mvsas.c 77.9 KB
Newer Older
1 2 3 4
/*
	mvsas.c - Marvell 88SE6440 SAS/SATA support

	Copyright 2007 Red Hat, Inc.
5
	Copyright 2008 Marvell. <kewei@marvell.com>
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

	This program is free software; you can redistribute it and/or
	modify it under the terms of the GNU General Public License as
	published by the Free Software Foundation; either version 2,
	or (at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty
	of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
	See the GNU General Public License for more details.

	You should have received a copy of the GNU General Public
	License along with this program; see the file COPYING.	If not,
	write to the Free Software Foundation, 675 Mass Ave, Cambridge,
	MA 02139, USA.

	---------------------------------------------------------------

	Random notes:
	* hardware supports controlling the endian-ness of data
	  structures.  this permits elimination of all the le32_to_cpu()
	  and cpu_to_le32() conversions.

 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
38
#include <linux/ctype.h>
39 40 41
#include <scsi/libsas.h>
#include <asm/io.h>

42
#define DRV_NAME	"mvsas"
K
Ke Wei 已提交
43
#define DRV_VERSION	"0.5.1"
44 45 46
#define _MV_DUMP 0
#define MVS_DISABLE_NVRAM
#define MVS_DISABLE_MSI
47 48 49

#define mr32(reg)	readl(regs + MVS_##reg)
#define mw32(reg,val)	writel((val), regs + MVS_##reg)
50
#define mw32_f(reg,val)	do {			\
51 52 53 54
	writel((val), regs + MVS_##reg);	\
	readl(regs + MVS_##reg);		\
	} while (0)

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#define MVS_ID_NOT_MAPPED	0xff
#define MVS_CHIP_SLOT_SZ	(1U << mvi->chip->slot_width)

/* offset for D2H FIS in the Received FIS List Structure */
#define SATA_RECEIVED_D2H_FIS(reg_set)	\
	((void *) mvi->rx_fis + 0x400 + 0x100 * reg_set + 0x40)
#define SATA_RECEIVED_PIO_FIS(reg_set)	\
	((void *) mvi->rx_fis + 0x400 + 0x100 * reg_set + 0x20)
#define UNASSOC_D2H_FIS(id)		\
	((void *) mvi->rx_fis + 0x100 * id)

#define for_each_phy(__lseq_mask, __mc, __lseq, __rest)			\
	for ((__mc) = (__lseq_mask), (__lseq) = 0;			\
					(__mc) != 0 && __rest;		\
					(++__lseq), (__mc) >>= 1)

71 72 73 74 75 76 77 78 79 80
/* driver compile-time configuration */
enum driver_configuration {
	MVS_TX_RING_SZ		= 1024,	/* TX ring size (12-bit) */
	MVS_RX_RING_SZ		= 1024, /* RX ring size (12-bit) */
					/* software requires power-of-2
					   ring size */

	MVS_SLOTS		= 512,	/* command slots */
	MVS_SLOT_BUF_SZ		= 8192, /* cmd tbl + IU + status + PRD */
	MVS_SSP_CMD_SZ		= 64,	/* SSP command table buffer size */
81
	MVS_ATA_CMD_SZ		= 96,	/* SATA command table buffer size */
82 83 84
	MVS_OAF_SZ		= 64,	/* Open address frame buffer size */

	MVS_RX_FIS_COUNT	= 17,	/* Optional rx'd FISs (max 17) */
85 86

	MVS_QUEUE_SIZE		= 30,	/* Support Queue depth */
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
};

/* unchangeable hardware details */
enum hardware_details {
	MVS_MAX_PHYS		= 8,	/* max. possible phys */
	MVS_MAX_PORTS		= 8,	/* max. possible ports */
	MVS_RX_FISL_SZ		= 0x400 + (MVS_RX_FIS_COUNT * 0x100),
};

/* peripheral registers (BAR2) */
enum peripheral_registers {
	SPI_CTL			= 0x10,	/* EEPROM control */
	SPI_CMD			= 0x14,	/* EEPROM command */
	SPI_DATA		= 0x18, /* EEPROM data */
};

enum peripheral_register_bits {
	TWSI_RDY		= (1U << 7),	/* EEPROM interface ready */
	TWSI_RD			= (1U << 4),	/* EEPROM read access */

	SPI_ADDR_MASK		= 0x3ffff,	/* bits 17:0 */
};

/* enhanced mode registers (BAR4) */
enum hw_registers {
	MVS_GBL_CTL		= 0x04,  /* global control */
	MVS_GBL_INT_STAT	= 0x08,  /* global irq status */
	MVS_GBL_PI		= 0x0C,  /* ports implemented bitmask */
115
	MVS_GBL_PORT_TYPE	= 0xa0,  /* port type */
116 117 118 119 120 121 122 123 124 125 126 127

	MVS_CTL			= 0x100, /* SAS/SATA port configuration */
	MVS_PCS			= 0x104, /* SAS/SATA port control/status */
	MVS_CMD_LIST_LO		= 0x108, /* cmd list addr */
	MVS_CMD_LIST_HI		= 0x10C,
	MVS_RX_FIS_LO		= 0x110, /* RX FIS list addr */
	MVS_RX_FIS_HI		= 0x114,

	MVS_TX_CFG		= 0x120, /* TX configuration */
	MVS_TX_LO		= 0x124, /* TX (delivery) ring addr */
	MVS_TX_HI		= 0x128,

128 129
	MVS_TX_PROD_IDX		= 0x12C, /* TX producer pointer */
	MVS_TX_CONS_IDX		= 0x130, /* TX consumer pointer (RO) */
130 131 132
	MVS_RX_CFG		= 0x134, /* RX configuration */
	MVS_RX_LO		= 0x138, /* RX (completion) ring addr */
	MVS_RX_HI		= 0x13C,
133
	MVS_RX_CONS_IDX		= 0x140, /* RX consumer pointer (RO) */
134 135 136 137 138 139

	MVS_INT_COAL		= 0x148, /* Int coalescing config */
	MVS_INT_COAL_TMOUT	= 0x14C, /* Int coalescing timeout */
	MVS_INT_STAT		= 0x150, /* Central int status */
	MVS_INT_MASK		= 0x154, /* Central int enable */
	MVS_INT_STAT_SRS	= 0x158, /* SATA register set status */
140
	MVS_INT_MASK_SRS	= 0x15C,
141 142 143 144

					 /* ports 1-3 follow after this */
	MVS_P0_INT_STAT		= 0x160, /* port0 interrupt status */
	MVS_P0_INT_MASK		= 0x164, /* port0 interrupt mask */
145 146
	MVS_P4_INT_STAT		= 0x200, /* Port 4 interrupt status */
	MVS_P4_INT_MASK		= 0x204, /* Port 4 interrupt enable mask */
147 148 149

