i40e_xsk.c 20.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2018 Intel Corporation. */

#include <linux/bpf_trace.h>
#include <net/xdp_sock.h>
#include <net/xdp.h>

#include "i40e.h"
#include "i40e_txrx_common.h"
#include "i40e_xsk.h"

/**
 * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
 * @vsi: Current VSI
 * @umem: UMEM to DMA map
 *
 * Returns 0 on success, <0 on failure
 **/
static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
{
	struct i40e_pf *pf = vsi->back;
	struct device *dev;
	unsigned int i, j;
	dma_addr_t dma;

	dev = &pf->pdev->dev;
	for (i = 0; i < umem->npgs; i++) {
		dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
					 DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
		if (dma_mapping_error(dev, dma))
			goto out_unmap;

		umem->pages[i].dma = dma;
	}

	return 0;

out_unmap:
	for (j = 0; j < i; j++) {
		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
				     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
		umem->pages[i].dma = 0;
	}

	return -1;
}

/**
 * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
 * @vsi: Current VSI
 * @umem: UMEM to DMA map
 **/
static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
{
	struct i40e_pf *pf = vsi->back;
	struct device *dev;
	unsigned int i;

	dev = &pf->pdev->dev;

	for (i = 0; i < umem->npgs; i++) {
		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
				     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);

		umem->pages[i].dma = 0;
	}
}

/**
70
 * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid
71 72 73 74 75 76 77 78 79
 * @vsi: Current VSI
 * @umem: UMEM
 * @qid: Rx ring to associate UMEM to
 *
 * Returns 0 on success, <0 on failure
 **/
static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
				u16 qid)
{
80
	struct net_device *netdev = vsi->netdev;
81
	struct xdp_umem_fq_reuse *reuseq;
82 83 84 85 86 87 88 89 90
	bool if_running;
	int err;

	if (vsi->type != I40E_VSI_MAIN)
		return -EINVAL;

	if (qid >= vsi->num_queue_pairs)
		return -EINVAL;

91 92 93
	if (qid >= netdev->real_num_rx_queues ||
	    qid >= netdev->real_num_tx_queues)
		return -EINVAL;
94

95 96 97 98 99 100
	reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
	if (!reuseq)
		return -ENOMEM;

	xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));

101 102 103 104
	err = i40e_xsk_umem_dma_map(vsi, umem);
	if (err)
		return err;

105 106
	set_bit(qid, vsi->af_xdp_zc_qps);

107 108 109 110 111 112 113 114 115 116
	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);

	if (if_running) {
		err = i40e_queue_pair_disable(vsi, qid);
		if (err)
			return err;

		err = i40e_queue_pair_enable(vsi, qid);
		if (err)
			return err;
117 118

		/* Kick start the NAPI context so that receiving will start */
119
		err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX);
120 121
		if (err)
			return err;
122 123 124 125 126 127
	}

	return 0;
}

/**
128
 * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid
129 130 131 132 133 134 135
 * @vsi: Current VSI
 * @qid: Rx ring to associate UMEM to
 *
 * Returns 0 on success, <0 on failure
 **/
static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
{
136 137
	struct net_device *netdev = vsi->netdev;
	struct xdp_umem *umem;
138 139 140
	bool if_running;
	int err;

141 142
	umem = xdp_get_umem_from_qid(netdev, qid);
	if (!umem)
143 144 145 146 147 148 149 150 151 152
		return -EINVAL;

	if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);

	if (if_running) {
		err = i40e_queue_pair_disable(vsi, qid);
		if (err)
			return err;
	}

153
	clear_bit(qid, vsi->af_xdp_zc_qps);
154
	i40e_xsk_umem_dma_unmap(vsi, umem);
155 156 157 158 159 160 161 162 163 164 165

	if (if_running) {
		err = i40e_queue_pair_enable(vsi, qid);
		if (err)
			return err;
	}

	return 0;
}

/**
166
 * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid
167 168 169 170
 * @vsi: Current VSI
 * @umem: UMEM to enable/associate to a ring, or NULL to disable
 * @qid: Rx ring to (dis)associate UMEM (from)to
 *
171
 * This function enables or disables a UMEM to a certain ring.
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
 *
 * Returns 0 on success, <0 on failure
 **/
int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
			u16 qid)
{
	return umem ? i40e_xsk_umem_enable(vsi, umem, qid) :
		i40e_xsk_umem_disable(vsi, qid);
}

