ice_virtchnl_pf.c 86.9 KB
Newer Older
1 2 3 4 5 6
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */

#include "ice.h"
#include "ice_lib.h"

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/**
 * ice_err_to_virt err - translate errors for VF return code
 * @ice_err: error return code
 */
static enum virtchnl_status_code ice_err_to_virt_err(enum ice_status ice_err)
{
	switch (ice_err) {
	case ICE_SUCCESS:
		return VIRTCHNL_STATUS_SUCCESS;
	case ICE_ERR_BAD_PTR:
	case ICE_ERR_INVAL_SIZE:
	case ICE_ERR_DEVICE_NOT_SUPPORTED:
	case ICE_ERR_PARAM:
	case ICE_ERR_CFG:
		return VIRTCHNL_STATUS_ERR_PARAM;
	case ICE_ERR_NO_MEMORY:
		return VIRTCHNL_STATUS_ERR_NO_MEMORY;
	case ICE_ERR_NOT_READY:
	case ICE_ERR_RESET_FAILED:
	case ICE_ERR_FW_API_VER:
	case ICE_ERR_AQ_ERROR:
	case ICE_ERR_AQ_TIMEOUT:
	case ICE_ERR_AQ_FULL:
	case ICE_ERR_AQ_NO_WORK:
	case ICE_ERR_AQ_EMPTY:
		return VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
	default:
		return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
	}
}

38 39 40 41 42 43 44 45 46 47
/**
 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
 * @pf: pointer to the PF structure
 * @v_opcode: operation code
 * @v_retval: return value
 * @msg: pointer to the msg buffer
 * @msglen: msg length
 */
static void
ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
48
		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
{
	struct ice_hw *hw = &pf->hw;
	struct ice_vf *vf = pf->vf;
	int i;

	for (i = 0; i < pf->num_alloc_vfs; i++, vf++) {
		/* Not all vfs are enabled so skip the ones that are not */
		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
			continue;

		/* Ignore return value on purpose - a given VF may fail, but
		 * we need to keep going and send to all of them
		 */
		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
				      msglen, NULL);
	}
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/**
 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
 * @vf: pointer to the VF structure
 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
 * @link_up: whether or not to set the link up/down
 */
static void
ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
		 int ice_link_speed, bool link_up)
{
	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
		pfe->event_data.link_event_adv.link_status = link_up;
		/* Speed in Mbps */
		pfe->event_data.link_event_adv.link_speed =
			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
	} else {
		pfe->event_data.link_event.link_status = link_up;
		/* Legacy method for virtchnl link speeds */
		pfe->event_data.link_event.link_speed =
			(enum virtchnl_link_speed)
			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
	}
}

/**
 * ice_set_pfe_link_forced - Force the virtchnl_pf_event link speed/status
 * @vf: pointer to the VF structure
 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
 * @link_up: whether or not to set the link up/down
 */
static void
ice_set_pfe_link_forced(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
			bool link_up)
{
	u16 link_speed;

	if (link_up)
106
		link_speed = ICE_AQ_LINK_SPEED_100GB;
107 108 109 110 111 112
	else
		link_speed = ICE_AQ_LINK_SPEED_UNKNOWN;

	ice_set_pfe_link(vf, pfe, link_speed, link_up);
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/**
 * ice_vc_notify_vf_link_state - Inform a VF of link status
 * @vf: pointer to the VF structure
 *
 * send a link status message to a single VF
 */
static void ice_vc_notify_vf_link_state(struct ice_vf *vf)
{
	struct virtchnl_pf_event pfe = { 0 };
	struct ice_link_status *ls;
	struct ice_pf *pf = vf->pf;
	struct ice_hw *hw;

	hw = &pf->hw;
	ls = &hw->port_info->phy.link_info;

	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
	pfe.severity = PF_EVENT_SEVERITY_INFO;

	if (vf->link_forced)
		ice_set_pfe_link_forced(vf, &pfe, vf->link_up);
	else
		ice_set_pfe_link(vf, &pfe, ls->link_speed, ls->link_info &
				 ICE_AQ_LINK_UP);

138 139
	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
140 141 142
			      sizeof(pfe), NULL);
}

143 144 145 146 147 148 149
/**
 * ice_free_vf_res - Free a VF's resources
 * @vf: pointer to the VF info
 */
static void ice_free_vf_res(struct ice_vf *vf)
{
	struct ice_pf *pf = vf->pf;
150
	int i, last_vector_idx;
151 152 153 154 155 156

	/* First, disable VF's configuration API to prevent OS from
	 * accessing the VF's VSI after it's freed or invalidated.
	 */
	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);

157
	/* free VSI and disconnect it from the parent uplink */
158 159 160 161 162 163 164
	if (vf->lan_vsi_idx) {
		ice_vsi_release(pf->vsi[vf->lan_vsi_idx]);
		vf->lan_vsi_idx = 0;
		vf->lan_vsi_num = 0;
		vf->num_mac = 0;
	}

165
	last_vector_idx = vf->first_vector_idx + pf->num_vf_msix - 1;
166
	/* Disable interrupts so that VF starts in a known state */
167 168
	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
		ice_flush(&pf->hw);
	}
	/* reset some of the state variables keeping track of the resources */
	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
}

/**
 * ice_dis_vf_mappings
 * @vf: pointer to the VF structure
 */
static void ice_dis_vf_mappings(struct ice_vf *vf)
{
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;
	int first, last, v;
	struct ice_hw *hw;

	hw = &pf->hw;
	vsi = pf->vsi[vf->lan_vsi_idx];

	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
191
	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
192

B
Brett Creeley 已提交
193
	first = vf->first_vector_idx;
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	last = first + pf->num_vf_msix - 1;
	for (v = first; v <= last; v++) {
		u32 reg;

		reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
			GLINT_VECT2FUNC_IS_PF_M) |
		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
			GLINT_VECT2FUNC_PF_NUM_M));
		wr32(hw, GLINT_VECT2FUNC(v), reg);
	}

	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
	else
		dev_err(&pf->pdev->dev,
			"Scattered mode for VF Tx queues is not yet implemented\n");

	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
	else
		dev_err(&pf->pdev->dev,
			"Scattered mode for VF Rx queues is not yet implemented\n");
}

B
Brett Creeley 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
/**
 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
 * @pf: pointer to the PF structure
 *
 * If MSIX entries from the pf->irq_tracker were needed then we need to
 * reset the irq_tracker->end and give back the entries we needed to
 * num_avail_sw_msix.
 *
 * If no MSIX entries were taken from the pf->irq_tracker then just clear
 * the pf->sriov_base_vector.
 *
 * Returns 0 on success, and -EINVAL on error.
 */
static int ice_sriov_free_msix_res(struct ice_pf *pf)
{
	struct ice_res_tracker *res;

	if (!pf)
		return -EINVAL;

	res = pf->irq_tracker;
	if (!res)
		return -EINVAL;

	/* give back irq_tracker resources used */
	if (pf->sriov_base_vector < res->num_entries) {
		res->end = res->num_entries;
		pf->num_avail_sw_msix +=
			res->num_entries - pf->sriov_base_vector;
	}

	pf->sriov_base_vector = 0;

	return 0;
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/**
 * ice_set_vf_state_qs_dis - Set VF queues state to disabled
 * @vf: pointer to the VF structure
 */
void ice_set_vf_state_qs_dis(struct ice_vf *vf)
{
	/* Clear Rx/Tx enabled queues flag */
	bitmap_zero(vf->txq_ena, ICE_MAX_BASE_QS_PER_VF);
	bitmap_zero(vf->rxq_ena, ICE_MAX_BASE_QS_PER_VF);
	vf->num_qs_ena = 0;
	clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
}

/**
 * ice_dis_vf_qs - Disable the VF queues
 * @vf: pointer to the VF structure
 */
static void ice_dis_vf_qs(struct ice_vf *vf)
{
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;

	vsi = pf->vsi[vf->lan_vsi_idx];

	ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id);
	ice_vsi_stop_rx_rings(vsi);
	ice_set_vf_state_qs_dis(vf);
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/**
 * ice_free_vfs - Free all VFs
 * @pf: pointer to the PF structure
 */
void ice_free_vfs(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	int tmp, i;

	if (!pf->vf)
		return;

	while (test_and_set_bit(__ICE_VF_DIS, pf->state))
		usleep_range(1000, 2000);

	/* Avoid wait time by stopping all VFs at the same time */
299 300 301
	for (i = 0; i < pf->num_alloc_vfs; i++)
		if (test_bit(ICE_VF_STATE_QS_ENA, pf->vf[i].vf_states))
			ice_dis_vf_qs(&pf->vf[i]);
302

303 304 305 306 307 308 309 310 311
	/* Disable IOV before freeing resources. This lets any VF drivers
	 * running in the host get themselves cleaned up before we yank
	 * the carpet out from underneath their feet.
	 */
	if (!pci_vfs_assigned(pf->pdev))
		pci_disable_sriov(pf->pdev);
	else
		dev_warn(&pf->pdev->dev, "VFs are assigned - not disabling SR-IOV\n");

312 313 314 315 316 317 318 319 320 321 322
	tmp = pf->num_alloc_vfs;
	pf->num_vf_qps = 0;
	pf->num_alloc_vfs = 0;
	for (i = 0; i < tmp; i++) {
		if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) {
			/* disable VF qp mappings */
			ice_dis_vf_mappings(&pf->vf[i]);
			ice_free_vf_res(&pf->vf[i]);
		}
	}

B
Brett Creeley 已提交
323 324 325 326
	if (ice_sriov_free_msix_res(pf))
		dev_err(&pf->pdev->dev,
			"Failed to free MSIX resources used by SR-IOV\n");

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	devm_kfree(&pf->pdev->dev, pf->vf);
	pf->vf = NULL;

	/* This check is for when the driver is unloaded while VFs are
	 * assigned. Setting the number of VFs to 0 through sysfs is caught
	 * before this function ever gets called.
	 */
	if (!pci_vfs_assigned(pf->pdev)) {
		int vf_id;

		/* Acknowledge VFLR for all VFs. Without this, VFs will fail to
		 * work correctly when SR-IOV gets re-enabled.
		 */
		for (vf_id = 0; vf_id < tmp; vf_id++) {
			u32 reg_idx, bit_idx;

			reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
			bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
		}
	}
	clear_bit(__ICE_VF_DIS, pf->state);
	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
}

/**
 * ice_trigger_vf_reset - Reset a VF on HW
 * @vf: pointer to the VF structure
 * @is_vflr: true if VFLR was issued, false if not
 *
 * Trigger hardware to start a reset for a particular VF. Expects the caller
 * to wait the proper amount of time to allow hardware to reset the VF before
 * it cleans up and restores VF functionality.
 */
static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr)
{
	struct ice_pf *pf = vf->pf;
	u32 reg, reg_idx, bit_idx;
	struct ice_hw *hw;
	int vf_abs_id, i;

	hw = &pf->hw;
	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;

	/* Inform VF that it is no longer active, as a warning */
	clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);

	/* Disable VF's configuration API during reset. The flag is re-enabled
	 * in ice_alloc_vf_res(), when it's safe again to access VF's VSI.
	 * It's normally disabled in ice_free_vf_res(), but it's safer
	 * to do it earlier to give some time to finish to any VF config
	 * functions that may still be running at this point.
	 */
	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
381 382 383 384 385

	/* Clear the VF's ARQLEN register. This is how the VF detects reset,
	 * since the VFGEN_RSTAT register doesn't stick at 0 after reset.
	 */
	wr32(hw, VF_MBX_ARQLEN(vf_abs_id), 0);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