					 /* ports 1-3 follow after this */
	MVS_P0_SER_CTLSTAT	= 0x180, /* port0 serial control/status */
150
	MVS_P4_SER_CTLSTAT	= 0x220, /* port4 serial control/status */
151 152 153 154 155 156 157

	MVS_CMD_ADDR		= 0x1B8, /* Command register port (addr) */
	MVS_CMD_DATA		= 0x1BC, /* Command register port (data) */

					 /* ports 1-3 follow after this */
	MVS_P0_CFG_ADDR		= 0x1C0, /* port0 phy register address */
	MVS_P0_CFG_DATA		= 0x1C4, /* port0 phy register data */
158 159 160 161 162 163 164 165
	MVS_P4_CFG_ADDR		= 0x230, /* Port 4 config address */
	MVS_P4_CFG_DATA		= 0x234, /* Port 4 config data */

					 /* ports 1-3 follow after this */
	MVS_P0_VSR_ADDR		= 0x1E0, /* port0 VSR address */
	MVS_P0_VSR_DATA		= 0x1E4, /* port0 VSR data */
	MVS_P4_VSR_ADDR		= 0x250, /* port 4 VSR addr */
	MVS_P4_VSR_DATA		= 0x254, /* port 4 VSR data */
166 167 168 169 170 171 172 173 174 175 176 177 178
};

enum hw_register_bits {
	/* MVS_GBL_CTL */
	INT_EN			= (1U << 1),	/* Global int enable */
	HBA_RST			= (1U << 0),	/* HBA reset */

	/* MVS_GBL_INT_STAT */
	INT_XOR			= (1U << 4),	/* XOR engine event */
	INT_SAS_SATA		= (1U << 0),	/* SAS/SATA event */

	/* MVS_GBL_PORT_TYPE */			/* shl for ports 1-3 */
	SATA_TARGET		= (1U << 16),	/* port0 SATA target enable */
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	MODE_AUTO_DET_PORT7 = (1U << 15),	/* port0 SAS/SATA autodetect */
	MODE_AUTO_DET_PORT6 = (1U << 14),
	MODE_AUTO_DET_PORT5 = (1U << 13),
	MODE_AUTO_DET_PORT4 = (1U << 12),
	MODE_AUTO_DET_PORT3 = (1U << 11),
	MODE_AUTO_DET_PORT2 = (1U << 10),
	MODE_AUTO_DET_PORT1 = (1U << 9),
	MODE_AUTO_DET_PORT0 = (1U << 8),
	MODE_AUTO_DET_EN    =	MODE_AUTO_DET_PORT0 | MODE_AUTO_DET_PORT1 |
				MODE_AUTO_DET_PORT2 | MODE_AUTO_DET_PORT3 |
				MODE_AUTO_DET_PORT4 | MODE_AUTO_DET_PORT5 |
				MODE_AUTO_DET_PORT6 | MODE_AUTO_DET_PORT7,
	MODE_SAS_PORT7_MASK = (1U << 7),  /* port0 SAS(1), SATA(0) mode */
	MODE_SAS_PORT6_MASK = (1U << 6),
	MODE_SAS_PORT5_MASK = (1U << 5),
	MODE_SAS_PORT4_MASK = (1U << 4),
	MODE_SAS_PORT3_MASK = (1U << 3),
	MODE_SAS_PORT2_MASK = (1U << 2),
	MODE_SAS_PORT1_MASK = (1U << 1),
	MODE_SAS_PORT0_MASK = (1U << 0),
	MODE_SAS_SATA	=	MODE_SAS_PORT0_MASK | MODE_SAS_PORT1_MASK |
				MODE_SAS_PORT2_MASK | MODE_SAS_PORT3_MASK |
				MODE_SAS_PORT4_MASK | MODE_SAS_PORT5_MASK |
				MODE_SAS_PORT6_MASK | MODE_SAS_PORT7_MASK,

				/* SAS_MODE value may be
				 * dictated (in hw) by values
				 * of SATA_TARGET & AUTO_DET
				 */
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

	/* MVS_TX_CFG */
	TX_EN			= (1U << 16),	/* Enable TX */
	TX_RING_SZ_MASK		= 0xfff,	/* TX ring size, bits 11:0 */

	/* MVS_RX_CFG */
	RX_EN			= (1U << 16),	/* Enable RX */
	RX_RING_SZ_MASK		= 0xfff,	/* RX ring size, bits 11:0 */

	/* MVS_INT_COAL */
	COAL_EN			= (1U << 16),	/* Enable int coalescing */

	/* MVS_INT_STAT, MVS_INT_MASK */
	CINT_I2C		= (1U << 31),	/* I2C event */
	CINT_SW0		= (1U << 30),	/* software event 0 */
	CINT_SW1		= (1U << 29),	/* software event 1 */
	CINT_PRD_BC		= (1U << 28),	/* PRD BC err for read cmd */
	CINT_DMA_PCIE		= (1U << 27),	/* DMA to PCIE timeout */
	CINT_MEM		= (1U << 26),	/* int mem parity err */
	CINT_I2C_SLAVE		= (1U << 25),	/* slave I2C event */
	CINT_SRS		= (1U << 3),	/* SRS event */
229
	CINT_CI_STOP		= (1U << 1),	/* cmd issue stopped */
230 231 232 233 234
	CINT_DONE		= (1U << 0),	/* cmd completion */

						/* shl for ports 1-3 */
	CINT_PORT_STOPPED	= (1U << 16),	/* port0 stopped */
	CINT_PORT		= (1U << 8),	/* port0 event */
235 236
	CINT_PORT_MASK_OFFSET	= 8,
	CINT_PORT_MASK		= (0xFF << CINT_PORT_MASK_OFFSET),
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

	/* TX (delivery) ring bits */
	TXQ_CMD_SHIFT		= 29,
	TXQ_CMD_SSP		= 1,		/* SSP protocol */
	TXQ_CMD_SMP		= 2,		/* SMP protocol */
	TXQ_CMD_STP		= 3,		/* STP/SATA protocol */
	TXQ_CMD_SSP_FREE_LIST	= 4,		/* add to SSP targ free list */
	TXQ_CMD_SLOT_RESET	= 7,		/* reset command slot */
	TXQ_MODE_I		= (1U << 28),	/* mode: 0=target,1=initiator */
	TXQ_PRIO_HI		= (1U << 27),	/* priority: 0=normal, 1=high */
	TXQ_SRS_SHIFT		= 20,		/* SATA register set */
	TXQ_SRS_MASK		= 0x7f,
	TXQ_PHY_SHIFT		= 12,		/* PHY bitmap */
	TXQ_PHY_MASK		= 0xff,
	TXQ_SLOT_MASK		= 0xfff,	/* slot number */