/**
 * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
 * @rx_ring: Rx ring
 * @xdp: xdp_buff used as input to the XDP program
 *
187
 * This function enables or disables a UMEM to a certain ring.
188 189 190 191 192
 *
 * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
 **/
static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
{
193
	struct xdp_umem *umem = rx_ring->xsk_umem;
194 195 196
	int err, result = I40E_XDP_PASS;
	struct i40e_ring *xdp_ring;
	struct bpf_prog *xdp_prog;
197
	u64 offset;
198 199 200 201 202 203 204 205
	u32 act;

	rcu_read_lock();
	/* NB! xdp_prog will always be !NULL, due to the fact that
	 * this path is enabled by setting an XDP program.
	 */
	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
	act = bpf_prog_run_xdp(xdp_prog, xdp);
206
	offset = xdp->data - xdp->data_hard_start;
207 208 209

	xdp->handle = xsk_umem_adjust_offset(umem, xdp->handle, offset);

210 211 212 213 214 215 216 217 218 219 220 221 222
	switch (act) {
	case XDP_PASS:
		break;
	case XDP_TX:
		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
		break;
	case XDP_REDIRECT:
		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
		break;
	default:
		bpf_warn_invalid_xdp_action(act);
223
		/* fall through */
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	case XDP_ABORTED:
		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
		/* fallthrough -- handle aborts by dropping packet */
	case XDP_DROP:
		result = I40E_XDP_CONSUMED;
		break;
	}
	rcu_read_unlock();
	return result;
}

/**
 * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer
 * @rx_ring: Rx ring
 * @bi: Rx buffer to populate
 *
 * This function allocates an Rx buffer. The buffer can come from fill
 * queue, or via the recycle queue (next_to_alloc).
 *
 * Returns true for a successful allocation, false otherwise
 **/
static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
				 struct i40e_rx_buffer *bi)
{
	struct xdp_umem *umem = rx_ring->xsk_umem;
	void *addr = bi->addr;
	u64 handle, hr;

	if (addr) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}

	if (!xsk_umem_peek_addr(umem, &handle)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}

	hr = umem->headroom + XDP_PACKET_HEADROOM;

	bi->dma = xdp_umem_get_dma(umem, handle);
	bi->dma += hr;

	bi->addr = xdp_umem_get_data(umem, handle);
	bi->addr += hr;

270
	bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom);
271 272 273 274 275 276

	xsk_umem_discard_addr(umem);
	return true;
}

/**
277
 * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer
278
 * @rx_ring: Rx ring
279
 * @bi: Rx buffer to populate
280
 *
281 282
 * This function allocates an Rx buffer. The buffer can come from fill
 * queue, or via the reuse queue.
283 284 285
 *
 * Returns true for a successful allocation, false otherwise
 **/
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring,
				      struct i40e_rx_buffer *bi)
{
	struct xdp_umem *umem = rx_ring->xsk_umem;
	u64 handle, hr;

	if (!xsk_umem_peek_addr_rq(umem, &handle)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}

	handle &= rx_ring->xsk_umem->chunk_mask;

	hr = umem->headroom + XDP_PACKET_HEADROOM;

	bi->dma = xdp_umem_get_dma(umem, handle);
	bi->dma += hr;

	bi->addr = xdp_umem_get_data(umem, handle);
	bi->addr += hr;

307
	bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom);
308 309 310 311 312 313 314 315 316

	xsk_umem_discard_addr_rq(umem);
	return true;
}

static __always_inline bool
__i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
			   bool alloc(struct i40e_ring *rx_ring,
				      struct i40e_rx_buffer *bi))
317 318 319 320 321 322 323 324 325
{
	u16 ntu = rx_ring->next_to_use;
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;
	bool ok = true;

	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
	do {
326
		if (!alloc(rx_ring, bi)) {
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
			ok = false;
			goto no_buffers;
		}

		dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0,
						 rx_ring->rx_buf_len,
						 DMA_BIDIRECTIONAL);

		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);

		rx_desc++;
		bi++;
		ntu++;

		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		rx_desc->wb.qword1.status_error_len = 0;
		count--;
	} while (count);

no_buffers:
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);

	return ok;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
/**
 * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
 * @rx_ring: Rx ring
 * @count: The number of buffers to allocate
 *
 * This function allocates a number of Rx buffers from the reuse queue
 * or fill ring and places them on the Rx ring.
 *
 * Returns true for a successful allocation, false otherwise
 **/
bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
{
	return __i40e_alloc_rx_buffers_zc(rx_ring, count,
					  i40e_alloc_buffer_slow_zc);
}