	/* In the case of a VFLR, the HW has already reset the VF and we
	 * just need to clean up, so don't hit the VFRTRIG register.
	 */
	if (!is_vflr) {
		/* reset VF using VPGEN_VFRTRIG reg */
		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
		reg |= VPGEN_VFRTRIG_VFSWR_M;
		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
	}
	/* clear the VFLR bit in GLGEN_VFLRSTAT */
	reg_idx = (vf_abs_id) / 32;
	bit_idx = (vf_abs_id) % 32;
	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
	ice_flush(hw);

	wr32(hw, PF_PCI_CIAA,
	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
404
	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
405
		reg = rd32(hw, PF_PCI_CIAD);
406 407 408 409 410 411 412
		/* no transactions pending so stop polling */
		if ((reg & VF_TRANS_PENDING_M) == 0)
			break;

		dev_err(&pf->pdev->dev,
			"VF %d PCI transactions stuck\n", vf->vf_id);
		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
413 414 415 416
	}
}

/**
417 418 419
 * ice_vsi_set_pvid_fill_ctxt - Set VSI ctxt for add PVID
 * @ctxt: the VSI ctxt to fill
 * @vid: the VLAN ID to set as a PVID
420
 */
421 422 423 424 425 426 427 428 429 430 431 432
static void ice_vsi_set_pvid_fill_ctxt(struct ice_vsi_ctx *ctxt, u16 vid)
{
	ctxt->info.vlan_flags = (ICE_AQ_VSI_VLAN_MODE_UNTAGGED |
				 ICE_AQ_VSI_PVLAN_INSERT_PVID |
				 ICE_AQ_VSI_VLAN_EMOD_STR);
	ctxt->info.pvid = cpu_to_le16(vid);
	ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
						ICE_AQ_VSI_PROP_SW_VALID);
}

/**
433
 * ice_vsi_kill_pvid_fill_ctxt - Set VSI ctx for remove PVID
434 435 436 437 438 439 440 441 442 443 444 445 446 447
 * @ctxt: the VSI ctxt to fill
 */
static void ice_vsi_kill_pvid_fill_ctxt(struct ice_vsi_ctx *ctxt)
{
	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
	ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
						ICE_AQ_VSI_PROP_SW_VALID);
}

/**
 * ice_vsi_manage_pvid - Enable or disable port VLAN for VSI
 * @vsi: the VSI to update
448 449
 * @vid: the VLAN ID to set as a PVID
 * @enable: true for enable PVID false for disable
450 451
 */
static int ice_vsi_manage_pvid(struct ice_vsi *vsi, u16 vid, bool enable)
452 453 454
{
	struct device *dev = &vsi->back->pdev->dev;
	struct ice_hw *hw = &vsi->back->hw;
455
	struct ice_vsi_ctx *ctxt;
456
	enum ice_status status;
457 458 459 460 461
	int ret = 0;

	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
	if (!ctxt)
		return -ENOMEM;
462

463 464 465 466 467
	ctxt->info = vsi->info;
	if (enable)
		ice_vsi_set_pvid_fill_ctxt(ctxt, vid);
	else
		ice_vsi_kill_pvid_fill_ctxt(ctxt);
468

469
	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
470
	if (status) {
471
		dev_info(dev, "update VSI for port VLAN failed, err %d aq_err %d\n",
472
			 status, hw->adminq.sq_last_status);
473 474
		ret = -EIO;
		goto out;
475 476
	}

477
	vsi->info = ctxt->info;
478 479 480
out:
	devm_kfree(dev, ctxt);
	return ret;
481 482 483 484 485 486
}

/**
 * ice_vf_vsi_setup - Set up a VF VSI
 * @pf: board private structure
 * @pi: pointer to the port_info instance
487
 * @vf_id: defines VF ID to which this VSI connects.
488 489 490 491 492 493 494 495 496 497
 *
 * Returns pointer to the successfully allocated VSI struct on success,
 * otherwise returns NULL on failure.
 */
static struct ice_vsi *
ice_vf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, u16 vf_id)
{
	return ice_vsi_setup(pf, pi, ICE_VSI_VF, vf_id);
}

B
Brett Creeley 已提交
498
/**
499
 * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
B
Brett Creeley 已提交
500 501 502
 * @pf: pointer to PF structure
 * @vf: pointer to VF that the first MSIX vector index is being calculated for
 *
503 504 505 506
 * This returns the first MSIX vector index in PF space that is used by this VF.
 * This index is used when accessing PF relative registers such as
 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
 * This will always be the OICR index in the AVF driver so any functionality
B
Brett Creeley 已提交
507 508 509 510 511
 * using vf->first_vector_idx for queue configuration will have to increment by
 * 1 to avoid meddling with the OICR index.
 */
static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
{
512
	return pf->sriov_base_vector + vf->vf_id * pf->num_vf_msix;
B
Brett Creeley 已提交
513 514
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528
/**
 * ice_alloc_vsi_res - Setup VF VSI and its resources
 * @vf: pointer to the VF structure
 *
 * Returns 0 on success, negative value on failure
 */
static int ice_alloc_vsi_res(struct ice_vf *vf)
{
	struct ice_pf *pf = vf->pf;
	LIST_HEAD(tmp_add_list);
	u8 broadcast[ETH_ALEN];
	struct ice_vsi *vsi;
	int status = 0;

B
Brett Creeley 已提交
529 530 531
	/* first vector index is the VFs OICR index */
	vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);

532 533 534 535 536 537 538 539 540 541
	vsi = ice_vf_vsi_setup(pf, pf->hw.port_info, vf->vf_id);
	if (!vsi) {
		dev_err(&pf->pdev->dev, "Failed to create VF VSI\n");
		return -ENOMEM;
	}

	vf->lan_vsi_idx = vsi->idx;
	vf->lan_vsi_num = vsi->vsi_num;

	/* Check if port VLAN exist before, and restore it accordingly */
542
	if (vf->port_vlan_id) {
543
		ice_vsi_manage_pvid(vsi, vf->port_vlan_id, true);
544 545
		ice_vsi_add_vlan(vsi, vf->port_vlan_id & ICE_VLAN_M);
	}
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

	eth_broadcast_addr(broadcast);

	status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
	if (status)
		goto ice_alloc_vsi_res_exit;

	if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) {
		status = ice_add_mac_to_list(vsi, &tmp_add_list,
					     vf->dflt_lan_addr.addr);
		if (status)
			goto ice_alloc_vsi_res_exit;
	}

	status = ice_add_mac(&pf->hw, &tmp_add_list);
	if (status)
562 563 564 565
		dev_err(&pf->pdev->dev,
			"could not add mac filters error %d\n", status);
	else
		vf->num_mac = 1;
566 567 568

	/* Clear this bit after VF initialization since we shouldn't reclaim
	 * and reassign interrupts for synchronous or asynchronous VFR events.
569
	 * We don't want to reconfigure interrupts since AVF driver doesn't
570 571 572 573 574 575 576 577 578 579 580 581 582 583
	 * expect vector assignment to be changed unless there is a request for
	 * more vectors.
	 */
ice_alloc_vsi_res_exit:
	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
	return status;
}

/**
 * ice_alloc_vf_res - Allocate VF resources
 * @vf: pointer to the VF structure
 */
static int ice_alloc_vf_res(struct ice_vf *vf)
{
584 585
	struct ice_pf *pf = vf->pf;
	int tx_rx_queue_left;
586 587
	int status;

588 589 590 591 592 593 594 595 596
	/* Update number of VF queues, in case VF had requested for queue
	 * changes
	 */
	tx_rx_queue_left = min_t(int, pf->q_left_tx, pf->q_left_rx);
	tx_rx_queue_left += ICE_DFLT_QS_PER_VF;
	if (vf->num_req_qs && vf->num_req_qs <= tx_rx_queue_left &&
	    vf->num_req_qs != vf->num_vf_qs)
		vf->num_vf_qs = vf->num_req_qs;

597 598 599 600 601
	/* setup VF VSI and necessary resources */
	status = ice_alloc_vsi_res(vf);
	if (status)
		goto ice_alloc_vf_res_exit;

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	if (vf->trusted)
		set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
	else
		clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);

	/* VF is now completely initialized */
	set_bit(ICE_VF_STATE_INIT, vf->vf_states);

	return status;

ice_alloc_vf_res_exit:
	ice_free_vf_res(vf);
	return status;
}

/**
 * ice_ena_vf_mappings
 * @vf: pointer to the VF structure
 *
 * Enable VF vectors and queues allocation by writing the details into
 * respective registers.
 */
static void ice_ena_vf_mappings(struct ice_vf *vf)
{
626
	int abs_vf_id, abs_first, abs_last;
627 628 629 630 631 632 633 634
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;
	int first, last, v;
	struct ice_hw *hw;
	u32 reg;

	hw = &pf->hw;
	vsi = pf->vsi[vf->lan_vsi_idx];
B
Brett Creeley 已提交
635
	first = vf->first_vector_idx;
636
	last = (first + pf->num_vf_msix) - 1;
637 638
	abs_first = first + pf->hw.func_caps.common_cap.msix_vector_first_id;
	abs_last = (abs_first + pf->num_vf_msix) - 1;
639 640 641
	abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id;

	/* VF Vector allocation */
642 643
	reg = (((abs_first << VPINT_ALLOC_FIRST_S) & VPINT_ALLOC_FIRST_M) |
	       ((abs_last << VPINT_ALLOC_LAST_S) & VPINT_ALLOC_LAST_M) |
644 645 646
	       VPINT_ALLOC_VALID_M);
	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);

647 648 649
	reg = (((abs_first << VPINT_ALLOC_PCI_FIRST_S)
		 & VPINT_ALLOC_PCI_FIRST_M) |
	       ((abs_last << VPINT_ALLOC_PCI_LAST_S) & VPINT_ALLOC_PCI_LAST_M) |
650 651
	       VPINT_ALLOC_PCI_VALID_M);
	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
652 653 654 655 656 657 658 659 660
	/* map the interrupts to its functions */
	for (v = first; v <= last; v++) {
		reg = (((abs_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
			GLINT_VECT2FUNC_VF_NUM_M) |
		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
			GLINT_VECT2FUNC_PF_NUM_M));
		wr32(hw, GLINT_VECT2FUNC(v), reg);
	}

661 662 663 664
	/* Map mailbox interrupt. We put an explicit 0 here to remind us that
	 * VF admin queue interrupts will go to VF MSI-X vector 0.
	 */
	wr32(hw, VPINT_MBX_CTL(abs_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M | 0);
665 666 667
	/* set regardless of mapping mode */
	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	/* VF Tx queues allocation */
	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
		/* set the VF PF Tx queue range
		 * VFNUMQ value should be set to (number of queues - 1). A value
		 * of 0 means 1 queue and a value of 255 means 256 queues
		 */
		reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
			VPLAN_TX_QBASE_VFFIRSTQ_M) |
		       (((vsi->alloc_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
			VPLAN_TX_QBASE_VFNUMQ_M));
		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
	} else {
		dev_err(&pf->pdev->dev,
			"Scattered mode for VF Tx queues is not yet implemented\n");
	}

684 685 686
	/* set regardless of mapping mode */
	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	/* VF Rx queues allocation */
	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
		/* set the VF PF Rx queue range
		 * VFNUMQ value should be set to (number of queues - 1). A value
		 * of 0 means 1 queue and a value of 255 means 256 queues
		 */
		reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
			VPLAN_RX_QBASE_VFFIRSTQ_M) |
		       (((vsi->alloc_txq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
			VPLAN_RX_QBASE_VFNUMQ_M));
		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
	} else {
		dev_err(&pf->pdev->dev,
			"Scattered mode for VF Rx queues is not yet implemented\n");
	}
}

/**
 * ice_determine_res
 * @pf: pointer to the PF structure
 * @avail_res: available resources in the PF structure
 * @max_res: maximum resources that can be given per VF
 * @min_res: minimum resources that can be given per VF
 *
 * Returns non-zero value if resources (queues/vectors) are available or
 * returns zero if PF cannot accommodate for all num_alloc_vfs.
 */
static int
ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res)
{
	bool checked_min_res = false;
	int res;