	/* RX (completion) ring bits */
	RXQ_GOOD		= (1U << 23),	/* Response good */
	RXQ_SLOT_RESET		= (1U << 21),	/* Slot reset complete */
	RXQ_CMD_RX		= (1U << 20),	/* target cmd received */
	RXQ_ATTN		= (1U << 19),	/* attention */
	RXQ_RSP			= (1U << 18),	/* response frame xfer'd */
	RXQ_ERR			= (1U << 17),	/* err info rec xfer'd */
	RXQ_DONE		= (1U << 16),	/* cmd complete */
	RXQ_SLOT_MASK		= 0xfff,	/* slot number */

	/* mvs_cmd_hdr bits */
	MCH_PRD_LEN_SHIFT	= 16,		/* 16-bit PRD table len */
	MCH_SSP_FR_TYPE_SHIFT	= 13,		/* SSP frame type */

						/* SSP initiator only */
	MCH_SSP_FR_CMD		= 0x0,		/* COMMAND frame */

						/* SSP initiator or target */
	MCH_SSP_FR_TASK		= 0x1,		/* TASK frame */

						/* SSP target only */
	MCH_SSP_FR_XFER_RDY	= 0x4,		/* XFER_RDY frame */
	MCH_SSP_FR_RESP		= 0x5,		/* RESPONSE frame */
	MCH_SSP_FR_READ		= 0x6,		/* Read DATA frame(s) */
	MCH_SSP_FR_READ_RESP	= 0x7,		/* ditto, plus RESPONSE */

	MCH_PASSTHRU		= (1U << 12),	/* pass-through (SSP) */
	MCH_FBURST		= (1U << 11),	/* first burst (SSP) */
	MCH_CHK_LEN		= (1U << 10),	/* chk xfer len (SSP) */
	MCH_RETRY		= (1U << 9),	/* tport layer retry (SSP) */
	MCH_PROTECTION		= (1U << 8),	/* protection info rec (SSP) */
	MCH_RESET		= (1U << 7),	/* Reset (STP/SATA) */
	MCH_FPDMA		= (1U << 6),	/* First party DMA (STP/SATA) */
	MCH_ATAPI		= (1U << 5),	/* ATAPI (STP/SATA) */
	MCH_BIST		= (1U << 4),	/* BIST activate (STP/SATA) */
	MCH_PMP_MASK		= 0xf,		/* PMP from cmd FIS (STP/SATA)*/

	CCTL_RST		= (1U << 5),	/* port logic reset */

						/* 0(LSB first), 1(MSB first) */
	CCTL_ENDIAN_DATA	= (1U << 3),	/* PRD data */
	CCTL_ENDIAN_RSP		= (1U << 2),	/* response frame */
	CCTL_ENDIAN_OPEN	= (1U << 1),	/* open address frame */
	CCTL_ENDIAN_CMD		= (1U << 0),	/* command table */

	/* MVS_Px_SER_CTLSTAT (per-phy control) */
	PHY_SSP_RST		= (1U << 3),	/* reset SSP link layer */
	PHY_BCAST_CHG		= (1U << 2),	/* broadcast(change) notif */
	PHY_RST_HARD		= (1U << 1),	/* hard reset + phy reset */
	PHY_RST			= (1U << 0),	/* phy reset */
303 304 305 306 307 308
	PHY_MIN_SPP_PHYS_LINK_RATE_MASK = (0xF << 8),
	PHY_MAX_SPP_PHYS_LINK_RATE_MASK = (0xF << 12),
	PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET = (16),
	PHY_NEG_SPP_PHYS_LINK_RATE_MASK =
			(0xF << PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET),
	PHY_READY_MASK		= (1U << 20),
309 310

	/* MVS_Px_INT_STAT, MVS_Px_INT_MASK (per-phy events) */
311
	PHYEV_DEC_ERR		= (1U << 24),	/* Phy Decoding Error */
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	PHYEV_UNASSOC_FIS	= (1U << 19),	/* unassociated FIS rx'd */
	PHYEV_AN		= (1U << 18),	/* SATA async notification */
	PHYEV_BIST_ACT		= (1U << 17),	/* BIST activate FIS */
	PHYEV_SIG_FIS		= (1U << 16),	/* signature FIS */
	PHYEV_POOF		= (1U << 12),	/* phy ready from 1 -> 0 */
	PHYEV_IU_BIG		= (1U << 11),	/* IU too long err */
	PHYEV_IU_SMALL		= (1U << 10),	/* IU too short err */
	PHYEV_UNK_TAG		= (1U << 9),	/* unknown tag */
	PHYEV_BROAD_CH		= (1U << 8),	/* broadcast(CHANGE) */
	PHYEV_COMWAKE		= (1U << 7),	/* COMWAKE rx'd */
	PHYEV_PORT_SEL		= (1U << 6),	/* port selector present */
	PHYEV_HARD_RST		= (1U << 5),	/* hard reset rx'd */
	PHYEV_ID_TMOUT		= (1U << 4),	/* identify timeout */
	PHYEV_ID_FAIL		= (1U << 3),	/* identify failed */
	PHYEV_ID_DONE		= (1U << 2),	/* identify done */
	PHYEV_HARD_RST_DONE	= (1U << 1),	/* hard reset done */
	PHYEV_RDY_CH		= (1U << 0),	/* phy ready changed state */

	/* MVS_PCS */
331 332 333
	PCS_EN_SATA_REG_SHIFT	= (16),		/* Enable SATA Register Set */
	PCS_EN_PORT_XMT_SHIFT	= (12),		/* Enable Port Transmit */
	PCS_EN_PORT_XMT_SHIFT2	= (8),		/* For 6480 */
334 335 336 337 338
	PCS_SATA_RETRY		= (1U << 8),	/* retry ctl FIS on R_ERR */
	PCS_RSP_RX_EN		= (1U << 7),	/* raw response rx */
	PCS_SELF_CLEAR		= (1U << 5),	/* self-clearing int mode */
	PCS_FIS_RX_EN		= (1U << 4),	/* FIS rx enable */
	PCS_CMD_STOP_ERR	= (1U << 3),	/* cmd stop-on-err enable */
339
	PCS_CMD_RST		= (1U << 1),	/* reset cmd issue */
340
	PCS_CMD_EN		= (1U << 0),	/* enable cmd issue */
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

	/* Port n Attached Device Info */
	PORT_DEV_SSP_TRGT	= (1U << 19),
	PORT_DEV_SMP_TRGT	= (1U << 18),
	PORT_DEV_STP_TRGT	= (1U << 17),
	PORT_DEV_SSP_INIT	= (1U << 11),
	PORT_DEV_SMP_INIT	= (1U << 10),
	PORT_DEV_STP_INIT	= (1U << 9),
	PORT_PHY_ID_MASK	= (0xFFU << 24),
	PORT_DEV_TRGT_MASK	= (0x7U << 17),
	PORT_DEV_INIT_MASK	= (0x7U << 9),
	PORT_DEV_TYPE_MASK	= (0x7U << 0),