/**
 * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers
 * @rx_ring: Rx ring
 * @count: The number of buffers to allocate
 *
 * This function allocates a number of Rx buffers from the fill ring
 * or the internal recycle mechanism and places them on the Rx ring.
 *
 * Returns true for a successful allocation, false otherwise
 **/
static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count)
{
	return __i40e_alloc_rx_buffers_zc(rx_ring, count,
					  i40e_alloc_buffer_zc);
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
/**
 * i40e_get_rx_buffer_zc - Return the current Rx buffer
 * @rx_ring: Rx ring
 * @size: The size of the rx buffer (read from descriptor)
 *
 * This function returns the current, received Rx buffer, and also
 * does DMA synchronization.  the Rx ring.
 *
 * Returns the received Rx buffer
 **/
static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring,
						    const unsigned int size)
{
	struct i40e_rx_buffer *bi;

	bi = &rx_ring->rx_bi[rx_ring->next_to_clean];

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      bi->dma, 0,
				      size,
				      DMA_BIDIRECTIONAL);

	return bi;
}

/**
 * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
 * @rx_ring: Rx ring
 * @old_bi: The Rx buffer to recycle
 *
 * This function recycles a finished Rx buffer, and places it on the
 * recycle queue (next_to_alloc).
 **/
static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
				    struct i40e_rx_buffer *old_bi)
{
	struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc];
	u16 nta = rx_ring->next_to_alloc;

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
435 436 437
	new_bi->dma = old_bi->dma;
	new_bi->addr = old_bi->addr;
	new_bi->handle = old_bi->handle;
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

	old_bi->addr = NULL;
}

/**
 * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
 * @alloc: Zero-copy allocator
 * @handle: Buffer handle
 **/
void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
{
	struct i40e_rx_buffer *bi;
	struct i40e_ring *rx_ring;
	u64 hr, mask;
	u16 nta;

	rx_ring = container_of(alloc, struct i40e_ring, zca);
	hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
456
	mask = rx_ring->xsk_umem->chunk_mask;
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

	nta = rx_ring->next_to_alloc;
	bi = &rx_ring->rx_bi[nta];

	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	handle &= mask;

	bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
	bi->dma += hr;

	bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
	bi->addr += hr;

472 473
	bi->handle = xsk_umem_adjust_offset(rx_ring->xsk_umem, (u64)handle,
					    rx_ring->xsk_umem->headroom);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
}

/**
 * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
 * @rx_ring: Rx ring
 * @bi: Rx buffer
 * @xdp: xdp_buff
 *
 * This functions allocates a new skb from a zero-copy Rx buffer.
 *
 * Returns the skb, or NULL on failure.
 **/
static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
					     struct i40e_rx_buffer *bi,
					     struct xdp_buff *xdp)
{
	unsigned int metasize = xdp->data - xdp->data_meta;
	unsigned int datasize = xdp->data_end - xdp->data;
	struct sk_buff *skb;

	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       xdp->data_end - xdp->data_hard_start,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	skb_reserve(skb, xdp->data - xdp->data_hard_start);
	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
	if (metasize)
		skb_metadata_set(skb, metasize);

	i40e_reuse_rx_buffer_zc(rx_ring, bi);
	return skb;
}

/**
 * i40e_inc_ntc: Advance the next_to_clean index
 * @rx_ring: Rx ring
 **/
static void i40e_inc_ntc(struct i40e_ring *rx_ring)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;
	prefetch(I40E_RX_DESC(rx_ring, ntc));
}

/**
 * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
 * @rx_ring: Rx ring
 * @budget: NAPI budget
 *
 * Returns amount of work completed
 **/
int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
	unsigned int xdp_res, xdp_xmit = 0;
	bool failure = false;
	struct sk_buff *skb;
	struct xdp_buff xdp;

	xdp.rxq = &rx_ring->xdp_rxq;

	while (likely(total_rx_packets < (unsigned int)budget)) {
		struct i40e_rx_buffer *bi;
		union i40e_rx_desc *rx_desc;
		unsigned int size;
		u64 qword;

		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
			failure = failure ||
549 550
				  !i40e_alloc_rx_buffers_fast_zc(rx_ring,
								 cleaned_count);
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
			cleaned_count = 0;
		}