	/* start by checking if PF can assign max number of resources for
	 * all num_alloc_vfs.
	 * if yes, return number per VF
	 * If no, divide by 2 and roundup, check again
	 * repeat the loop till we reach a point where even minimum resources
	 * are not available, in that case return 0
	 */
	res = max_res;
	while ((res >= min_res) && !checked_min_res) {
		int num_all_res;

		num_all_res = pf->num_alloc_vfs * res;
		if (num_all_res <= avail_res)
			return res;

		if (res == min_res)
			checked_min_res = true;

		res = DIV_ROUND_UP(res, 2);
	}
	return 0;
}

B
Brett Creeley 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
/**
 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
 * @vf: VF to calculate the register index for
 * @q_vector: a q_vector associated to the VF
 */
int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
{
	struct ice_pf *pf;

	if (!vf || !q_vector)
		return -EINVAL;

	pf = vf->pf;

	/* always add one to account for the OICR being the first MSIX */
	return pf->sriov_base_vector + pf->num_vf_msix * vf->vf_id +
		q_vector->v_idx + 1;
}

/**
 * ice_get_max_valid_res_idx - Get the max valid resource index
 * @res: pointer to the resource to find the max valid index for
 *
 * Start from the end of the ice_res_tracker and return right when we find the
 * first res->list entry with the ICE_RES_VALID_BIT set. This function is only
 * valid for SR-IOV because it is the only consumer that manipulates the
 * res->end and this is always called when res->end is set to res->num_entries.
 */
static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
{
	int i;

	if (!res)
		return -EINVAL;

	for (i = res->num_entries - 1; i >= 0; i--)
		if (res->list[i] & ICE_RES_VALID_BIT)
			return i;

	return 0;
}

/**
 * ice_sriov_set_msix_res - Set any used MSIX resources
 * @pf: pointer to PF structure
 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
 *
 * This function allows SR-IOV resources to be taken from the end of the PF's
 * allowed HW MSIX vectors so in many cases the irq_tracker will not
 * be needed. In these cases we just set the pf->sriov_base_vector and return
 * success.
 *
 * If SR-IOV needs to use any pf->irq_tracker entries it updates the
 * irq_tracker->end based on the first entry needed for SR-IOV. This makes it
 * so any calls to ice_get_res() using the irq_tracker will not try to use
 * resources at or beyond the newly set value.
 *
 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors in
 * in the PF's space available for SR-IOV.
 */
static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
{
	int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
	u16 pf_total_msix_vectors =
		pf->hw.func_caps.common_cap.num_msix_vectors;
	struct ice_res_tracker *res = pf->irq_tracker;
	int sriov_base_vector;

	if (max_valid_res_idx < 0)
		return max_valid_res_idx;

	sriov_base_vector = pf_total_msix_vectors - num_msix_needed;

	/* make sure we only grab irq_tracker entries from the list end and
	 * that we have enough available MSIX vectors
	 */
	if (sriov_base_vector <= max_valid_res_idx)
		return -EINVAL;

	pf->sriov_base_vector = sriov_base_vector;

	/* dip into irq_tracker entries and update used resources */
	if (num_msix_needed > (pf_total_msix_vectors - res->num_entries)) {
		pf->num_avail_sw_msix -=
			res->num_entries - pf->sriov_base_vector;
		res->end = pf->sriov_base_vector;
	}

	return 0;
}

834 835 836 837 838 839 840 841 842 843
/**
 * ice_check_avail_res - check if vectors and queues are available
 * @pf: pointer to the PF structure
 *
 * This function is where we calculate actual number of resources for VF VSIs,
 * we don't reserve ahead of time during probe. Returns success if vectors and
 * queues resources are available, otherwise returns error code
 */
static int ice_check_avail_res(struct ice_pf *pf)
{
B
Brett Creeley 已提交
844 845
	int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
	u16 num_msix, num_txq, num_rxq, num_avail_msix;
846

B
Brett Creeley 已提交
847
	if (!pf->num_alloc_vfs || max_valid_res_idx < 0)
848 849
		return -EINVAL;

B
Brett Creeley 已提交
850 851 852 853
	/* add 1 to max_valid_res_idx to account for it being 0-based */
	num_avail_msix = pf->hw.func_caps.common_cap.num_msix_vectors -
		(max_valid_res_idx + 1);

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	/* Grab from HW interrupts common pool
	 * Note: By the time the user decides it needs more vectors in a VF
	 * its already too late since one must decide this prior to creating the
	 * VF interface. So the best we can do is take a guess as to what the
	 * user might want.
	 *
	 * We have two policies for vector allocation:
	 * 1. if num_alloc_vfs is from 1 to 16, then we consider this as small
	 * number of NFV VFs used for NFV appliances, since this is a special
	 * case, we try to assign maximum vectors per VF (65) as much as
	 * possible, based on determine_resources algorithm.
	 * 2. if num_alloc_vfs is from 17 to 256, then its large number of
	 * regular VFs which are not used for any special purpose. Hence try to
	 * grab default interrupt vectors (5 as supported by AVF driver).
	 */
	if (pf->num_alloc_vfs <= 16) {
B
Brett Creeley 已提交
870
		num_msix = ice_determine_res(pf, num_avail_msix,
871 872 873
					     ICE_MAX_INTR_PER_VF,
					     ICE_MIN_INTR_PER_VF);
	} else if (pf->num_alloc_vfs <= ICE_MAX_VF_COUNT) {
B
Brett Creeley 已提交
874
		num_msix = ice_determine_res(pf, num_avail_msix,
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
					     ICE_DFLT_INTR_PER_VF,
					     ICE_MIN_INTR_PER_VF);
	} else {
		dev_err(&pf->pdev->dev,
			"Number of VFs %d exceeds max VF count %d\n",
			pf->num_alloc_vfs, ICE_MAX_VF_COUNT);
		return -EIO;
	}

	if (!num_msix)
		return -EIO;

	/* Grab from the common pool
	 * start by requesting Default queues (4 as supported by AVF driver),
	 * Note that, the main difference between queues and vectors is, latter
	 * can only be reserved at init time but queues can be requested by VF
	 * at runtime through Virtchnl, that is the reason we start by reserving
	 * few queues.
	 */
	num_txq = ice_determine_res(pf, pf->q_left_tx, ICE_DFLT_QS_PER_VF,
				    ICE_MIN_QS_PER_VF);

	num_rxq = ice_determine_res(pf, pf->q_left_rx, ICE_DFLT_QS_PER_VF,
				    ICE_MIN_QS_PER_VF);

	if (!num_txq || !num_rxq)
		return -EIO;

B
Brett Creeley 已提交
903 904 905
	if (ice_sriov_set_msix_res(pf, num_msix * pf->num_alloc_vfs))
		return -EINVAL;

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	/* since AVF driver works with only queue pairs which means, it expects
	 * to have equal number of Rx and Tx queues, so take the minimum of
	 * available Tx or Rx queues
	 */
	pf->num_vf_qps = min_t(int, num_txq, num_rxq);
	pf->num_vf_msix = num_msix;

	return 0;
}

/**
 * ice_cleanup_and_realloc_vf - Clean up VF and reallocate resources after reset
 * @vf: pointer to the VF structure
 *
 * Cleanup a VF after the hardware reset is finished. Expects the caller to
 * have verified whether the reset is finished properly, and ensure the
 * minimum amount of wait time has passed. Reallocate VF resources back to make
 * VF state active
 */
static void ice_cleanup_and_realloc_vf(struct ice_vf *vf)
{
	struct ice_pf *pf = vf->pf;
	struct ice_hw *hw;
	u32 reg;

	hw = &pf->hw;

	/* PF software completes the flow by notifying VF that reset flow is
	 * completed. This is done by enabling hardware by clearing the reset
	 * bit in the VPGEN_VFRTRIG reg and setting VFR_STATE in the VFGEN_RSTAT
	 * register to VFR completed (done at the end of this function)
	 * By doing this we allow HW to access VF memory at any point. If we
	 * did it any sooner, HW could access memory while it was being freed
	 * in ice_free_vf_res(), causing an IOMMU fault.
	 *
	 * On the other hand, this needs to be done ASAP, because the VF driver
	 * is waiting for this to happen and may report a timeout. It's
	 * harmless, but it gets logged into Guest OS kernel log, so best avoid
	 * it.
	 */
	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);

	/* reallocate VF resources to finish resetting the VSI state */
	if (!ice_alloc_vf_res(vf)) {
		ice_ena_vf_mappings(vf);
		set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
		clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
		vf->num_vlan = 0;
	}

	/* Tell the VF driver the reset is done. This needs to be done only
	 * after VF has been fully initialized, because the VF driver may
	 * request resources immediately after setting this flag.
	 */
	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 * ice_vf_set_vsi_promisc - set given VF VSI to given promiscuous mode(s)
 * @vf: pointer to the VF info
 * @vsi: the VSI being configured
 * @promisc_m: mask of promiscuous config bits
 * @rm_promisc: promisc flag request from the VF to remove or add filter
 *
 * This function configures VF VSI promiscuous mode, based on the VF requests,
 * for Unicast, Multicast and VLAN
 */
static enum ice_status
ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m,
		       bool rm_promisc)
{
	struct ice_pf *pf = vf->pf;
	enum ice_status status = 0;
	struct ice_hw *hw;

	hw = &pf->hw;
	if (vf->num_vlan) {
		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
						  rm_promisc);
	} else if (vf->port_vlan_id) {
		if (rm_promisc)
			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
						       vf->port_vlan_id);
		else
			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
						     vf->port_vlan_id);
	} else {
		if (rm_promisc)
			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
						       0);
		else
			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
						     0);
	}

	return status;
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/**
 * ice_config_res_vfs - Finalize allocation of VFs resources in one go
 * @pf: pointer to the PF structure
 *
 * This function is being called as last part of resetting all VFs, or when
 * configuring VFs for the first time, where there is no resource to be freed
 * Returns true if resources were properly allocated for all VFs, and false
 * otherwise.
 */
static bool ice_config_res_vfs(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	int v;

	if (ice_check_avail_res(pf)) {
		dev_err(&pf->pdev->dev,
			"Cannot allocate VF resources, try with fewer number of VFs\n");
		return false;
	}

	/* rearm global interrupts */
	if (test_and_clear_bit(__ICE_OICR_INTR_DIS, pf->state))
		ice_irq_dynamic_ena(hw, NULL, NULL);

	/* Finish resetting each VF and allocate resources */
	for (v = 0; v < pf->num_alloc_vfs; v++) {
		struct ice_vf *vf = &pf->vf[v];

		vf->num_vf_qs = pf->num_vf_qps;
		dev_dbg(&pf->pdev->dev,
			"VF-id %d has %d queues configured\n",
			vf->vf_id, vf->num_vf_qs);
		ice_cleanup_and_realloc_vf(vf);
	}

	ice_flush(hw);
	clear_bit(__ICE_VF_DIS, pf->state);

	return true;
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/**
 * ice_reset_all_vfs - reset all allocated VFs in one go
 * @pf: pointer to the PF structure
 * @is_vflr: true if VFLR was issued, false if not
 *
 * First, tell the hardware to reset each VF, then do all the waiting in one
 * chunk, and finally finish restoring each VF after the wait. This is useful
 * during PF routines which need to reset all VFs, as otherwise it must perform
 * these resets in a serialized fashion.
 *
 * Returns true if any VFs were reset, and false otherwise.
 */
bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
{
	struct ice_hw *hw = &pf->hw;
1062
	struct ice_vf *vf;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	int v, i;

	/* If we don't have any VFs, then there is nothing to reset */
	if (!pf->num_alloc_vfs)
		return false;

	/* If VFs have been disabled, there is no need to reset */
	if (test_and_set_bit(__ICE_VF_DIS, pf->state))
		return false;

	/* Begin reset on all VFs at once */
	for (v = 0; v < pf->num_alloc_vfs; v++)
		ice_trigger_vf_reset(&pf->vf[v], is_vflr);

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	for (v = 0; v < pf->num_alloc_vfs; v++) {
		struct ice_vsi *vsi;

		vf = &pf->vf[v];
		vsi = pf->vsi[vf->lan_vsi_idx];
		if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states))
			ice_dis_vf_qs(vf);
		ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL,
				NULL, ICE_VF_RESET, vf->vf_id, NULL);
	}
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