	/* Port n PHY Status */
	PHY_RDY			= (1U << 2),
	PHY_DW_SYNC		= (1U << 1),
	PHY_OOB_DTCTD		= (1U << 0),

	/* VSR */
	/* PHYMODE 6 (CDB) */
	PHY_MODE6_DTL_SPEED	= (1U << 27),
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
};

enum mvs_info_flags {
	MVF_MSI			= (1U << 0),	/* MSI is enabled */
	MVF_PHY_PWR_FIX		= (1U << 1),	/* bug workaround */
};

enum sas_cmd_port_registers {
	CMD_CMRST_OOB_DET	= 0x100, /* COMRESET OOB detect register */
	CMD_CMWK_OOB_DET	= 0x104, /* COMWAKE OOB detect register */
	CMD_CMSAS_OOB_DET	= 0x108, /* COMSAS OOB detect register */
	CMD_BRST_OOB_DET	= 0x10c, /* burst OOB detect register */
	CMD_OOB_SPACE		= 0x110, /* OOB space control register */
	CMD_OOB_BURST		= 0x114, /* OOB burst control register */
	CMD_PHY_TIMER		= 0x118, /* PHY timer control register */
	CMD_PHY_CONFIG0		= 0x11c, /* PHY config register 0 */
	CMD_PHY_CONFIG1		= 0x120, /* PHY config register 1 */
	CMD_SAS_CTL0		= 0x124, /* SAS control register 0 */
	CMD_SAS_CTL1		= 0x128, /* SAS control register 1 */
	CMD_SAS_CTL2		= 0x12c, /* SAS control register 2 */
	CMD_SAS_CTL3		= 0x130, /* SAS control register 3 */
	CMD_ID_TEST		= 0x134, /* ID test register */
	CMD_PL_TIMER		= 0x138, /* PL timer register */
	CMD_WD_TIMER		= 0x13c, /* WD timer register */
	CMD_PORT_SEL_COUNT	= 0x140, /* port selector count register */
	CMD_APP_MEM_CTL		= 0x144, /* Application Memory Control */
	CMD_XOR_MEM_CTL		= 0x148, /* XOR Block Memory Control */
	CMD_DMA_MEM_CTL		= 0x14c, /* DMA Block Memory Control */
	CMD_PORT_MEM_CTL0	= 0x150, /* Port Memory Control 0 */
	CMD_PORT_MEM_CTL1	= 0x154, /* Port Memory Control 1 */
	CMD_SATA_PORT_MEM_CTL0	= 0x158, /* SATA Port Memory Control 0 */
	CMD_SATA_PORT_MEM_CTL1	= 0x15c, /* SATA Port Memory Control 1 */
	CMD_XOR_MEM_BIST_CTL	= 0x160, /* XOR Memory BIST Control */
	CMD_XOR_MEM_BIST_STAT	= 0x164, /* XOR Memroy BIST Status */
	CMD_DMA_MEM_BIST_CTL	= 0x168, /* DMA Memory BIST Control */
	CMD_DMA_MEM_BIST_STAT	= 0x16c, /* DMA Memory BIST Status */
	CMD_PORT_MEM_BIST_CTL	= 0x170, /* Port Memory BIST Control */
	CMD_PORT_MEM_BIST_STAT0 = 0x174, /* Port Memory BIST Status 0 */
	CMD_PORT_MEM_BIST_STAT1 = 0x178, /* Port Memory BIST Status 1 */
	CMD_STP_MEM_BIST_CTL	= 0x17c, /* STP Memory BIST Control */
	CMD_STP_MEM_BIST_STAT0	= 0x180, /* STP Memory BIST Status 0 */
	CMD_STP_MEM_BIST_STAT1	= 0x184, /* STP Memory BIST Status 1 */
	CMD_RESET_COUNT		= 0x188, /* Reset Count */
	CMD_MONTR_DATA_SEL	= 0x18C, /* Monitor Data/Select */
	CMD_PLL_PHY_CONFIG	= 0x190, /* PLL/PHY Configuration */
	CMD_PHY_CTL		= 0x194, /* PHY Control and Status */
	CMD_PHY_TEST_COUNT0	= 0x198, /* Phy Test Count 0 */
	CMD_PHY_TEST_COUNT1	= 0x19C, /* Phy Test Count 1 */
	CMD_PHY_TEST_COUNT2	= 0x1A0, /* Phy Test Count 2 */
	CMD_APP_ERR_CONFIG	= 0x1A4, /* Application Error Configuration */
	CMD_PND_FIFO_CTL0	= 0x1A8, /* Pending FIFO Control 0 */
	CMD_HOST_CTL		= 0x1AC, /* Host Control Status */
	CMD_HOST_WR_DATA	= 0x1B0, /* Host Write Data */
	CMD_HOST_RD_DATA	= 0x1B4, /* Host Read Data */
	CMD_PHY_MODE_21		= 0x1B8, /* Phy Mode 21 */
	CMD_SL_MODE0		= 0x1BC, /* SL Mode 0 */
	CMD_SL_MODE1		= 0x1C0, /* SL Mode 1 */
	CMD_PND_FIFO_CTL1	= 0x1C4, /* Pending FIFO Control 1 */
};

/* SAS/SATA configuration port registers, aka phy registers */
enum sas_sata_config_port_regs {
424 425 426 427
	PHYR_IDENTIFY		= 0x00,	/* info for IDENTIFY frame */
	PHYR_ADDR_LO		= 0x04,	/* my SAS address (low) */
	PHYR_ADDR_HI		= 0x08,	/* my SAS address (high) */
	PHYR_ATT_DEV_INFO	= 0x0C,	/* attached device info */
428 429 430 431
	PHYR_ATT_ADDR_LO	= 0x10,	/* attached dev SAS addr (low) */
	PHYR_ATT_ADDR_HI	= 0x14,	/* attached dev SAS addr (high) */
	PHYR_SATA_CTL		= 0x18,	/* SATA control */
	PHYR_PHY_STAT		= 0x1C,	/* PHY status */
432 433 434 435 436 437
	PHYR_SATA_SIG0		= 0x20,	/*port SATA signature FIS(Byte 0-3) */
	PHYR_SATA_SIG1		= 0x24,	/*port SATA signature FIS(Byte 4-7) */
	PHYR_SATA_SIG2		= 0x28,	/*port SATA signature FIS(Byte 8-11) */
	PHYR_SATA_SIG3		= 0x2c,	/*port SATA signature FIS(Byte 12-15) */
	PHYR_R_ERR_COUNT	= 0x30, /* port R_ERR count register */
	PHYR_CRC_ERR_COUNT	= 0x34, /* port CRC error count register */
438 439 440 441 442 443
	PHYR_WIDE_PORT		= 0x38,	/* wide port participating */
	PHYR_CURRENT0		= 0x80,	/* current connection info 0 */
	PHYR_CURRENT1		= 0x84,	/* current connection info 1 */
	PHYR_CURRENT2		= 0x88,	/* current connection info 2 */
};