		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
		 */
		dma_rmb();

		bi = i40e_clean_programming_status(rx_ring, rx_desc,
						   qword);
		if (unlikely(bi)) {
			i40e_reuse_rx_buffer_zc(rx_ring, bi);
			cleaned_count++;
			continue;
		}

		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
			break;

		bi = i40e_get_rx_buffer_zc(rx_ring, size);
		xdp.data = bi->addr;
		xdp.data_meta = xdp.data;
		xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
		xdp.data_end = xdp.data + size;
		xdp.handle = bi->handle;

		xdp_res = i40e_run_xdp_zc(rx_ring, &xdp);
		if (xdp_res) {
			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
				xdp_xmit |= xdp_res;
				bi->addr = NULL;
			} else {
				i40e_reuse_rx_buffer_zc(rx_ring, bi);
			}

			total_rx_bytes += size;
			total_rx_packets++;

			cleaned_count++;
			i40e_inc_ntc(rx_ring);
			continue;
		}

		/* XDP_PASS path */

		/* NB! We are not checking for errors using
		 * i40e_test_staterr with
		 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
		 * SBP is *not* set in PRT_SBPVSI (default not set).
		 */
		skb = i40e_construct_skb_zc(rx_ring, bi, &xdp);
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			break;
		}

		cleaned_count++;
		i40e_inc_ntc(rx_ring);

		if (eth_skb_pad(skb))
			continue;

		total_rx_bytes += skb->len;
		total_rx_packets++;

622
		i40e_process_skb_fields(rx_ring, rx_desc, skb);
623
		napi_gro_receive(&rx_ring->q_vector->napi, skb);
624 625 626 627
	}

	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
628 629 630 631 632 633 634 635 636

	if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) {
		if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
			xsk_set_rx_need_wakeup(rx_ring->xsk_umem);
		else
			xsk_clear_rx_need_wakeup(rx_ring->xsk_umem);

		return (int)total_rx_packets;
	}
637 638 639
	return failure ? budget : (int)total_rx_packets;
}

640 641 642 643 644 645 646 647 648
/**
 * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
 * @xdp_ring: XDP Tx ring
 * @budget: NAPI budget
 *
 * Returns true if the work is finished.
 **/
static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
{
649
	struct i40e_tx_desc *tx_desc = NULL;
650 651
	struct i40e_tx_buffer *tx_bi;
	bool work_done = true;
652
	struct xdp_desc desc;
653 654 655 656 657 658 659 660 661
	dma_addr_t dma;

	while (budget-- > 0) {
		if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
			xdp_ring->tx_stats.tx_busy++;
			work_done = false;
			break;
		}

662
		if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
663 664
			break;

665 666 667
		dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr);

		dma_sync_single_for_device(xdp_ring->dev, dma, desc.len,
668 669 670
					   DMA_BIDIRECTIONAL);

		tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
671
		tx_bi->bytecount = desc.len;
672 673 674 675 676 677

		tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use);
		tx_desc->buffer_addr = cpu_to_le64(dma);
		tx_desc->cmd_type_offset_bsz =
			build_ctob(I40E_TX_DESC_CMD_ICRC
				   | I40E_TX_DESC_CMD_EOP,
678
				   0, desc.len, 0);
679 680 681 682 683 684

		xdp_ring->next_to_use++;
		if (xdp_ring->next_to_use == xdp_ring->count)
			xdp_ring->next_to_use = 0;
	}

685
	if (tx_desc) {
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
		/* Request an interrupt for the last frame and bump tail ptr. */
		tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS <<
						 I40E_TXD_QW1_CMD_SHIFT);
		i40e_xdp_ring_update_tail(xdp_ring);

		xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
	}

	return !!budget && work_done;
}

/**
 * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
 * @tx_ring: XDP Tx ring
 * @tx_bi: Tx buffer info to clean
 **/
static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
				     struct i40e_tx_buffer *tx_bi)
{
	xdp_return_frame(tx_bi->xdpf);
	dma_unmap_single(tx_ring->dev,
			 dma_unmap_addr(tx_bi, dma),
			 dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
	dma_unmap_len_set(tx_bi, len, 0);
}