	/* HW requires some time to make sure it can flush the FIFO for a VF
	 * when it resets it. Poll the VPGEN_VFRSTAT register for each VF in
	 * sequence to make sure that it has completed. We'll keep track of
	 * the VFs using a simple iterator that increments once that VF has
	 * finished resetting.
	 */
	for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) {

		/* Check each VF in sequence */
		while (v < pf->num_alloc_vfs) {
			u32 reg;

1100
			vf = &pf->vf[v];
1101
			reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
1102 1103 1104
			if (!(reg & VPGEN_VFRSTAT_VFRD_M)) {
				/* only delay if the check failed */
				usleep_range(10, 20);
1105
				break;
1106
			}
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

			/* If the current VF has finished resetting, move on
			 * to the next VF in sequence.
			 */
			v++;
		}
	}

	/* Display a warning if at least one VF didn't manage to reset in
	 * time, but continue on with the operation.
	 */
	if (v < pf->num_alloc_vfs)
		dev_warn(&pf->pdev->dev, "VF reset check timeout\n");

	/* free VF resources to begin resetting the VSI state */
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	for (v = 0; v < pf->num_alloc_vfs; v++) {
		vf = &pf->vf[v];

		ice_free_vf_res(vf);

		/* Free VF queues as well, and reallocate later.
		 * If a given VF has different number of queues
		 * configured, the request for update will come
		 * via mailbox communication.
		 */
		vf->num_vf_qs = 0;
	}
1134

B
Brett Creeley 已提交
1135 1136 1137 1138
	if (ice_sriov_free_msix_res(pf))
		dev_err(&pf->pdev->dev,
			"Failed to free MSIX resources used by SR-IOV\n");

1139
	if (!ice_config_res_vfs(pf))
1140 1141 1142 1143 1144
		return false;

	return true;
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/**
 * ice_reset_vf - Reset a particular VF
 * @vf: pointer to the VF structure
 * @is_vflr: true if VFLR was issued, false if not
 *
 * Returns true if the VF is reset, false otherwise.
 */
static bool ice_reset_vf(struct ice_vf *vf, bool is_vflr)
{
	struct ice_pf *pf = vf->pf;
1155
	struct ice_vsi *vsi;
1156
	struct ice_hw *hw;
1157
	bool rsd = false;
1158
	u8 promisc_m;
1159 1160 1161
	u32 reg;
	int i;

1162 1163
	/* If the PF has been disabled, there is no need resetting VF until
	 * PF is active again.
1164
	 */
1165
	if (test_bit(__ICE_VF_DIS, pf->state))
1166 1167
		return false;

1168 1169 1170 1171 1172 1173 1174
	/* If the VF has been disabled, this means something else is
	 * resetting the VF, so we shouldn't continue. Otherwise, set
	 * disable VF state bit for actual reset, and continue.
	 */
	if (test_and_set_bit(ICE_VF_STATE_DIS, vf->vf_states))
		return false;

1175 1176
	ice_trigger_vf_reset(vf, is_vflr);

1177 1178
	vsi = pf->vsi[vf->lan_vsi_idx];

1179 1180
	if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states))
		ice_dis_vf_qs(vf);
1181 1182 1183 1184 1185 1186

	/* Call Disable LAN Tx queue AQ whether or not queues are
	 * enabled. This is needed for successful completion of VFR.
	 */
	ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL,
			NULL, ICE_VF_RESET, vf->vf_id, NULL);
1187

1188
	hw = &pf->hw;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	/* poll VPGEN_VFRSTAT reg to make sure
	 * that reset is complete
	 */
	for (i = 0; i < 10; i++) {
		/* VF reset requires driver to first reset the VF and then
		 * poll the status register to make sure that the reset
		 * completed successfully.
		 */
		reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
		if (reg & VPGEN_VFRSTAT_VFRD_M) {
			rsd = true;
			break;
		}
1202 1203 1204

		/* only sleep if the reset is not done */
		usleep_range(10, 20);
1205 1206 1207 1208 1209 1210 1211 1212 1213
	}

	/* Display a warning if VF didn't manage to reset in time, but need to
	 * continue on with the operation.
	 */
	if (!rsd)
		dev_warn(&pf->pdev->dev, "VF reset check timeout on VF %d\n",
			 vf->vf_id);

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	/* disable promiscuous modes in case they were enabled
	 * ignore any error if disabling process failed
	 */
	if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
	    test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) {
		if (vf->port_vlan_id ||  vf->num_vlan)
			promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
		else
			promisc_m = ICE_UCAST_PROMISC_BITS;

		vsi = pf->vsi[vf->lan_vsi_idx];
		if (ice_vf_set_vsi_promisc(vf, vsi, promisc_m, true))
			dev_err(&pf->pdev->dev, "disabling promiscuous mode failed\n");
	}

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	/* free VF resources to begin resetting the VSI state */
	ice_free_vf_res(vf);

	ice_cleanup_and_realloc_vf(vf);

	ice_flush(hw);

	return true;
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
/**
 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
 * @pf: pointer to the PF structure
 */
void ice_vc_notify_link_state(struct ice_pf *pf)
{
	int i;

	for (i = 0; i < pf->num_alloc_vfs; i++)
		ice_vc_notify_vf_link_state(&pf->vf[i]);
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
/**
 * ice_vc_notify_reset - Send pending reset message to all VFs
 * @pf: pointer to the PF structure
 *
 * indicate a pending reset to all VFs on a given PF
 */
void ice_vc_notify_reset(struct ice_pf *pf)
{
	struct virtchnl_pf_event pfe;

	if (!pf->num_alloc_vfs)
		return;

	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
1266
	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
1267 1268 1269
			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
}

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/**
 * ice_vc_notify_vf_reset - Notify VF of a reset event
 * @vf: pointer to the VF structure
 */
static void ice_vc_notify_vf_reset(struct ice_vf *vf)
{
	struct virtchnl_pf_event pfe;

	/* validate the request */
	if (!vf || vf->vf_id >= vf->pf->num_alloc_vfs)
		return;

	/* verify if the VF is in either init or active before proceeding */
	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
	    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
		return;

	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
1289 1290 1291
	ice_aq_send_msg_to_vf(&vf->pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT,
			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe),
			      NULL);
1292 1293
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
/**
 * ice_alloc_vfs - Allocate and set up VFs resources
 * @pf: pointer to the PF structure
 * @num_alloc_vfs: number of VFs to allocate
 */
static int ice_alloc_vfs(struct ice_pf *pf, u16 num_alloc_vfs)
{
	struct ice_hw *hw = &pf->hw;
	struct ice_vf *vfs;
	int i, ret;

	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
B
Brett Creeley 已提交
1306
	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1307
	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
1308
	set_bit(__ICE_OICR_INTR_DIS, pf->state);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	ice_flush(hw);

	ret = pci_enable_sriov(pf->pdev, num_alloc_vfs);
	if (ret) {
		pf->num_alloc_vfs = 0;
		goto err_unroll_intr;
	}
	/* allocate memory */
	vfs = devm_kcalloc(&pf->pdev->dev, num_alloc_vfs, sizeof(*vfs),
			   GFP_KERNEL);
	if (!vfs) {
		ret = -ENOMEM;
1321
		goto err_pci_disable_sriov;
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	}
	pf->vf = vfs;

	/* apply default profile */
	for (i = 0; i < num_alloc_vfs; i++) {
		vfs[i].pf = pf;
		vfs[i].vf_sw_id = pf->first_sw;
		vfs[i].vf_id = i;

		/* assign default capabilities */
		set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vfs[i].vf_caps);
		vfs[i].spoofchk = true;
	}
	pf->num_alloc_vfs = num_alloc_vfs;

1337 1338
	/* VF resources get allocated with initialization */
	if (!ice_config_res_vfs(pf)) {
1339
		ret = -EIO;
1340
		goto err_unroll_sriov;
1341
	}
1342

1343
	return ret;
1344 1345

err_unroll_sriov:
1346 1347 1348 1349 1350
	pf->vf = NULL;
	devm_kfree(&pf->pdev->dev, vfs);
	vfs = NULL;
	pf->num_alloc_vfs = 0;
err_pci_disable_sriov:
1351 1352 1353 1354
	pci_disable_sriov(pf->pdev);
err_unroll_intr:
	/* rearm interrupts here */
	ice_irq_dynamic_ena(hw, NULL, NULL);
1355
	clear_bit(__ICE_OICR_INTR_DIS, pf->state);
1356 1357 1358 1359
	return ret;
}

/**
1360 1361
 * ice_pf_state_is_nominal - checks the PF for nominal state
 * @pf: pointer to PF to check
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
 *
 * Check the PF's state for a collection of bits that would indicate
 * the PF is in a state that would inhibit normal operation for
 * driver functionality.
 *
 * Returns true if PF is in a nominal state.
 * Returns false otherwise
 */
static bool ice_pf_state_is_nominal(struct ice_pf *pf)
{
	DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 };

	if (!pf)
		return false;

	bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS);
	if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS))
		return false;

	return true;
}

/**
 * ice_pci_sriov_ena - Enable or change number of VFs
 * @pf: pointer to the PF structure
 * @num_vfs: number of VFs to allocate
 */
static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
{
	int pre_existing_vfs = pci_num_vf(pf->pdev);
	struct device *dev = &pf->pdev->dev;
	int err;

	if (!ice_pf_state_is_nominal(pf)) {
		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
		return -EBUSY;
	}

	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
		dev_err(dev, "This device is not capable of SR-IOV\n");
		return -ENODEV;
	}

	if (pre_existing_vfs && pre_existing_vfs != num_vfs)
		ice_free_vfs(pf);
	else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
		return num_vfs;

	if (num_vfs > pf->num_vfs_supported) {
		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
			num_vfs, pf->num_vfs_supported);
		return -ENOTSUPP;
	}

	dev_info(dev, "Allocating %d VFs\n", num_vfs);
	err = ice_alloc_vfs(pf, num_vfs);
	if (err) {
		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
		return err;
	}

	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
	return num_vfs;
}

/**
 * ice_sriov_configure - Enable or change number of VFs via sysfs
 * @pdev: pointer to a pci_dev structure
 * @num_vfs: number of VFs to allocate
 *
 * This function is called when the user updates the number of VFs in sysfs.
 */
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
{
	struct ice_pf *pf = pci_get_drvdata(pdev);

	if (num_vfs)
		return ice_pci_sriov_ena(pf, num_vfs);

	if (!pci_vfs_assigned(pdev)) {
		ice_free_vfs(pf);
	} else {
		dev_err(&pf->pdev->dev,
			"can't free VFs because some are assigned to VMs.\n");
		return -EBUSY;
	}

	return 0;
}
1451 1452 1453 1454 1455

/**
 * ice_process_vflr_event - Free VF resources via IRQ calls
 * @pf: pointer to the PF structure
 *
1456
 * called from the VFLR IRQ handler to
1457 1458 1459 1460 1461 1462 1463 1464
 * free up VF resources and state variables
 */
void ice_process_vflr_event(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	int vf_id;
	u32 reg;

1465
	if (!test_and_clear_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	    !pf->num_alloc_vfs)
		return;

	for (vf_id = 0; vf_id < pf->num_alloc_vfs; vf_id++) {
		struct ice_vf *vf = &pf->vf[vf_id];
		u32 reg_idx, bit_idx;

		reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
		bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
		if (reg & BIT(bit_idx))
			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
			ice_reset_vf(vf, true);
	}
}
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

/**
 * ice_vc_dis_vf - Disable a given VF via SW reset
 * @vf: pointer to the VF info
 *
 * Disable the VF through a SW reset
 */
static void ice_vc_dis_vf(struct ice_vf *vf)
{
	ice_vc_notify_vf_reset(vf);
	ice_reset_vf(vf, false);
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/**
 * ice_vc_send_msg_to_vf - Send message to VF
 * @vf: pointer to the VF info
 * @v_opcode: virtual channel opcode
 * @v_retval: virtual channel return value
 * @msg: pointer to the msg buffer
 * @msglen: msg length
 *
 * send msg to VF
 */
1505
static int
1506 1507
ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
{
	enum ice_status aq_ret;
	struct ice_pf *pf;