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/*  SAS/SATA Vendor Specific Port Registers */
enum sas_sata_vsp_regs {
	VSR_PHY_STAT		= 0x00, /* Phy Status */
	VSR_PHY_MODE1		= 0x01, /* phy tx */
	VSR_PHY_MODE2		= 0x02, /* tx scc */
	VSR_PHY_MODE3		= 0x03, /* pll */
	VSR_PHY_MODE4		= 0x04, /* VCO */
	VSR_PHY_MODE5		= 0x05, /* Rx */
	VSR_PHY_MODE6		= 0x06, /* CDR */
	VSR_PHY_MODE7		= 0x07, /* Impedance */
	VSR_PHY_MODE8		= 0x08, /* Voltage */
	VSR_PHY_MODE9		= 0x09, /* Test */
	VSR_PHY_MODE10		= 0x0A, /* Power */
	VSR_PHY_MODE11		= 0x0B, /* Phy Mode */
	VSR_PHY_VS0		= 0x0C, /* Vednor Specific 0 */
	VSR_PHY_VS1		= 0x0D, /* Vednor Specific 1 */
};

462
enum pci_cfg_registers {
463 464 465
	PCR_PHY_CTL	= 0x40,
	PCR_PHY_CTL2	= 0x90,
	PCR_DEV_CTRL	= 0xE8,
466 467 468
};

enum pci_cfg_register_bits {
469 470 471 472
	PCTL_PWR_ON	= (0xFU << 24),
	PCTL_OFF	= (0xFU << 12),
	PRD_REQ_SIZE	= (0x4000),
	PRD_REQ_MASK	= (0x00007000),
473 474 475
};

enum nvram_layout_offsets {
476 477
	NVR_SIG		= 0x00,		/* 0xAA, 0x55 */
	NVR_SAS_ADDR	= 0x02,		/* 8-byte SAS address */
478 479 480 481 482 483 484 485
};

enum chip_flavors {
	chip_6320,
	chip_6440,
	chip_6480,
};

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
enum port_type {
	PORT_TYPE_SAS	=  (1L << 1),
	PORT_TYPE_SATA	=  (1L << 0),
};

/* Command Table Format */
enum ct_format {
	/* SSP */
	SSP_F_H		=  0x00,
	SSP_F_IU	=  0x18,
	SSP_F_MAX	=  0x4D,
	/* STP */
	STP_CMD_FIS	=  0x00,
	STP_ATAPI_CMD	=  0x40,
	STP_F_MAX	=  0x10,
	/* SMP */
	SMP_F_T		=  0x00,
	SMP_F_DEP	=  0x01,
	SMP_F_MAX	=  0x101,
};

enum status_buffer {
	SB_EIR_OFF	=  0x00,	/* Error Information Record */
	SB_RFB_OFF	=  0x08,	/* Response Frame Buffer */
	SB_RFB_MAX	=  0x400,	/* RFB size*/
};

enum error_info_rec {
	CMD_ISS_STPD	=  (1U << 31),	/* Cmd Issue Stopped */
};

517
struct mvs_chip_info {
518 519 520
	u32		n_phy;
	u32		srs_sz;
	u32		slot_width;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
};

struct mvs_err_info {
	__le32			flags;
	__le32			flags2;
};

struct mvs_prd {
	__le64			addr;		/* 64-bit buffer address */
	__le32			reserved;
	__le32			len;		/* 16-bit length */
};

struct mvs_cmd_hdr {
	__le32			flags;		/* PRD tbl len; SAS, SATA ctl */
	__le32			lens;		/* cmd, max resp frame len */
	__le32			tags;		/* targ port xfer tag; tag */
	__le32			data_len;	/* data xfer len */
	__le64			cmd_tbl;	/* command table address */
	__le64			open_frame;	/* open addr frame address */
	__le64			status_buf;	/* status buffer address */
	__le64			prd_tbl;	/* PRD tbl address */
	__le32			reserved[4];
};

struct mvs_slot_info {
	struct sas_task		*task;
548 549
	u32			n_elem;
	u32			tx;
550 551 552 553 554 555

	/* DMA buffer for storing cmd tbl, open addr frame, status buffer,
	 * and PRD table
	 */
	void			*buf;
	dma_addr_t		buf_dma;
556 557 558
#if _MV_DUMP
	u32			cmd_size;
#endif
559 560 561 562 563 564

	void			*response;
};

struct mvs_port {
	struct asd_sas_port	sas_port;
565 566 567
	u8			port_attached;
	u8			taskfileset;
	u8			wide_port_phymap;
568 569 570 571 572
};

struct mvs_phy {
	struct mvs_port		*port;
	struct asd_sas_phy	sas_phy;
573 574 575 576 577 578 579 580 581 582 583 584
	struct sas_identify	identify;
	struct scsi_device	*sdev;
	u64		dev_sas_addr;
	u64		att_dev_sas_addr;
	u32		att_dev_info;
	u32		dev_info;
	u32		phy_type;
	u32		phy_status;
	u32		irq_status;
	u32		frame_rcvd_size;
	u8		frame_rcvd[32];
	u8		phy_attached;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
};

struct mvs_info {
	unsigned long		flags;

	spinlock_t		lock;		/* host-wide lock */
	struct pci_dev		*pdev;		/* our device */
	void __iomem		*regs;		/* enhanced mode registers */
	void __iomem		*peri_regs;	/* peripheral registers */

	u8			sas_addr[SAS_ADDR_SIZE];
	struct sas_ha_struct	sas;		/* SCSI/SAS glue */
	struct Scsi_Host	*shost;

	__le32			*tx;		/* TX (delivery) DMA ring */
	dma_addr_t		tx_dma;
	u32			tx_prod;	/* cached next-producer idx */

	__le32			*rx;		/* RX (completion) DMA ring */
	dma_addr_t		rx_dma;
	u32			rx_cons;	/* RX consumer idx */

	__le32			*rx_fis;	/* RX'd FIS area */
	dma_addr_t		rx_fis_dma;

610
	struct mvs_cmd_hdr	*slot;	/* DMA command header slots */
611 612 613 614
	dma_addr_t		slot_dma;

	const struct mvs_chip_info *chip;