/**
 * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
 * @tx_ring: XDP Tx ring
 * @tx_bi: Tx buffer info to clean
 *
 * Returns true if cleanup/tranmission is done.
 **/
bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi,
			   struct i40e_ring *tx_ring, int napi_budget)
{
	unsigned int ntc, total_bytes = 0, budget = vsi->work_limit;
	u32 i, completed_frames, frames_ready, xsk_frames = 0;
	struct xdp_umem *umem = tx_ring->xsk_umem;
	u32 head_idx = i40e_get_head(tx_ring);
	bool work_done = true, xmit_done;
	struct i40e_tx_buffer *tx_bi;

	if (head_idx < tx_ring->next_to_clean)
		head_idx += tx_ring->count;
	frames_ready = head_idx - tx_ring->next_to_clean;

	if (frames_ready == 0) {
		goto out_xmit;
	} else if (frames_ready > budget) {
		completed_frames = budget;
		work_done = false;
	} else {
		completed_frames = frames_ready;
	}

	ntc = tx_ring->next_to_clean;

	for (i = 0; i < completed_frames; i++) {
		tx_bi = &tx_ring->tx_bi[ntc];

		if (tx_bi->xdpf)
			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
		else
			xsk_frames++;

		tx_bi->xdpf = NULL;
		total_bytes += tx_bi->bytecount;

		if (++ntc >= tx_ring->count)
			ntc = 0;
	}

	tx_ring->next_to_clean += completed_frames;
	if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
		tx_ring->next_to_clean -= tx_ring->count;

	if (xsk_frames)
		xsk_umem_complete_tx(umem, xsk_frames);

	i40e_arm_wb(tx_ring, vsi, budget);
	i40e_update_tx_stats(tx_ring, completed_frames, total_bytes);

out_xmit:
770 771
	if (xsk_umem_uses_need_wakeup(tx_ring->xsk_umem))
		xsk_set_tx_need_wakeup(tx_ring->xsk_umem);
772

773 774 775 776 777 778
	xmit_done = i40e_xmit_zc(tx_ring, budget);

	return work_done && xmit_done;
}

/**
779
 * i40e_xsk_wakeup - Implements the ndo_xsk_wakeup
780 781
 * @dev: the netdevice
 * @queue_id: queue id to wake up
782
 * @flags: ignored in our case since we have Rx and Tx in the same NAPI.
783 784 785
 *
 * Returns <0 for errors, 0 otherwise.
 **/
786
int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
{
	struct i40e_netdev_priv *np = netdev_priv(dev);
	struct i40e_vsi *vsi = np->vsi;
	struct i40e_ring *ring;

	if (test_bit(__I40E_VSI_DOWN, vsi->state))
		return -ENETDOWN;

	if (!i40e_enabled_xdp_vsi(vsi))
		return -ENXIO;

	if (queue_id >= vsi->num_queue_pairs)
		return -ENXIO;

	if (!vsi->xdp_rings[queue_id]->xsk_umem)
		return -ENXIO;

	ring = vsi->xdp_rings[queue_id];

	/* The idea here is that if NAPI is running, mark a miss, so
	 * it will run again. If not, trigger an interrupt and
	 * schedule the NAPI from interrupt context. If NAPI would be
	 * scheduled here, the interrupt affinity would not be
	 * honored.
	 */
	if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
		i40e_force_wb(vsi, ring->q_vector);

	return 0;
}
817

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
{
	u16 i;

	for (i = 0; i < rx_ring->count; i++) {
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->addr)
			continue;

		xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle);
		rx_bi->addr = NULL;
	}
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/**
 * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown
 * @xdp_ring: XDP Tx ring
 **/
void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
{
	u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
	struct xdp_umem *umem = tx_ring->xsk_umem;
	struct i40e_tx_buffer *tx_bi;
	u32 xsk_frames = 0;

	while (ntc != ntu) {
		tx_bi = &tx_ring->tx_bi[ntc];

		if (tx_bi->xdpf)
			i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
		else
			xsk_frames++;

		tx_bi->xdpf = NULL;

		ntc++;
		if (ntc >= tx_ring->count)
			ntc = 0;
	}

	if (xsk_frames)
		xsk_umem_complete_tx(umem, xsk_frames);
}
862 863 864 865 866 867 868 869 870

/**
 * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached
 * @vsi: vsi
 *
 * Returns true if any of the Rx rings has an AF_XDP UMEM attached
 **/
bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
{
871
	struct net_device *netdev = vsi->netdev;
872 873 874
	int i;

	for (i = 0; i < vsi->num_queue_pairs; i++) {
875
		if (xdp_get_umem_from_qid(netdev, i))
876 877 878 879 880
			return true;
	}

	return false;
}
反馈
建议
客服 返回
顶部