	/* validate the request */
	if (!vf || vf->vf_id >= vf->pf->num_alloc_vfs)
		return -EINVAL;

	pf = vf->pf;

	/* single place to detect unsuccessful return values */
	if (v_retval) {
		vf->num_inval_msgs++;
		dev_info(&pf->pdev->dev, "VF %d failed opcode %d, retval: %d\n",
			 vf->vf_id, v_opcode, v_retval);
		if (vf->num_inval_msgs > ICE_DFLT_NUM_INVAL_MSGS_ALLOWED) {
			dev_err(&pf->pdev->dev,
				"Number of invalid messages exceeded for VF %d\n",
				vf->vf_id);
			dev_err(&pf->pdev->dev, "Use PF Control I/F to enable the VF\n");
			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
			return -EIO;
		}
	} else {
		vf->num_valid_msgs++;
		/* reset the invalid counter, if a valid message is received. */
		vf->num_inval_msgs = 0;
	}

	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
				       msg, msglen, NULL);
1539
	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
1540
		dev_info(&pf->pdev->dev,
1541 1542
			 "Unable to send the message to VF %d ret %d aq_err %d\n",
			 vf->vf_id, aq_ret, pf->hw.mailboxq.sq_last_status);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
		return -EIO;
	}

	return 0;
}

/**
 * ice_vc_get_ver_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to request the API version used by the PF
 */
static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
{
	struct virtchnl_version_info info = {
		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
	};

	vf->vf_ver = *(struct virtchnl_version_info *)msg;
	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
	if (VF_IS_V10(&vf->vf_ver))
		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;

1567 1568
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
				     sizeof(struct virtchnl_version_info));
}

/**
 * ice_vc_get_vf_res_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to request its resources
 */
static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
{
1581
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1582 1583 1584 1585 1586 1587 1588
	struct virtchnl_vf_resource *vfres = NULL;
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;
	int len = 0;
	int ret;

	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
1589
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1590 1591 1592 1593 1594 1595 1596
		goto err;
	}

	len = sizeof(struct virtchnl_vf_resource);

	vfres = devm_kzalloc(&pf->pdev->dev, len, GFP_KERNEL);
	if (!vfres) {
1597
		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		len = 0;
		goto err;
	}
	if (VF_IS_V11(&vf->vf_ver))
		vf->driver_caps = *(u32 *)msg;
	else
		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
				  VIRTCHNL_VF_OFFLOAD_VLAN;

	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
	vsi = pf->vsi[vf->lan_vsi_idx];
1610
	if (!vsi) {
1611
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1612 1613 1614
		goto err;
	}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	if (!vsi->info.pvid)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
	} else {
		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
		else
			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
	}

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;

	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;

	vfres->num_vsis = 1;
	/* Tx and Rx queue are equal for VF */
	vfres->num_queue_pairs = vsi->num_txq;
	vfres->max_vectors = pf->num_vf_msix;
	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
	vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;

	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
			vf->dflt_lan_addr.addr);

	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);

err:
	/* send the response back to the VF */
1665
	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
				    (u8 *)vfres, len);

	devm_kfree(&pf->pdev->dev, vfres);
	return ret;
}

/**
 * ice_vc_reset_vf_msg
 * @vf: pointer to the VF info
 *
 * called from the VF to reset itself,
 * unlike other virtchnl messages, PF driver
 * doesn't send the response back to the VF
 */
static void ice_vc_reset_vf_msg(struct ice_vf *vf)
{
	if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
		ice_reset_vf(vf, false);
}

/**
 * ice_find_vsi_from_id
1688
 * @pf: the PF structure to search for the VSI
1689
 * @id: ID of the VSI it is searching for
1690
 *
1691
 * searches for the VSI with the given ID
1692 1693 1694 1695 1696
 */
static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id)
{
	int i;

1697
	ice_for_each_vsi(pf, i)
1698 1699 1700 1701 1702 1703 1704 1705 1706
		if (pf->vsi[i] && pf->vsi[i]->vsi_num == id)
			return pf->vsi[i];

	return NULL;
}

/**
 * ice_vc_isvalid_vsi_id
 * @vf: pointer to the VF info
1707
 * @vsi_id: VF relative VSI ID
1708
 *
1709
 * check for the valid VSI ID
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
 */
static bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
{
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;

	vsi = ice_find_vsi_from_id(pf, vsi_id);

	return (vsi && (vsi->vf_id == vf->vf_id));
}

/**
 * ice_vc_isvalid_q_id
 * @vf: pointer to the VF info
1724 1725
 * @vsi_id: VSI ID
 * @qid: VSI relative queue ID
1726
 *
1727
 * check for the valid queue ID
1728 1729 1730 1731 1732 1733 1734 1735
 */
static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
{
	struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id);
	/* allocated Tx and Rx queues should be always equal for VF VSI */
	return (vsi && (qid < vsi->alloc_txq));
}

1736 1737 1738 1739 1740
/**
 * ice_vc_isvalid_ring_len
 * @ring_len: length of ring
 *
 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
1741
 * or zero
1742 1743 1744
 */
static bool ice_vc_isvalid_ring_len(u16 ring_len)
{
1745 1746
	return ring_len == 0 ||
	       (ring_len >= ICE_MIN_NUM_DESC &&
1747 1748 1749 1750
		ring_len <= ICE_MAX_NUM_DESC &&
		!(ring_len % ICE_REQ_DESC_MULTIPLE));
}

1751 1752 1753 1754 1755 1756 1757 1758 1759
/**
 * ice_vc_config_rss_key
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * Configure the VF's RSS key
 */
static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
{
1760
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1761 1762
	struct virtchnl_rss_key *vrk =
		(struct virtchnl_rss_key *)msg;
1763
	struct ice_pf *pf = vf->pf;
1764
	struct ice_vsi *vsi = NULL;
1765 1766

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1767
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1768 1769 1770 1771
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
1772
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1773 1774 1775
		goto error_param;
	}

1776
	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
1777
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1778 1779 1780
		goto error_param;
	}

1781
	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1782
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1783 1784 1785
		goto error_param;
	}

1786 1787
	vsi = pf->vsi[vf->lan_vsi_idx];
	if (!vsi) {
1788
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1789 1790 1791
		goto error_param;
	}

1792 1793
	if (ice_set_rss(vsi, vrk->key, NULL, 0))
		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1794
error_param:
1795
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
				     NULL, 0);
}

/**
 * ice_vc_config_rss_lut
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * Configure the VF's RSS LUT
 */
static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
{
	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
1809
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1810
	struct ice_pf *pf = vf->pf;
1811
	struct ice_vsi *vsi = NULL;
1812 1813

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1814
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1815 1816 1817 1818
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
1819
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1820 1821 1822
		goto error_param;
	}

1823
	if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
1824
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1825 1826 1827
		goto error_param;
	}

1828
	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1829
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1830 1831 1832
		goto error_param;
	}

1833 1834
	vsi = pf->vsi[vf->lan_vsi_idx];
	if (!vsi) {
1835
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1836 1837 1838
		goto error_param;
	}

1839 1840
	if (ice_set_rss(vsi, NULL, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1841
error_param:
1842
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
				     NULL, 0);
}

/**
 * ice_vc_get_stats_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to get VSI stats
 */
static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
{
1855
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1856 1857
	struct virtchnl_queue_select *vqs =
		(struct virtchnl_queue_select *)msg;
1858
	struct ice_pf *pf = vf->pf;
1859 1860 1861 1862
	struct ice_eth_stats stats;
	struct ice_vsi *vsi;

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1863
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1864 1865 1866 1867
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1868
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1869 1870 1871
		goto error_param;
	}

1872
	vsi = pf->vsi[vf->lan_vsi_idx];
1873
	if (!vsi) {
1874
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		goto error_param;
	}

	memset(&stats, 0, sizeof(struct ice_eth_stats));
	ice_update_eth_stats(vsi);

	stats = vsi->eth_stats;

error_param:
	/* send the response to the VF */
1885
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
				     (u8 *)&stats, sizeof(stats));
}

/**
 * ice_vc_ena_qs_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to enable all or specific queue(s)
 */
static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
{
1898
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1899 1900
	struct virtchnl_queue_select *vqs =
	    (struct virtchnl_queue_select *)msg;
1901
	struct ice_pf *pf = vf->pf;
1902
	struct ice_vsi *vsi;
1903 1904
	unsigned long q_map;
	u16 vf_q_id;
1905 1906

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1907
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1908 1909 1910 1911
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1912
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1913 1914 1915 1916
		goto error_param;
	}

	if (!vqs->rx_queues && !vqs->tx_queues) {
1917
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1918 1919 1920
		goto error_param;
	}

1921 1922 1923 1924 1925 1926
	if (vqs->rx_queues > ICE_MAX_BASE_QS_PER_VF ||
	    vqs->tx_queues > ICE_MAX_BASE_QS_PER_VF) {
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
		goto error_param;
	}

1927
	vsi = pf->vsi[vf->lan_vsi_idx];
1928
	if (!vsi) {
1929
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1930 1931 1932 1933 1934 1935 1936
		goto error_param;
	}

	/* Enable only Rx rings, Tx rings were enabled by the FW when the
	 * Tx queue group list was configured and the context bits were
	 * programmed using ice_vsi_cfg_txqs
	 */
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	q_map = vqs->rx_queues;
	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) {
		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
			goto error_param;
		}

		/* Skip queue if enabled */
		if (test_bit(vf_q_id, vf->rxq_ena))
			continue;

		if (ice_vsi_ctrl_rx_ring(vsi, true, vf_q_id)) {
			dev_err(&vsi->back->pdev->dev,
				"Failed to enable Rx ring %d on VSI %d\n",
				vf_q_id, vsi->vsi_num);
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
			goto error_param;
		}

		set_bit(vf_q_id, vf->rxq_ena);
		vf->num_qs_ena++;
	}

	vsi = pf->vsi[vf->lan_vsi_idx];
	q_map = vqs->tx_queues;
	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) {
		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
			goto error_param;
		}

		/* Skip queue if enabled */
		if (test_bit(vf_q_id, vf->txq_ena))
			continue;

		set_bit(vf_q_id, vf->txq_ena);
		vf->num_qs_ena++;
	}
1975 1976

	/* Set flag to indicate that queues are enabled */
1977
	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1978
		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1979 1980 1981

error_param:
	/* send the response to the VF */
1982
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
				     NULL, 0);
}

/**
 * ice_vc_dis_qs_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to disable all or specific
 * queue(s)
 */
static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
{
1996
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1997 1998
	struct virtchnl_queue_select *vqs =
	    (struct virtchnl_queue_select *)msg;
1999
	struct ice_pf *pf = vf->pf;
2000
	struct ice_vsi *vsi;
2001 2002
	unsigned long q_map;
	u16 vf_q_id;
2003 2004

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
2005
	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
2006
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2007 2008 2009 2010
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
2011
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2012 2013 2014 2015
		goto error_param;
	}

	if (!vqs->rx_queues && !vqs->tx_queues) {
2016
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2017 2018 2019
		goto error_param;
	}

2020 2021 2022 2023 2024 2025
	if (vqs->rx_queues > ICE_MAX_BASE_QS_PER_VF ||
	    vqs->tx_queues > ICE_MAX_BASE_QS_PER_VF) {
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
		goto error_param;
	}

2026
	vsi = pf->vsi[vf->lan_vsi_idx];
2027
	if (!vsi) {
2028
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2029 2030 2031
		goto error_param;
	}

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	if (vqs->tx_queues) {
		q_map = vqs->tx_queues;

		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) {
			struct ice_ring *ring = vsi->tx_rings[vf_q_id];
			struct ice_txq_meta txq_meta = { 0 };

