sparse-vmemmap.c 15.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
/*
 * Virtual Memory Map support
 *
C
Christoph Lameter 已提交
5
 * (C) 2007 sgi. Christoph Lameter.
6 7 8 9 10 11 12
 *
 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
 * virt_to_page, page_address() to be implemented as a base offset
 * calculation without memory access.
 *
 * However, virtual mappings need a page table and TLBs. Many Linux
 * architectures already map their physical space using 1-1 mappings
13
 * via TLBs. For those arches the virtual memory map is essentially
14 15 16 17
 * for free if we use the same page size as the 1-1 mappings. In that
 * case the overhead consists of a few additional pages that are
 * allocated to create a view of memory for vmemmap.
 *
18 19
 * The architecture is expected to provide a vmemmap_populate() function
 * to instantiate the mapping.
20 21 22
 */
#include <linux/mm.h>
#include <linux/mmzone.h>
23
#include <linux/memblock.h>
24
#include <linux/memremap.h>
25
#include <linux/highmem.h>
26
#include <linux/slab.h>
27 28
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
29
#include <linux/sched.h>
30 31 32
#include <linux/pgtable.h>
#include <linux/bootmem_info.h>

33 34
#include <asm/dma.h>
#include <asm/pgalloc.h>
35 36 37 38 39 40
#include <asm/tlbflush.h>

/**
 * struct vmemmap_remap_walk - walk vmemmap page table
 *
 * @remap_pte:		called for each lowest-level entry (PTE).
41
 * @nr_walked:		the number of walked pte.
42 43
 * @reuse_page:		the page which is reused for the tail vmemmap pages.
 * @reuse_addr:		the virtual address of the @reuse_page page.
44 45
 * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
 *			or is mapped from.
46 47 48 49
 */
struct vmemmap_remap_walk {
	void (*remap_pte)(pte_t *pte, unsigned long addr,
			  struct vmemmap_remap_walk *walk);
50
	unsigned long nr_walked;
51 52 53 54 55
	struct page *reuse_page;
	unsigned long reuse_addr;
	struct list_head *vmemmap_pages;
};

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start,
				  struct vmemmap_remap_walk *walk)
{
	pmd_t __pmd;
	int i;
	unsigned long addr = start;
	struct page *page = pmd_page(*pmd);
	pte_t *pgtable = pte_alloc_one_kernel(&init_mm);

	if (!pgtable)
		return -ENOMEM;

	pmd_populate_kernel(&init_mm, &__pmd, pgtable);

	for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
		pte_t entry, *pte;
		pgprot_t pgprot = PAGE_KERNEL;

		entry = mk_pte(page + i, pgprot);
		pte = pte_offset_kernel(&__pmd, addr);
		set_pte_at(&init_mm, addr, pte, entry);
	}

	/* Make pte visible before pmd. See comment in __pte_alloc(). */
	smp_wmb();
	pmd_populate_kernel(&init_mm, pmd, pgtable);

	flush_tlb_kernel_range(start, start + PMD_SIZE);

	return 0;
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
			      unsigned long end,
			      struct vmemmap_remap_walk *walk)
{
	pte_t *pte = pte_offset_kernel(pmd, addr);

	/*
	 * The reuse_page is found 'first' in table walk before we start
	 * remapping (which is calling @walk->remap_pte).
	 */
	if (!walk->reuse_page) {
		walk->reuse_page = pte_page(*pte);
		/*
		 * Because the reuse address is part of the range that we are
		 * walking, skip the reuse address range.
		 */
		addr += PAGE_SIZE;
		pte++;
106
		walk->nr_walked++;
107 108
	}

109
	for (; addr != end; addr += PAGE_SIZE, pte++) {
110
		walk->remap_pte(pte, addr, walk);
111 112
		walk->nr_walked++;
	}
113 114
}

115 116 117
static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
			     unsigned long end,
			     struct vmemmap_remap_walk *walk)
118 119 120 121 122 123
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
124 125
		if (pmd_leaf(*pmd)) {
			int ret;
126

127 128 129 130
			ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK, walk);
			if (ret)
				return ret;
		}
131 132 133
		next = pmd_addr_end(addr, end);
		vmemmap_pte_range(pmd, addr, next, walk);
	} while (pmd++, addr = next, addr != end);
134 135

	return 0;
136 137
}

138 139 140
static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
			     unsigned long end,
			     struct vmemmap_remap_walk *walk)
141 142 143 144 145 146
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(p4d, addr);
	do {
147 148
		int ret;