615
	unsigned long		tags[MVS_SLOTS];
616
	struct mvs_slot_info	slot_info[MVS_SLOTS];
617
				/* further per-slot information */
618 619
	struct mvs_phy		phy[MVS_MAX_PHYS];
	struct mvs_port		port[MVS_MAX_PHYS];
620 621 622 623

	u32			can_queue;	/* per adapter */
	u32			tag_out;	/*Get*/
	u32			tag_in;		/*Give*/
624 625
};

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
struct mvs_queue_task {
	struct list_head list;

	void   *uldd_task;
};

static int mvs_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
			   void *funcdata);
static u32 mvs_read_phy_ctl(struct mvs_info *mvi, u32 port);
static void mvs_write_phy_ctl(struct mvs_info *mvi, u32 port, u32 val);
static u32 mvs_read_port_irq_stat(struct mvs_info *mvi, u32 port);
static void mvs_write_port_irq_stat(struct mvs_info *mvi, u32 port, u32 val);
static void mvs_write_port_irq_mask(struct mvs_info *mvi, u32 port, u32 val);
static u32 mvs_read_port_irq_mask(struct mvs_info *mvi, u32 port);

static u32 mvs_is_phy_ready(struct mvs_info *mvi, int i);
static void mvs_detect_porttype(struct mvs_info *mvi, int i);
static void mvs_update_phyinfo(struct mvs_info *mvi, int i, int get_st);

static int mvs_scan_finished(struct Scsi_Host *, unsigned long);
static void mvs_scan_start(struct Scsi_Host *);
static int mvs_sas_slave_alloc(struct scsi_device *scsi_dev);

649 650 651
static struct scsi_transport_template *mvs_stt;

static const struct mvs_chip_info mvs_chips[] = {
652 653
	[chip_6320] =		{ 2, 16, 9  },
	[chip_6440] =		{ 4, 16, 9  },
654 655 656 657 658 659 660 661 662 663
	[chip_6480] =		{ 8, 32, 10 },
};

static struct scsi_host_template mvs_sht = {
	.module			= THIS_MODULE,
	.name			= DRV_NAME,
	.queuecommand		= sas_queuecommand,
	.target_alloc		= sas_target_alloc,
	.slave_configure	= sas_slave_configure,
	.slave_destroy		= sas_slave_destroy,
664 665
	.scan_finished		= mvs_scan_finished,
	.scan_start		= mvs_scan_start,
666 667 668 669 670 671 672 673 674
	.change_queue_depth	= sas_change_queue_depth,
	.change_queue_type	= sas_change_queue_type,
	.bios_param		= sas_bios_param,
	.can_queue		= 1,
	.cmd_per_lun		= 1,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.max_sectors		= SCSI_DEFAULT_MAX_SECTORS,
	.use_clustering		= ENABLE_CLUSTERING,
675
	.eh_device_reset_handler	= sas_eh_device_reset_handler,
676
	.eh_bus_reset_handler	= sas_eh_bus_reset_handler,
677
	.slave_alloc		= mvs_sas_slave_alloc,
678 679 680 681
	.target_destroy		= sas_target_destroy,
	.ioctl			= sas_ioctl,
};

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
static void mvs_hexdump(u32 size, u8 *data, u32 baseaddr)
{
	u32 i;
	u32 run;
	u32 offset;

	offset = 0;
	while (size) {
		printk("%08X : ", baseaddr + offset);
		if (size >= 16)
			run = 16;
		else
			run = size;
		size -= run;
		for (i = 0; i < 16; i++) {
			if (i < run)
				printk("%02X ", (u32)data[i]);
			else
				printk("   ");
		}
		printk(": ");
		for (i = 0; i < run; i++)
			printk("%c", isalnum(data[i]) ? data[i] : '.');
		printk("\n");
		data = &data[16];
		offset += run;
	}
	printk("\n");
}

static void mvs_hba_sb_dump(struct mvs_info *mvi, u32 tag,
				   enum sas_protocol proto)
{
#if _MV_DUMP
	u32 offset;
	struct pci_dev *pdev = mvi->pdev;
	struct mvs_slot_info *slot = &mvi->slot_info[tag];

	offset = slot->cmd_size + MVS_OAF_SZ +
	    sizeof(struct mvs_prd) * slot->n_elem;
	dev_printk(KERN_DEBUG, &pdev->dev, "+---->Status buffer[%d] :\n",
			tag);
	mvs_hexdump(32, (u8 *) slot->response,
		    (u32) slot->buf_dma + offset);
#endif
}

static void mvs_hba_memory_dump(struct mvs_info *mvi, u32 tag,
				enum sas_protocol proto)
{
#if _MV_DUMP
	u32 sz, w_ptr, r_ptr;
	u64 addr;
	void __iomem *regs = mvi->regs;
	struct pci_dev *pdev = mvi->pdev;
	struct mvs_slot_info *slot = &mvi->slot_info[tag];

	/*Delivery Queue */
	sz = mr32(TX_CFG) & TX_RING_SZ_MASK;
	w_ptr = mr32(TX_PROD_IDX) & TX_RING_SZ_MASK;
	r_ptr = mr32(TX_CONS_IDX) & TX_RING_SZ_MASK;
	addr = mr32(TX_HI) << 16 << 16 | mr32(TX_LO);
	dev_printk(KERN_DEBUG, &pdev->dev,
		"Delivery Queue Size=%04d , WRT_PTR=%04X , RD_PTR=%04X\n",
		sz, w_ptr, r_ptr);
	dev_printk(KERN_DEBUG, &pdev->dev,
		"Delivery Queue Base Address=0x%llX (PA)"
		"(tx_dma=0x%llX), Entry=%04d\n",
		addr, mvi->tx_dma, w_ptr);
	mvs_hexdump(sizeof(u32), (u8 *)(&mvi->tx[mvi->tx_prod]),
			(u32) mvi->tx_dma + sizeof(u32) * w_ptr);
	/*Command List */
	addr = mr32(CMD_LIST_HI) << 16 << 16 | mr32(CMD_LIST_LO);
	dev_printk(KERN_DEBUG, &pdev->dev,
		"Command List Base Address=0x%llX (PA)"
		"(slot_dma=0x%llX), Header=%03d\n",
		addr, mvi->slot_dma, tag);
	dev_printk(KERN_DEBUG, &pdev->dev, "Command Header[%03d]:\n", tag);
	/*mvs_cmd_hdr */
	mvs_hexdump(sizeof(struct mvs_cmd_hdr), (u8 *)(&mvi->slot[tag]),
		(u32) mvi->slot_dma + tag * sizeof(struct mvs_cmd_hdr));
	/*1.command table area */
	dev_printk(KERN_DEBUG, &pdev->dev, "+---->Command Table :\n");
	mvs_hexdump(slot->cmd_size, (u8 *) slot->buf, (u32) slot->buf_dma);
	/*2.open address frame area */
	dev_printk(KERN_DEBUG, &pdev->dev, "+---->Open Address Frame :\n");
	mvs_hexdump(MVS_OAF_SZ, (u8 *) slot->buf + slot->cmd_size,
				(u32) slot->buf_dma + slot->cmd_size);
	/*3.status buffer */
	mvs_hba_sb_dump(mvi, tag, proto);
	/*4.PRD table */
	dev_printk(KERN_DEBUG, &pdev->dev, "+---->PRD table :\n");
	mvs_hexdump(sizeof(struct mvs_prd) * slot->n_elem,
		(u8 *) slot->buf + slot->cmd_size + MVS_OAF_SZ,
		(u32) slot->buf_dma + slot->cmd_size + MVS_OAF_SZ);
#endif
}