			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
				goto error_param;
			}

			/* Skip queue if not enabled */
			if (!test_bit(vf_q_id, vf->txq_ena))
				continue;

			ice_fill_txq_meta(vsi, ring, &txq_meta);

			if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id,
						 ring, &txq_meta)) {
				dev_err(&vsi->back->pdev->dev,
					"Failed to stop Tx ring %d on VSI %d\n",
					vf_q_id, vsi->vsi_num);
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
				goto error_param;
			}

			/* Clear enabled queues flag */
			clear_bit(vf_q_id, vf->txq_ena);
			vf->num_qs_ena--;
		}
2063 2064
	}

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	if (vqs->rx_queues) {
		q_map = vqs->rx_queues;

		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) {
			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
				goto error_param;
			}

			/* Skip queue if not enabled */
			if (!test_bit(vf_q_id, vf->rxq_ena))
				continue;

			if (ice_vsi_ctrl_rx_ring(vsi, false, vf_q_id)) {
				dev_err(&vsi->back->pdev->dev,
					"Failed to stop Rx ring %d on VSI %d\n",
					vf_q_id, vsi->vsi_num);
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
				goto error_param;
			}

			/* Clear enabled queues flag */
			clear_bit(vf_q_id, vf->rxq_ena);
			vf->num_qs_ena--;
		}
2090 2091 2092
	}

	/* Clear enabled queues flag */
2093 2094
	if (v_ret == VIRTCHNL_STATUS_SUCCESS && !vf->num_qs_ena)
		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
2095 2096 2097

error_param:
	/* send the response to the VF */
2098
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
				     NULL, 0);
}

/**
 * ice_vc_cfg_irq_map_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to configure the IRQ to queue map
 */
static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
{
2111
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2112
	struct virtchnl_irq_map_info *irqmap_info;
2113 2114 2115
	u16 vsi_id, vsi_q_id, vector_id;
	struct virtchnl_vector_map *map;
	struct ice_pf *pf = vf->pf;
2116
	u16 num_q_vectors_mapped;
2117
	struct ice_vsi *vsi;
2118 2119 2120
	unsigned long qmap;
	int i;

2121
	irqmap_info = (struct virtchnl_irq_map_info *)msg;
2122 2123 2124 2125 2126 2127
	num_q_vectors_mapped = irqmap_info->num_vectors;

	/* Check to make sure number of VF vectors mapped is not greater than
	 * number of VF vectors originally allocated, and check that
	 * there is actually at least a single VF queue vector mapped
	 */
2128
	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2129 2130
	    pf->num_vf_msix < num_q_vectors_mapped ||
	    !irqmap_info->num_vectors) {
2131
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2132 2133 2134
		goto error_param;
	}

2135 2136 2137 2138 2139 2140
	vsi = pf->vsi[vf->lan_vsi_idx];
	if (!vsi) {
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
		goto error_param;
	}

2141 2142
	for (i = 0; i < num_q_vectors_mapped; i++) {
		struct ice_q_vector *q_vector;
2143

2144 2145 2146 2147 2148 2149
		map = &irqmap_info->vecmap[i];

		vector_id = map->vector_id;
		vsi_id = map->vsi_id;
		/* validate msg params */
		if (!(vector_id < pf->hw.func_caps.common_cap
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		    .num_msix_vectors) || !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
		    (!vector_id && (map->rxq_map || map->txq_map))) {
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
			goto error_param;
		}

		/* No need to map VF miscellaneous or rogue vector */
		if (!vector_id)
			continue;

		/* Subtract non queue vector from vector_id passed by VF
		 * to get actual number of VSI queue vector array index
		 */
		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
		if (!q_vector) {
2165
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2166 2167 2168 2169 2170
			goto error_param;
		}

		/* lookout for the invalid queue index */
		qmap = map->rxq_map;
2171
		q_vector->num_ring_rx = 0;
2172 2173
		for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) {
			if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) {
2174
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2175 2176
				goto error_param;
			}
2177 2178 2179
			q_vector->num_ring_rx++;
			q_vector->rx.itr_idx = map->rxitr_idx;
			vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
2180 2181
			ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
					      q_vector->rx.itr_idx);
2182 2183 2184
		}

		qmap = map->txq_map;
2185
		q_vector->num_ring_tx = 0;
2186 2187
		for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) {
			if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) {
2188
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2189 2190
				goto error_param;
			}
2191 2192 2193
			q_vector->num_ring_tx++;
			q_vector->tx.itr_idx = map->txitr_idx;
			vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
2194 2195
			ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
					      q_vector->tx.itr_idx);
2196 2197 2198 2199 2200
		}
	}

error_param:
	/* send the response to the VF */
2201
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
				     NULL, 0);
}

/**
 * ice_vc_cfg_qs_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to configure the Rx/Tx queues
 */
static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
{
2214
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2215 2216 2217
	struct virtchnl_vsi_queue_config_info *qci =
	    (struct virtchnl_vsi_queue_config_info *)msg;
	struct virtchnl_queue_pair_info *qpi;
2218
	u16 num_rxq = 0, num_txq = 0;
2219
	struct ice_pf *pf = vf->pf;
2220 2221 2222 2223
	struct ice_vsi *vsi;
	int i;

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2224
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2225 2226 2227 2228
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) {
2229
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2230 2231 2232
		goto error_param;
	}

2233 2234
	vsi = pf->vsi[vf->lan_vsi_idx];
	if (!vsi) {
2235
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2236 2237 2238
		goto error_param;
	}

2239 2240 2241 2242 2243
	if (qci->num_queue_pairs > ICE_MAX_BASE_QS_PER_VF ||
	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
		dev_err(&pf->pdev->dev,
			"VF-%d requesting more than supported number of queues: %d\n",
			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
2244 2245 2246 2247
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
		goto error_param;
	}

2248 2249 2250 2251 2252
	for (i = 0; i < qci->num_queue_pairs; i++) {
		qpi = &qci->qpair[i];
		if (qpi->txq.vsi_id != qci->vsi_id ||
		    qpi->rxq.vsi_id != qci->vsi_id ||
		    qpi->rxq.queue_id != qpi->txq.queue_id ||
2253
		    qpi->txq.headwb_enabled ||
2254 2255
		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
2256
		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
2257
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2258 2259 2260
			goto error_param;
		}
		/* copy Tx queue info from VF into VSI */
2261 2262 2263 2264
		if (qpi->txq.ring_len > 0) {
			num_txq++;
			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
			vsi->tx_rings[i]->count = qpi->txq.ring_len;
2265
		}
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

		/* copy Rx queue info from VF into VSI */
		if (qpi->rxq.ring_len > 0) {
			num_rxq++;
			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
			vsi->rx_rings[i]->count = qpi->rxq.ring_len;

			if (qpi->rxq.databuffer_size != 0 &&
			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
			     qpi->rxq.databuffer_size < 1024)) {
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
				goto error_param;
			}
			vsi->rx_buf_len = qpi->rxq.databuffer_size;
			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
			if (qpi->rxq.max_pkt_size >= (16 * 1024) ||
			    qpi->rxq.max_pkt_size < 64) {
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
				goto error_param;
			}
2286
		}
2287

2288 2289 2290 2291 2292 2293
		vsi->max_frame = qpi->rxq.max_pkt_size;
	}

	/* VF can request to configure less than allocated queues
	 * or default allocated queues. So update the VSI with new number
	 */
2294 2295
	vsi->num_txq = num_txq;
	vsi->num_rxq = num_rxq;
2296
	/* All queues of VF VSI are in TC 0 */
2297 2298
	vsi->tc_cfg.tc_info[0].qcount_tx = num_txq;
	vsi->tc_cfg.tc_info[0].qcount_rx = num_rxq;
2299

2300 2301
	if (ice_vsi_cfg_lan_txqs(vsi) || ice_vsi_cfg_rxqs(vsi))
		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2302 2303 2304

error_param:
	/* send the response to the VF */
2305
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret,
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
				     NULL, 0);
}

/**
 * ice_is_vf_trusted
 * @vf: pointer to the VF info
 */
static bool ice_is_vf_trusted(struct ice_vf *vf)
{
	return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
}

/**
 * ice_can_vf_change_mac
 * @vf: pointer to the VF info
 *
 * Return true if the VF is allowed to change its MAC filters, false otherwise
 */
static bool ice_can_vf_change_mac(struct ice_vf *vf)
{
	/* If the VF MAC address has been set administratively (via the
	 * ndo_set_vf_mac command), then deny permission to the VF to
	 * add/delete unicast MAC addresses, unless the VF is trusted
	 */
	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
		return false;

	return true;
}

/**
 * ice_vc_handle_mac_addr_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
2340
 * @set: true if MAC filters are being set, false otherwise
2341
 *
2342
 * add guest MAC address filter
2343 2344 2345 2346
 */
static int
ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
{
2347
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2348 2349 2350 2351
	struct virtchnl_ether_addr_list *al =
	    (struct virtchnl_ether_addr_list *)msg;
	struct ice_pf *pf = vf->pf;
	enum virtchnl_ops vc_op;
2352
	enum ice_status status;
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	struct ice_vsi *vsi;
	int mac_count = 0;
	int i;

	if (set)
		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
	else
		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2364
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2365 2366 2367 2368 2369 2370
		goto handle_mac_exit;
	}

	if (set && !ice_is_vf_trusted(vf) &&
	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
		dev_err(&pf->pdev->dev,
2371 2372 2373 2374 2375
			"Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
			vf->vf_id);
		/* There is no need to let VF know about not being trusted
		 * to add more MAC addr, so we can just return success message.
		 */
2376
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2377 2378 2379 2380
		goto handle_mac_exit;
	}

	vsi = pf->vsi[vf->lan_vsi_idx];
2381
	if (!vsi) {
2382
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2383 2384
		goto handle_mac_exit;
	}
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

	for (i = 0; i < al->num_elements; i++) {
		u8 *maddr = al->list[i].addr;

		if (ether_addr_equal(maddr, vf->dflt_lan_addr.addr) ||
		    is_broadcast_ether_addr(maddr)) {
			if (set) {
				/* VF is trying to add filters that the PF
				 * already added. Just continue.
				 */
				dev_info(&pf->pdev->dev,
2396
					 "MAC %pM already set for VF %d\n",
2397 2398 2399
					 maddr, vf->vf_id);
				continue;
			} else {
2400
				/* VF can't remove dflt_lan_addr/bcast MAC */
2401
				dev_err(&pf->pdev->dev,
2402
					"VF can't remove default MAC address or MAC %pM programmed by PF for VF %d\n",
2403
					maddr, vf->vf_id);
2404
				continue;
2405 2406 2407 2408 2409 2410
			}
		}

		/* check for the invalid cases and bail if necessary */
		if (is_zero_ether_addr(maddr)) {
			dev_err(&pf->pdev->dev,
2411
				"invalid MAC %pM provided for VF %d\n",
2412
				maddr, vf->vf_id);
2413
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2414 2415 2416 2417 2418 2419
			goto handle_mac_exit;
		}

		if (is_unicast_ether_addr(maddr) &&
		    !ice_can_vf_change_mac(vf)) {
			dev_err(&pf->pdev->dev,
2420
				"can't change unicast MAC for untrusted VF %d\n",
2421
				vf->vf_id);
2422
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2423 2424 2425
			goto handle_mac_exit;
		}

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
		/* program the updated filter list */
		status = ice_vsi_cfg_mac_fltr(vsi, maddr, set);
		if (status == ICE_ERR_DOES_NOT_EXIST ||
		    status == ICE_ERR_ALREADY_EXISTS) {
			dev_info(&pf->pdev->dev,
				 "can't %s MAC filters %pM for VF %d, error %d\n",
				 set ? "add" : "remove", maddr, vf->vf_id,
				 status);
		} else if (status) {
			dev_err(&pf->pdev->dev,
				"can't %s MAC filters for VF %d, error %d\n",
				set ? "add" : "remove", vf->vf_id, status);
			v_ret = ice_err_to_virt_err(status);
2439 2440
			goto handle_mac_exit;
		}
2441