149
		next = pud_addr_end(addr, end);
150 151 152
		ret = vmemmap_pmd_range(pud, addr, next, walk);
		if (ret)
			return ret;
153
	} while (pud++, addr = next, addr != end);
154 155

	return 0;
156 157
}

158 159 160
static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
			     unsigned long end,
			     struct vmemmap_remap_walk *walk)
161 162 163 164 165 166
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
167 168
		int ret;

169
		next = p4d_addr_end(addr, end);
170 171 172
		ret = vmemmap_pud_range(p4d, addr, next, walk);
		if (ret)
			return ret;
173
	} while (p4d++, addr = next, addr != end);
174 175

	return 0;
176 177
}

178 179
static int vmemmap_remap_range(unsigned long start, unsigned long end,
			       struct vmemmap_remap_walk *walk)
180 181 182 183 184 185 186 187 188 189
{
	unsigned long addr = start;
	unsigned long next;
	pgd_t *pgd;

	VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
	VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));

	pgd = pgd_offset_k(addr);
	do {
190 191
		int ret;

192
		next = pgd_addr_end(addr, end);
193 194 195
		ret = vmemmap_p4d_range(pgd, addr, next, walk);
		if (ret)
			return ret;
196 197 198 199 200 201 202 203
	} while (pgd++, addr = next, addr != end);

	/*
	 * We only change the mapping of the vmemmap virtual address range
	 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
	 * belongs to the range.
	 */
	flush_tlb_kernel_range(start + PAGE_SIZE, end);
204 205

	return 0;
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
}

/*
 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
 * allocator or buddy allocator. If the PG_reserved flag is set, it means
 * that it allocated from the memblock allocator, just free it via the
 * free_bootmem_page(). Otherwise, use __free_page().
 */
static inline void free_vmemmap_page(struct page *page)
{
	if (PageReserved(page))
		free_bootmem_page(page);
	else
		__free_page(page);
}

/* Free a list of the vmemmap pages */
static void free_vmemmap_page_list(struct list_head *list)
{
	struct page *page, *next;

	list_for_each_entry_safe(page, next, list, lru) {
		list_del(&page->lru);
		free_vmemmap_page(page);
	}
}

static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
			      struct vmemmap_remap_walk *walk)
{
	/*
	 * Remap the tail pages as read-only to catch illegal write operation
	 * to the tail pages.
	 */
	pgprot_t pgprot = PAGE_KERNEL_RO;
	pte_t entry = mk_pte(walk->reuse_page, pgprot);
	struct page *page = pte_page(*pte);

244
	list_add_tail(&page->lru, walk->vmemmap_pages);
245 246 247
	set_pte_at(&init_mm, addr, pte, entry);
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
				struct vmemmap_remap_walk *walk)
{
	pgprot_t pgprot = PAGE_KERNEL;
	struct page *page;
	void *to;

	BUG_ON(pte_page(*pte) != walk->reuse_page);

	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
	list_del(&page->lru);
	to = page_to_virt(page);
	copy_page(to, (void *)walk->reuse_addr);

	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
}

265 266 267 268 269 270 271 272 273 274
/**
 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
 *			to the page which @reuse is mapped to, then free vmemmap
 *			which the range are mapped to.
 * @start:	start address of the vmemmap virtual address range that we want
 *		to remap.
 * @end:	end address of the vmemmap virtual address range that we want to
 *		remap.
 * @reuse:	reuse address.
 *
275
 * Return: %0 on success, negative error code otherwise.
276
 */
277 278
int vmemmap_remap_free(unsigned long start, unsigned long end,
		       unsigned long reuse)
279
{
280
	int ret;
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	LIST_HEAD(vmemmap_pages);
	struct vmemmap_remap_walk walk = {
		.remap_pte	= vmemmap_remap_pte,
		.reuse_addr	= reuse,
		.vmemmap_pages	= &vmemmap_pages,
	};

	/*
	 * In order to make remapping routine most efficient for the huge pages,
	 * the routine of vmemmap page table walking has the following rules
	 * (see more details from the vmemmap_pte_range()):
	 *
	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
	 *   should be continuous.
	 * - The @reuse address is part of the range [@reuse, @end) that we are
	 *   walking which is passed to vmemmap_remap_range().
	 * - The @reuse address is the first in the complete range.
	 *
	 * So we need to make sure that @start and @reuse meet the above rules.
	 */
	BUG_ON(start - reuse != PAGE_SIZE);

303 304 305
	mmap_write_lock(&init_mm);
	ret = vmemmap_remap_range(reuse, end, &walk);
	mmap_write_downgrade(&init_mm);
306