static void mvs_hba_cq_dump(struct mvs_info *mvi)
{
#if _MV_DUMP
	u64 addr;
	void __iomem *regs = mvi->regs;
	struct pci_dev *pdev = mvi->pdev;
	u32 entry = mvi->rx_cons + 1;
	u32 rx_desc = le32_to_cpu(mvi->rx[entry]);

	/*Completion Queue */
	addr = mr32(RX_HI) << 16 << 16 | mr32(RX_LO);
	dev_printk(KERN_DEBUG, &pdev->dev, "Completion Task = 0x%08X\n",
		   (u32) mvi->slot_info[rx_desc & RXQ_SLOT_MASK].task);
	dev_printk(KERN_DEBUG, &pdev->dev,
		"Completion List Base Address=0x%llX (PA), "
		"CQ_Entry=%04d, CQ_WP=0x%08X\n",
		addr, entry - 1, mvi->rx[0]);
	mvs_hexdump(sizeof(u32), (u8 *)(&rx_desc),
		    mvi->rx_dma + sizeof(u32) * entry);
#endif
}

static void mvs_hba_interrupt_enable(struct mvs_info *mvi)
{
	void __iomem *regs = mvi->regs;
	u32 tmp;

	tmp = mr32(GBL_CTL);

	mw32(GBL_CTL, tmp | INT_EN);
}

static void mvs_hba_interrupt_disable(struct mvs_info *mvi)
{
	void __iomem *regs = mvi->regs;
	u32 tmp;

	tmp = mr32(GBL_CTL);

	mw32(GBL_CTL, tmp & ~INT_EN);
}

static int mvs_int_rx(struct mvs_info *mvi, bool self_clear);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856

/* move to PCI layer or libata core? */
static int pci_go_64(struct pci_dev *pdev)
{
	int rc;

	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
		rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
		if (rc) {
			rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
			if (rc) {
				dev_printk(KERN_ERR, &pdev->dev,
					   "64-bit DMA enable failed\n");
				return rc;
			}
		}
	} else {
		rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
		if (rc) {
			dev_printk(KERN_ERR, &pdev->dev,
				   "32-bit DMA enable failed\n");
			return rc;
		}
		rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
		if (rc) {
			dev_printk(KERN_ERR, &pdev->dev,
				   "32-bit consistent DMA enable failed\n");
			return rc;
		}
	}

	return rc;
}

857
static void mvs_tag_clear(struct mvs_info *mvi, u32 tag)
858
{
859 860
	mvi->tag_in = (mvi->tag_in + 1) & (MVS_SLOTS - 1);
	mvi->tags[mvi->tag_in] = tag;
861 862
}

863
static void mvs_tag_free(struct mvs_info *mvi, u32 tag)
864
{
865
	mvi->tag_out = (mvi->tag_out - 1) & (MVS_SLOTS - 1);
866 867
}

868
static int mvs_tag_alloc(struct mvs_info *mvi, u32 *tag_out)
869
{
870 871 872 873 874 875
	if (mvi->tag_out != mvi->tag_in) {
		*tag_out = mvi->tags[mvi->tag_out];
		mvi->tag_out = (mvi->tag_out + 1) & (MVS_SLOTS - 1);
		return 0;
	}
	return -EBUSY;
876 877
}

878
static void mvs_tag_init(struct mvs_info *mvi)
879
{
880 881 882 883 884
	int i;
	for (i = 0; i < MVS_SLOTS; ++i)
		mvi->tags[i] = i;
	mvi->tag_out = 0;
	mvi->tag_in = MVS_SLOTS - 1;
885 886
}

887 888
#ifndef MVS_DISABLE_NVRAM
static int mvs_eep_read(void __iomem *regs, u32 addr, u32 *data)
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
{
	int timeout = 1000;

	if (addr & ~SPI_ADDR_MASK)
		return -EINVAL;

	writel(addr, regs + SPI_CMD);
	writel(TWSI_RD, regs + SPI_CTL);

	while (timeout-- > 0) {
		if (readl(regs + SPI_CTL) & TWSI_RDY) {
			*data = readl(regs + SPI_DATA);
			return 0;
		}

		udelay(10);
	}

	return -EBUSY;
}

910 911
static int mvs_eep_read_buf(void __iomem *regs, u32 addr,
			    void *buf, u32 buflen)
912
{
913
	u32 addr_end, tmp_addr, i, j;
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	u32 tmp = 0;
	int rc;
	u8 *tmp8, *buf8 = buf;

	addr_end = addr + buflen;
	tmp_addr = ALIGN(addr, 4);
	if (addr > 0xff)
		return -EINVAL;

	j = addr & 0x3;
	if (j) {
		rc = mvs_eep_read(regs, tmp_addr, &tmp);
		if (rc)
			return rc;

929
		tmp8 = (u8 *)&tmp;
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
		for (i = j; i < 4; i++)
			*buf8++ = tmp8[i];

		tmp_addr += 4;
	}

	for (j = ALIGN(addr_end, 4); tmp_addr < j; tmp_addr += 4) {
		rc = mvs_eep_read(regs, tmp_addr, &tmp);
		if (rc)
			return rc;

		memcpy(buf8, &tmp, 4);
		buf8 += 4;
	}

	if (tmp_addr < addr_end) {
		rc = mvs_eep_read(regs, tmp_addr, &tmp);
		if (rc)
			return rc;

950
		tmp8 = (u8 *)&tmp;
951 952 953 954 955 956 957 958 959
		j = addr_end - tmp_addr;
		for (i = 0; i < j; i++)
			*buf8++ = tmp8[i];

		tmp_addr += 4;
	}

	return 0;
}
960
#endif
961

962 963
static int mvs_nvram_read(struct mvs_info *mvi, u32 addr,
			  void *buf, u32 buflen)
964
{
965
#ifndef MVS_DISABLE_NVRAM
966 967
	void __iomem *regs = mvi->regs;
	int rc, i;
968
	u32 sum;
969 970 971 972 973 974 975 976 977 978 979 980 981 982
	u8 hdr[2], *tmp;
	const char *msg;

	rc = mvs_eep_read_buf(regs, addr, &hdr, 2);
	if (rc) {
		msg = "nvram hdr read failed";
		goto err_out;
	}
	rc = mvs_eep_read_buf(regs, addr + 2, buf, buflen);
	if (rc) {
		msg = "nvram read failed";
		goto err_out;
	}