2442 2443 2444
		mac_count++;
	}

2445
	/* Track number of MAC filters programmed for the VF VSI */
2446
	if (set)
2447
		vf->num_mac += mac_count;
2448
	else
2449
		vf->num_mac -= mac_count;
2450 2451 2452

handle_mac_exit:
	/* send the response to the VF */
2453
	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
}

/**
 * ice_vc_add_mac_addr_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * add guest MAC address filter
 */
static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
{
	return ice_vc_handle_mac_addr_msg(vf, msg, true);
}

/**
 * ice_vc_del_mac_addr_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * remove guest MAC address filter
 */
static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
{
	return ice_vc_handle_mac_addr_msg(vf, msg, false);
}

/**
 * ice_vc_request_qs_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * VFs get a default number of queues but can use this message to request a
2486
 * different number. If the request is successful, PF will reset the VF and
2487
 * return 0. If unsuccessful, PF will send message informing VF of number of
2488
 * available queue pairs via virtchnl message response to VF.
2489 2490 2491
 */
static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
{
2492
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2493 2494
	struct virtchnl_vf_res_request *vfres =
		(struct virtchnl_vf_res_request *)msg;
2495
	u16 req_queues = vfres->num_queue_pairs;
2496
	struct ice_pf *pf = vf->pf;
2497 2498 2499
	u16 max_allowed_vf_queues;
	u16 tx_rx_queue_left;
	u16 cur_queues;
2500 2501

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2502
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2503 2504 2505
		goto error_param;
	}

2506
	cur_queues = vf->num_vf_qs;
2507
	tx_rx_queue_left = min_t(u16, pf->q_left_tx, pf->q_left_rx);
2508
	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2509
	if (!req_queues) {
2510
		dev_err(&pf->pdev->dev,
2511 2512
			"VF %d tried to request 0 queues. Ignoring.\n",
			vf->vf_id);
2513
	} else if (req_queues > ICE_MAX_BASE_QS_PER_VF) {
2514 2515
		dev_err(&pf->pdev->dev,
			"VF %d tried to request more than %d queues.\n",
2516 2517
			vf->vf_id, ICE_MAX_BASE_QS_PER_VF);
		vfres->num_queue_pairs = ICE_MAX_BASE_QS_PER_VF;
2518 2519
	} else if (req_queues > cur_queues &&
		   req_queues - cur_queues > tx_rx_queue_left) {
2520
		dev_warn(&pf->pdev->dev,
2521
			 "VF %d requested %u more queues, but only %u left.\n",
2522
			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2523
		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2524
					       ICE_MAX_BASE_QS_PER_VF);
2525 2526 2527 2528 2529
	} else {
		/* request is successful, then reset VF */
		vf->num_req_qs = req_queues;
		ice_vc_dis_vf(vf);
		dev_info(&pf->pdev->dev,
2530
			 "VF %d granted request of %u queues.\n",
2531 2532 2533 2534 2535 2536 2537
			 vf->vf_id, req_queues);
		return 0;
	}

error_param:
	/* send the response to the VF */
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2538
				     v_ret, (u8 *)vfres, sizeof(*vfres));
2539 2540
}

2541 2542 2543 2544
/**
 * ice_set_vf_port_vlan
 * @netdev: network interface device structure
 * @vf_id: VF identifier
2545
 * @vlan_id: VLAN ID being set
2546 2547 2548
 * @qos: priority setting
 * @vlan_proto: VLAN protocol
 *
2549
 * program VF Port VLAN ID and/or QoS
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
 */
int
ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
		     __be16 vlan_proto)
{
	u16 vlanprio = vlan_id | (qos << ICE_VLAN_PRIORITY_S);
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_pf *pf = np->vsi->back;
	struct ice_vsi *vsi;
	struct ice_vf *vf;
	int ret = 0;

	/* validate the request */
	if (vf_id >= pf->num_alloc_vfs) {
		dev_err(&pf->pdev->dev, "invalid VF id: %d\n", vf_id);
		return -EINVAL;
	}

	if (vlan_id > ICE_MAX_VLANID || qos > 7) {
		dev_err(&pf->pdev->dev, "Invalid VF Parameters\n");
		return -EINVAL;
	}

	if (vlan_proto != htons(ETH_P_8021Q)) {
		dev_err(&pf->pdev->dev, "VF VLAN protocol is not supported\n");
		return -EPROTONOSUPPORT;
	}

	vf = &pf->vf[vf_id];
	vsi = pf->vsi[vf->lan_vsi_idx];
	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
		dev_err(&pf->pdev->dev, "VF %d in reset. Try again.\n", vf_id);
		return -EBUSY;
	}

	if (le16_to_cpu(vsi->info.pvid) == vlanprio) {
		/* duplicate request, so just return success */
		dev_info(&pf->pdev->dev,
			 "Duplicate pvid %d request\n", vlanprio);
		return ret;
	}

2592
	/* If PVID, then remove all filters on the old VLAN */
2593 2594 2595 2596 2597
	if (vsi->info.pvid)
		ice_vsi_kill_vlan(vsi, (le16_to_cpu(vsi->info.pvid) &
				  VLAN_VID_MASK));

	if (vlan_id || qos) {
2598
		ret = ice_vsi_manage_pvid(vsi, vlanprio, true);
2599 2600 2601
		if (ret)
			goto error_set_pvid;
	} else {
2602 2603
		ice_vsi_manage_pvid(vsi, 0, false);
		vsi->info.pvid = 0;
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	}

	if (vlan_id) {
		dev_info(&pf->pdev->dev, "Setting VLAN %d, QOS 0x%x on VF %d\n",
			 vlan_id, qos, vf_id);

		/* add new VLAN filter for each MAC */
		ret = ice_vsi_add_vlan(vsi, vlan_id);
		if (ret)
			goto error_set_pvid;
	}

	/* The Port VLAN needs to be saved across resets the same as the
	 * default LAN MAC address.
	 */
	vf->port_vlan_id = le16_to_cpu(vsi->info.pvid);

error_set_pvid:
	return ret;
}

2625 2626 2627 2628 2629 2630
/**
 * ice_vc_process_vlan_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 * @add_v: Add VLAN if true, otherwise delete VLAN
 *
2631
 * Process virtchnl op to add or remove programmed guest VLAN ID
2632 2633 2634
 */
static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
{
2635
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2636 2637 2638
	struct virtchnl_vlan_filter_list *vfl =
	    (struct virtchnl_vlan_filter_list *)msg;
	struct ice_pf *pf = vf->pf;
2639
	bool vlan_promisc = false;
2640
	struct ice_vsi *vsi;
2641 2642 2643
	struct ice_hw *hw;
	int status = 0;
	u8 promisc_m;
2644 2645 2646
	int i;

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2647
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2648 2649 2650 2651
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2652
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2653 2654 2655 2656 2657 2658
		goto error_param;
	}

	if (add_v && !ice_is_vf_trusted(vf) &&
	    vf->num_vlan >= ICE_MAX_VLAN_PER_VF) {
		dev_info(&pf->pdev->dev,
2659 2660
			 "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
			 vf->vf_id);
2661 2662 2663
		/* There is no need to let VF know about being not trusted,
		 * so we can just return success message here
		 */
2664 2665 2666 2667 2668
		goto error_param;
	}

	for (i = 0; i < vfl->num_elements; i++) {
		if (vfl->vlan_id[i] > ICE_MAX_VLANID) {
2669
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2670 2671 2672 2673 2674 2675
			dev_err(&pf->pdev->dev,
				"invalid VF VLAN id %d\n", vfl->vlan_id[i]);
			goto error_param;
		}
	}

2676
	hw = &pf->hw;
2677
	vsi = pf->vsi[vf->lan_vsi_idx];
2678
	if (!vsi) {
2679
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2680 2681 2682 2683
		goto error_param;
	}

	if (vsi->info.pvid) {
2684
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2685 2686 2687 2688 2689 2690 2691
		goto error_param;
	}

	if (ice_vsi_manage_vlan_stripping(vsi, add_v)) {
		dev_err(&pf->pdev->dev,
			"%sable VLAN stripping failed for VSI %i\n",
			 add_v ? "en" : "dis", vsi->vsi_num);
2692
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2693 2694 2695
		goto error_param;
	}

2696 2697 2698 2699
	if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
	    test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
		vlan_promisc = true;

2700 2701 2702 2703
	if (add_v) {
		for (i = 0; i < vfl->num_elements; i++) {
			u16 vid = vfl->vlan_id[i];

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
			if (!ice_is_vf_trusted(vf) &&
			    vf->num_vlan >= ICE_MAX_VLAN_PER_VF) {
				dev_info(&pf->pdev->dev,
					 "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
					 vf->vf_id);
				/* There is no need to let VF know about being
				 * not trusted, so we can just return success
				 * message here as well.
				 */
				goto error_param;
			}

2716
			if (ice_vsi_add_vlan(vsi, vid)) {
2717
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2718 2719
				goto error_param;
			}
2720

2721 2722 2723 2724 2725
			vf->num_vlan++;
			/* Enable VLAN pruning when VLAN is added */
			if (!vlan_promisc) {
				status = ice_cfg_vlan_pruning(vsi, true, false);
				if (status) {
2726
					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2727 2728 2729 2730 2731
					dev_err(&pf->pdev->dev,
						"Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
						vid, status);
					goto error_param;
				}
2732
			} else {
2733 2734 2735 2736 2737 2738
				/* Enable Ucast/Mcast VLAN promiscuous mode */
				promisc_m = ICE_PROMISC_VLAN_TX |
					    ICE_PROMISC_VLAN_RX;

				status = ice_set_vsi_promisc(hw, vsi->idx,
							     promisc_m, vid);
2739 2740
				if (status) {
					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2741 2742 2743
					dev_err(&pf->pdev->dev,
						"Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
						vid, status);
2744
				}
2745 2746 2747
			}
		}
	} else {
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
		/* In case of non_trusted VF, number of VLAN elements passed
		 * to PF for removal might be greater than number of VLANs
		 * filter programmed for that VF - So, use actual number of
		 * VLANS added earlier with add VLAN opcode. In order to avoid
		 * removing VLAN that doesn't exist, which result to sending
		 * erroneous failed message back to the VF
		 */
		int num_vf_vlan;

		num_vf_vlan = vf->num_vlan;
		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2759 2760 2761 2762 2763
			u16 vid = vfl->vlan_id[i];

			/* Make sure ice_vsi_kill_vlan is successful before
			 * updating VLAN information
			 */
2764
			if (ice_vsi_kill_vlan(vsi, vid)) {
2765
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
				goto error_param;
			}

			vf->num_vlan--;
			/* Disable VLAN pruning when removing VLAN */
			ice_cfg_vlan_pruning(vsi, false, false);

			/* Disable Unicast/Multicast VLAN promiscuous mode */
			if (vlan_promisc) {
				promisc_m = ICE_PROMISC_VLAN_TX |
					    ICE_PROMISC_VLAN_RX;
2777

2778 2779
				ice_clear_vsi_promisc(hw, vsi->idx,
						      promisc_m, vid);
2780 2781 2782 2783 2784 2785 2786
			}
		}
	}

error_param:
	/* send the response to the VF */
	if (add_v)
2787
		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2788 2789
					     NULL, 0);
	else
2790
		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2791 2792 2793 2794 2795 2796 2797 2798
					     NULL, 0);
}

/**
 * ice_vc_add_vlan_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
2799
 * Add and program guest VLAN ID
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
 */
static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
{
	return ice_vc_process_vlan_msg(vf, msg, true);
}

/**
 * ice_vc_remove_vlan_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
2811
 * remove programmed guest VLAN ID
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
 */
static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
{
	return ice_vc_process_vlan_msg(vf, msg, false);
}

