_write_mode);
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402

EXPORT_SYMBOL(omap_set_dma_src_params);
EXPORT_SYMBOL(omap_set_dma_src_index);
EXPORT_SYMBOL(omap_set_dma_src_data_pack);
EXPORT_SYMBOL(omap_set_dma_src_burst_mode);

EXPORT_SYMBOL(omap_set_dma_dest_params);
EXPORT_SYMBOL(omap_set_dma_dest_index);
EXPORT_SYMBOL(omap_set_dma_dest_data_pack);
EXPORT_SYMBOL(omap_set_dma_dest_burst_mode);

2403 2404
EXPORT_SYMBOL(omap_set_dma_params);

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
EXPORT_SYMBOL(omap_dma_link_lch);
EXPORT_SYMBOL(omap_dma_unlink_lch);

EXPORT_SYMBOL(omap_request_lcd_dma);
EXPORT_SYMBOL(omap_free_lcd_dma);
EXPORT_SYMBOL(omap_enable_lcd_dma);
EXPORT_SYMBOL(omap_setup_lcd_dma);
EXPORT_SYMBOL(omap_stop_lcd_dma);
EXPORT_SYMBOL(omap_set_lcd_dma_b1);
EXPORT_SYMBOL(omap_set_lcd_dma_single_transfer);
EXPORT_SYMBOL(omap_set_lcd_dma_ext_controller);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_rotation);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_vxres);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_scale);
EXPORT_SYMBOL(omap_set_lcd_dma_b1_mirror);