307 308 309 310 311 312 313 314 315 316 317 318 319
	if (ret && walk.nr_walked) {
		end = reuse + walk.nr_walked * PAGE_SIZE;
		/*
		 * vmemmap_pages contains pages from the previous
		 * vmemmap_remap_range call which failed.  These
		 * are pages which were removed from the vmemmap.
		 * They will be restored in the following call.
		 */
		walk = (struct vmemmap_remap_walk) {
			.remap_pte	= vmemmap_restore_pte,
			.reuse_addr	= reuse,
			.vmemmap_pages	= &vmemmap_pages,
		};
320

321 322 323
		vmemmap_remap_range(reuse, end, &walk);
	}
	mmap_read_unlock(&init_mm);
324

325
	free_vmemmap_page_list(&vmemmap_pages);
326

327
	return ret;
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
}

static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
				   gfp_t gfp_mask, struct list_head *list)
{
	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
	int nid = page_to_nid((struct page *)start);
	struct page *page, *next;

	while (nr_pages--) {
		page = alloc_pages_node(nid, gfp_mask, 0);
		if (!page)
			goto out;
		list_add_tail(&page->lru, list);
	}

	return 0;
out:
	list_for_each_entry_safe(page, next, list, lru)
		__free_pages(page, 0);
	return -ENOMEM;
}

/**
 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
 *			 to the page which is from the @vmemmap_pages
 *			 respectively.
 * @start:	start address of the vmemmap virtual address range that we want
 *		to remap.
 * @end:	end address of the vmemmap virtual address range that we want to
 *		remap.
 * @reuse:	reuse address.
 * @gfp_mask:	GFP flag for allocating vmemmap pages.
361 362
 *
 * Return: %0 on success, negative error code otherwise.
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
 */
int vmemmap_remap_alloc(unsigned long start, unsigned long end,
			unsigned long reuse, gfp_t gfp_mask)
{
	LIST_HEAD(vmemmap_pages);
	struct vmemmap_remap_walk walk = {
		.remap_pte	= vmemmap_restore_pte,
		.reuse_addr	= reuse,
		.vmemmap_pages	= &vmemmap_pages,
	};

	/* See the comment in the vmemmap_remap_free(). */
	BUG_ON(start - reuse != PAGE_SIZE);

	if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
		return -ENOMEM;

380
	mmap_read_lock(&init_mm);
381
	vmemmap_remap_range(reuse, end, &walk);
382
	mmap_read_unlock(&init_mm);
383 384 385 386

	return 0;
}

387 388 389 390 391
/*
 * Allocate a block of memory to be used to back the virtual memory map
 * or to back the page tables that are used to create the mapping.
 * Uses the main allocators if they are available, else bootmem.
 */
392

393
static void * __ref __earlyonly_bootmem_alloc(int node,
394 395 396 397
				unsigned long size,
				unsigned long align,
				unsigned long goal)
{
398
	return memblock_alloc_try_nid_raw(size, align, goal,
399
					       MEMBLOCK_ALLOC_ACCESSIBLE, node);
400 401
}

402 403 404 405
void * __meminit vmemmap_alloc_block(unsigned long size, int node)
{
	/* If the main allocator is up use that, fallback to bootmem. */
	if (slab_is_available()) {
406 407 408
		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
		int order = get_order(size);
		static bool warned;
409 410
		struct page *page;

411
		page = alloc_pages_node(node, gfp_mask, order);
412 413
		if (page)
			return page_address(page);
414 415 416 417 418 419

		if (!warned) {
			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
				   "vmemmap alloc failure: order:%u", order);
			warned = true;
		}
420 421
		return NULL;
	} else
422
		return __earlyonly_bootmem_alloc(node, size, size,
423 424 425
				__pa(MAX_DMA_ADDRESS));
}

426 427 428
static void * __meminit altmap_alloc_block_buf(unsigned long size,
					       struct vmem_altmap *altmap);

429
/* need to make sure size is all the same during early stage */
430 431
void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
					 struct vmem_altmap *altmap)
432
{
433 434 435 436
	void *ptr;

	if (altmap)
		return altmap_alloc_block_buf(size, altmap);
437

438
	ptr = sparse_buffer_alloc(size);
439 440
	if (!ptr)
		ptr = vmemmap_alloc_block(size, node);
441 442 443
	return ptr;
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
{
	return altmap->base_pfn + altmap->reserve + altmap->alloc
		+ altmap->align;
}

static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
{
	unsigned long allocated = altmap->alloc + altmap->align;

	if (altmap->free > allocated)
		return altmap->free - allocated;
	return 0;
}

459 460
static void * __meminit altmap_alloc_block_buf(unsigned long size,
					       struct vmem_altmap *altmap)
461
{
462
	unsigned long pfn, nr_pfns, nr_align;
463 464 465 466 467 468 469

	if (size & ~PAGE_MASK) {
		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
				__func__, size);
		return NULL;
	}