/**
 * ice_vc_ena_vlan_stripping
 * @vf: pointer to the VF info
 *
 * Enable VLAN header stripping for a given VF
 */
static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
{
2826
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2827 2828 2829 2830
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2831
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2832 2833 2834 2835 2836
		goto error_param;
	}

	vsi = pf->vsi[vf->lan_vsi_idx];
	if (ice_vsi_manage_vlan_stripping(vsi, true))
2837
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2838 2839 2840

error_param:
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2841
				     v_ret, NULL, 0);
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
}

/**
 * ice_vc_dis_vlan_stripping
 * @vf: pointer to the VF info
 *
 * Disable VLAN header stripping for a given VF
 */
static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
{
2852
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2853 2854 2855 2856
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2857
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2858 2859 2860 2861
		goto error_param;
	}

	vsi = pf->vsi[vf->lan_vsi_idx];
2862
	if (!vsi) {
2863
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2864 2865 2866
		goto error_param;
	}

2867
	if (ice_vsi_manage_vlan_stripping(vsi, false))
2868
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2869 2870 2871

error_param:
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2872
				     v_ret, NULL, 0);
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
}

/**
 * ice_vc_process_vf_msg - Process request from VF
 * @pf: pointer to the PF structure
 * @event: pointer to the AQ event
 *
 * called from the common asq/arq handler to
 * process request from VF
 */
void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
{
	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
	s16 vf_id = le16_to_cpu(event->desc.retval);
	u16 msglen = event->msg_len;
	u8 *msg = event->msg_buf;
	struct ice_vf *vf = NULL;
	int err = 0;

	if (vf_id >= pf->num_alloc_vfs) {
		err = -EINVAL;
		goto error_handler;
	}

	vf = &pf->vf[vf_id];

	/* Check if VF is disabled. */
	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
		err = -EPERM;
		goto error_handler;
	}

	/* Perform basic checks on the msg */
	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
	if (err) {
2908
		if (err == VIRTCHNL_STATUS_ERR_PARAM)
2909 2910 2911 2912 2913 2914 2915
			err = -EPERM;
		else
			err = -EINVAL;
	}

error_handler:
	if (err) {
2916 2917
		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
				      NULL, 0);
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
		dev_err(&pf->pdev->dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
			vf_id, v_opcode, msglen, err);
		return;
	}

	switch (v_opcode) {
	case VIRTCHNL_OP_VERSION:
		err = ice_vc_get_ver_msg(vf, msg);
		break;
	case VIRTCHNL_OP_GET_VF_RESOURCES:
		err = ice_vc_get_vf_res_msg(vf, msg);
		break;
	case VIRTCHNL_OP_RESET_VF:
		ice_vc_reset_vf_msg(vf);
		break;
	case VIRTCHNL_OP_ADD_ETH_ADDR:
		err = ice_vc_add_mac_addr_msg(vf, msg);
		break;
	case VIRTCHNL_OP_DEL_ETH_ADDR:
		err = ice_vc_del_mac_addr_msg(vf, msg);
		break;
	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
		err = ice_vc_cfg_qs_msg(vf, msg);
		break;
	case VIRTCHNL_OP_ENABLE_QUEUES:
		err = ice_vc_ena_qs_msg(vf, msg);
		ice_vc_notify_vf_link_state(vf);
		break;
	case VIRTCHNL_OP_DISABLE_QUEUES:
		err = ice_vc_dis_qs_msg(vf, msg);
		break;
	case VIRTCHNL_OP_REQUEST_QUEUES:
		err = ice_vc_request_qs_msg(vf, msg);
		break;
	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
		err = ice_vc_cfg_irq_map_msg(vf, msg);
		break;
	case VIRTCHNL_OP_CONFIG_RSS_KEY:
		err = ice_vc_config_rss_key(vf, msg);
		break;
	case VIRTCHNL_OP_CONFIG_RSS_LUT:
		err = ice_vc_config_rss_lut(vf, msg);
		break;
	case VIRTCHNL_OP_GET_STATS:
		err = ice_vc_get_stats_msg(vf, msg);
		break;
	case VIRTCHNL_OP_ADD_VLAN:
		err = ice_vc_add_vlan_msg(vf, msg);
		break;
	case VIRTCHNL_OP_DEL_VLAN:
		err = ice_vc_remove_vlan_msg(vf, msg);
		break;
	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
		err = ice_vc_ena_vlan_stripping(vf);
		break;
	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
		err = ice_vc_dis_vlan_stripping(vf);
		break;
	case VIRTCHNL_OP_UNKNOWN:
	default:
		dev_err(&pf->pdev->dev, "Unsupported opcode %d from VF %d\n",
			v_opcode, vf_id);
2980 2981
		err = ice_vc_send_msg_to_vf(vf, v_opcode,
					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
2982 2983 2984 2985 2986 2987 2988 2989
					    NULL, 0);
		break;
	}
	if (err) {
		/* Helper function cares less about error return values here
		 * as it is busy with pending work.
		 */
		dev_info(&pf->pdev->dev,
2990
			 "PF failed to honor VF %d, opcode %d, error %d\n",
2991 2992 2993 2994
			 vf_id, v_opcode, err);
	}
}

2995 2996 2997 2998 2999 3000 3001 3002
/**
 * ice_get_vf_cfg
 * @netdev: network interface device structure
 * @vf_id: VF identifier
 * @ivi: VF configuration structure
 *
 * return VF configuration
 */
3003 3004
int
ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	struct ice_vf *vf;

	/* validate the request */
	if (vf_id >= pf->num_alloc_vfs) {
		netdev_err(netdev, "invalid VF id: %d\n", vf_id);
		return -EINVAL;
	}

	vf = &pf->vf[vf_id];
	vsi = pf->vsi[vf->lan_vsi_idx];

	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
		netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id);
		return -EBUSY;
	}

	ivi->vf = vf_id;
	ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr);

	/* VF configuration for VLAN and applicable QoS */
	ivi->vlan = le16_to_cpu(vsi->info.pvid) & ICE_VLAN_M;
	ivi->qos = (le16_to_cpu(vsi->info.pvid) & ICE_PRIORITY_M) >>
		    ICE_VLAN_PRIORITY_S;

	ivi->trusted = vf->trusted;
	ivi->spoofchk = vf->spoofchk;
	if (!vf->link_forced)
		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
	else if (vf->link_up)
		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
	else
		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
	ivi->max_tx_rate = vf->tx_rate;
	ivi->min_tx_rate = 0;
	return 0;
}

/**
 * ice_set_vf_spoofchk
 * @netdev: network interface device structure
 * @vf_id: VF identifier
 * @ena: flag to enable or disable feature
 *
 * Enable or disable VF spoof checking
 */
int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
3059 3060
	struct ice_vsi_ctx *ctx;
	enum ice_status status;
3061
	struct ice_vf *vf;
3062
	int ret = 0;
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

	/* validate the request */
	if (vf_id >= pf->num_alloc_vfs) {
		netdev_err(netdev, "invalid VF id: %d\n", vf_id);
		return -EINVAL;
	}

	vf = &pf->vf[vf_id];
	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
		netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id);
		return -EBUSY;
	}

	if (ena == vf->spoofchk) {
		dev_dbg(&pf->pdev->dev, "VF spoofchk already %s\n",
			ena ? "ON" : "OFF");
		return 0;
	}

3082 3083 3084 3085 3086
	ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;

	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3087 3088

	if (ena) {
3089 3090
		ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
		ctx->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_PRUNE_EN_M;
3091 3092
	}

3093
	status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3094 3095 3096
	if (status) {
		dev_dbg(&pf->pdev->dev,
			"Error %d, failed to update VSI* parameters\n", status);
3097 3098
		ret = -EIO;
		goto out;
3099 3100 3101
	}

	vf->spoofchk = ena;
3102 3103 3104 3105 3106
	vsi->info.sec_flags = ctx->info.sec_flags;
	vsi->info.sw_flags2 = ctx->info.sw_flags2;
out:
	devm_kfree(&pf->pdev->dev, ctx);
	return ret;
3107 3108 3109 3110 3111 3112
}

/**
 * ice_set_vf_mac
 * @netdev: network interface device structure
 * @vf_id: VF identifier
3113
 * @mac: MAC address
3114
 *
3115
 * program VF MAC address
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
 */
int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	struct ice_vf *vf;
	int ret = 0;

	/* validate the request */
	if (vf_id >= pf->num_alloc_vfs) {
		netdev_err(netdev, "invalid VF id: %d\n", vf_id);
		return -EINVAL;
	}

	vf = &pf->vf[vf_id];
	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
		netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id);
		return -EBUSY;
	}

	if (is_zero_ether_addr(mac) || is_multicast_ether_addr(mac)) {
		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
		return -EINVAL;
	}

3142
	/* copy MAC into dflt_lan_addr and trigger a VF reset. The reset
3143 3144 3145 3146 3147 3148 3149
	 * flow will use the updated dflt_lan_addr and add a MAC filter
	 * using ice_add_mac. Also set pf_set_mac to indicate that the PF has
	 * set the MAC address for this VF.
	 */
	ether_addr_copy(vf->dflt_lan_addr.addr, mac);
	vf->pf_set_mac = true;
	netdev_info(netdev,
3150
		    "MAC on VF %d set to %pM. VF driver will be reinitialized\n",
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
		    vf_id, mac);

	ice_vc_dis_vf(vf);
	return ret;
}

/**
 * ice_set_vf_trust
 * @netdev: network interface device structure
 * @vf_id: VF identifier
 * @trusted: Boolean value to enable/disable trusted VF
 *
 * Enable or disable a given VF as trusted
 */
int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	struct ice_vf *vf;

	/* validate the request */
	if (vf_id >= pf->num_alloc_vfs) {
		dev_err(&pf->pdev->dev, "invalid VF id: %d\n", vf_id);
		return -EINVAL;
	}

	vf = &pf->vf[vf_id];
	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
		dev_err(&pf->pdev->dev, "VF %d in reset. Try again.\n", vf_id);
		return -EBUSY;
	}

	/* Check if already trusted */
	if (trusted == vf->trusted)
		return 0;

	vf->trusted = trusted;
	ice_vc_dis_vf(vf);
	dev_info(&pf->pdev->dev, "VF %u is now %strusted\n",
		 vf_id, trusted ? "" : "un");

	return 0;
}

/**
 * ice_set_vf_link_state
 * @netdev: network interface device structure
 * @vf_id: VF identifier
 * @link_state: required link state
 *
 * Set VF's link state, irrespective of physical link state status
 */
int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_pf *pf = np->vsi->back;
	struct virtchnl_pf_event pfe = { 0 };
	struct ice_link_status *ls;
	struct ice_vf *vf;
	struct ice_hw *hw;

	if (vf_id >= pf->num_alloc_vfs) {
		dev_err(&pf->pdev->dev, "Invalid VF Identifier %d\n", vf_id);
		return -EINVAL;
	}

	vf = &pf->vf[vf_id];
	hw = &pf->hw;
	ls = &pf->hw.port_info->phy.link_info;

	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
		dev_err(&pf->pdev->dev, "vf %d in reset. Try again.\n", vf_id);
		return -EBUSY;
	}

	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
	pfe.severity = PF_EVENT_SEVERITY_INFO;

	switch (link_state) {
	case IFLA_VF_LINK_STATE_AUTO:
		vf->link_forced = false;
		vf->link_up = ls->link_info & ICE_AQ_LINK_UP;
		break;
	case IFLA_VF_LINK_STATE_ENABLE:
		vf->link_forced = true;
		vf->link_up = true;
		break;
	case IFLA_VF_LINK_STATE_DISABLE:
		vf->link_forced = true;
		vf->link_up = false;
		break;
	default:
		return -EINVAL;
	}

	if (vf->link_forced)
		ice_set_pfe_link_forced(vf, &pfe, vf->link_up);
	else
		ice_set_pfe_link(vf, &pfe, ls->link_speed, vf->link_up);

	/* Notify the VF of its new link state */
3253 3254
	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
3255 3256 3257 3258
			      sizeof(pfe), NULL);

	return 0;
}