470
	pfn = vmem_altmap_next_pfn(altmap);
471
	nr_pfns = size >> PAGE_SHIFT;
472 473 474 475 476 477 478 479 480
	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
	nr_align = ALIGN(pfn, nr_align) - pfn;
	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
		return NULL;

	altmap->alloc += nr_pfns;
	altmap->align += nr_align;
	pfn += nr_align;

481 482
	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
483
	return __va(__pfn_to_phys(pfn));
484 485
}

486 487 488 489 490 491
void __meminit vmemmap_verify(pte_t *pte, int node,
				unsigned long start, unsigned long end)
{
	unsigned long pfn = pte_pfn(*pte);
	int actual_node = early_pfn_to_nid(pfn);

492
	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
493 494
		pr_warn("[%lx-%lx] potential offnode page_structs\n",
			start, end - 1);
495 496
}

497 498
pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
				       struct vmem_altmap *altmap)
499
{
500 501 502
	pte_t *pte = pte_offset_kernel(pmd, addr);
	if (pte_none(*pte)) {
		pte_t entry;
503 504
		void *p;

505
		p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
506
		if (!p)
A
Al Viro 已提交
507
			return NULL;
508 509 510 511
		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
		set_pte_at(&init_mm, addr, pte, entry);
	}
	return pte;
512 513
}

514 515 516 517 518 519 520 521 522 523 524
static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
{
	void *p = vmemmap_alloc_block(size, node);

	if (!p)
		return NULL;
	memset(p, 0, size);

	return p;
}

525
pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
526
{
527 528
	pmd_t *pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd)) {
529
		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
530
		if (!p)
A
Al Viro 已提交
531
			return NULL;
532
		pmd_populate_kernel(&init_mm, pmd, p);
533
	}
534
	return pmd;
535 536
}

537
pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
538
{
539
	pud_t *pud = pud_offset(p4d, addr);
540
	if (pud_none(*pud)) {
541
		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
542
		if (!p)
A
Al Viro 已提交
543
			return NULL;
544 545 546 547
		pud_populate(&init_mm, pud, p);
	}
	return pud;
}
548

549 550 551 552
p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
{
	p4d_t *p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d)) {
553
		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
554 555 556 557 558 559 560
		if (!p)
			return NULL;
		p4d_populate(&init_mm, p4d, p);
	}
	return p4d;
}

561 562 563 564
pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
{
	pgd_t *pgd = pgd_offset_k(addr);
	if (pgd_none(*pgd)) {
565
		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
566
		if (!p)
A
Al Viro 已提交
567
			return NULL;
568
		pgd_populate(&init_mm, pgd, p);
569
	}
570
	return pgd;
571 572
}

573 574
int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
					 int node, struct vmem_altmap *altmap)
575
{
576
	unsigned long addr = start;
577
	pgd_t *pgd;
578
	p4d_t *p4d;
579 580 581
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
582

583 584 585 586
	for (; addr < end; addr += PAGE_SIZE) {
		pgd = vmemmap_pgd_populate(addr, node);
		if (!pgd)
			return -ENOMEM;
587 588 589 590
		p4d = vmemmap_p4d_populate(pgd, addr, node);
		if (!p4d)
			return -ENOMEM;
		pud = vmemmap_pud_populate(p4d, addr, node);
591 592 593 594 595
		if (!pud)
			return -ENOMEM;
		pmd = vmemmap_pmd_populate(pud, addr, node);
		if (!pmd)
			return -ENOMEM;
596
		pte = vmemmap_pte_populate(pmd, addr, node, altmap);
597 598 599
		if (!pte)
			return -ENOMEM;
		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
600
	}
601 602

	return 0;
603 604
}

605 606
struct page * __meminit __populate_section_memmap(unsigned long pfn,
		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
607
{
608 609 610 611 612 613
	unsigned long start = (unsigned long) pfn_to_page(pfn);
	unsigned long end = start + nr_pages * sizeof(struct page);

	if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
		!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
		return NULL;
614

615
	if (vmemmap_populate(start, end, nid, altmap))
616 617
		return NULL;

618
	return pfn_to_page(pfn);
619
}