983 984
	if (hdr[0] != 0x5A) {
		/* entry id */
985 986 987 988 989 990
		msg = "invalid nvram entry id";
		rc = -ENOENT;
		goto err_out;
	}

	tmp = buf;
991
	sum = ((u32)hdr[0]) + ((u32)hdr[1]);
992
	for (i = 0; i < buflen; i++)
993
		sum += ((u32)tmp[i]);
994 995 996 997 998 999 1000 1001 1002 1003 1004

	if (sum) {
		msg = "nvram checksum failure";
		rc = -EILSEQ;
		goto err_out;
	}

	return 0;

err_out:
	dev_printk(KERN_ERR, &mvi->pdev->dev, "%s", msg);
1005 1006 1007
	return rc;
#else
	/* FIXME , For SAS target mode */
K
Ke Wei 已提交
1008
	memcpy(buf, "\x50\x05\x04\x30\x11\xab\x00\x00", 8);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	return 0;
#endif
}

static void mvs_bytes_dmaed(struct mvs_info *mvi, int i)
{
	struct mvs_phy *phy = &mvi->phy[i];

	if (!phy->phy_attached)
		return;

	if (phy->phy_type & PORT_TYPE_SAS) {
		struct sas_identify_frame *id;

		id = (struct sas_identify_frame *)phy->frame_rcvd;
		id->dev_type = phy->identify.device_type;
		id->initiator_bits = SAS_PROTOCOL_ALL;
		id->target_bits = phy->identify.target_port_protocols;
	} else if (phy->phy_type & PORT_TYPE_SATA) {
		/* TODO */
	}
	mvi->sas.sas_phy[i]->frame_rcvd_size = phy->frame_rcvd_size;
	mvi->sas.notify_port_event(mvi->sas.sas_phy[i],
				   PORTE_BYTES_DMAED);
}

static int mvs_scan_finished(struct Scsi_Host *shost, unsigned long time)
{
	/* give the phy enabling interrupt event time to come in (1s
	 * is empirically about all it takes) */
	if (time < HZ)
		return 0;
	/* Wait for discovery to finish */
	scsi_flush_work(shost);
	return 1;
}

static void mvs_scan_start(struct Scsi_Host *shost)
{
	int i;
	struct mvs_info *mvi = SHOST_TO_SAS_HA(shost)->lldd_ha;

	for (i = 0; i < mvi->chip->n_phy; ++i) {
		mvs_bytes_dmaed(mvi, i);
	}
}

static int mvs_sas_slave_alloc(struct scsi_device *scsi_dev)
{
	int rc;

	rc = sas_slave_alloc(scsi_dev);

1062 1063 1064 1065 1066
	return rc;
}

static void mvs_int_port(struct mvs_info *mvi, int port_no, u32 events)
{
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	struct pci_dev *pdev = mvi->pdev;
	struct sas_ha_struct *sas_ha = &mvi->sas;
	struct mvs_phy *phy = &mvi->phy[port_no];
	struct asd_sas_phy *sas_phy = &phy->sas_phy;

	phy->irq_status = mvs_read_port_irq_stat(mvi, port_no);
	/*
	* events is port event now ,
	* we need check the interrupt status which belongs to per port.
	*/
	dev_printk(KERN_DEBUG, &pdev->dev,
		"Port %d Event = %X\n",
		port_no, phy->irq_status);

	if (phy->irq_status & (PHYEV_POOF | PHYEV_DEC_ERR)) {
		if (!mvs_is_phy_ready(mvi, port_no)) {
			sas_phy_disconnected(sas_phy);
			sas_ha->notify_phy_event(sas_phy, PHYE_LOSS_OF_SIGNAL);
		} else
			mvs_phy_control(sas_phy, PHY_FUNC_LINK_RESET, NULL);
	}
	if (!(phy->irq_status & PHYEV_DEC_ERR)) {
		if (phy->irq_status & PHYEV_COMWAKE) {
			u32 tmp = mvs_read_port_irq_mask(mvi, port_no);
			mvs_write_port_irq_mask(mvi, port_no,
						tmp | PHYEV_SIG_FIS);
		}
		if (phy->irq_status & (PHYEV_SIG_FIS | PHYEV_ID_DONE)) {
			phy->phy_status = mvs_is_phy_ready(mvi, port_no);
			if (phy->phy_status) {
				mvs_detect_porttype(mvi, port_no);

				if (phy->phy_type & PORT_TYPE_SATA) {
					u32 tmp = mvs_read_port_irq_mask(mvi,
								port_no);
					tmp &= ~PHYEV_SIG_FIS;
					mvs_write_port_irq_mask(mvi,
								port_no, tmp);
				}

				mvs_update_phyinfo(mvi, port_no, 0);
				sas_ha->notify_phy_event(sas_phy,
							PHYE_OOB_DONE);
				mvs_bytes_dmaed(mvi, port_no);
			} else {
				dev_printk(KERN_DEBUG, &pdev->dev,
					"plugin interrupt but phy is gone\n");
				mvs_phy_control(sas_phy, PHY_FUNC_LINK_RESET,
							NULL);
			}
		} else if (phy->irq_status & PHYEV_BROAD_CH)
			sas_ha->notify_port_event(sas_phy,
						PORTE_BROADCAST_RCVD);
	}
	mvs_write_port_irq_stat(mvi, port_no, phy->irq_status);
1122 1123 1124 1125 1126 1127 1128 1129
}

static void mvs_int_sata(struct mvs_info *mvi)
{
	/* FIXME */
}

static void mvs_slot_free(struct mvs_info *mvi, struct sas_task *task,
1130
			  struct mvs_slot_info *slot, u32 slot_idx)
1131
{
1132 1133 1134 1135
	if (!sas_protocol_ata(task->task_proto))
		if (slot->n_elem)
			pci_unmap_sg(mvi->pdev, task->scatter,
				     slot->n_elem, task->data_dir);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

	switch (task->task_proto) {
	case SAS_PROTOCOL_SMP:
		pci_unmap_sg(mvi->pdev, &task->smp_task.smp_resp, 1,
			     PCI_DMA_FROMDEVICE);
		pci_unmap_sg(mvi->pdev, &task->smp_task.smp_req, 1,
			     PCI_DMA_TODEVICE);
		break;

	case SAS_PROTOCOL_SATA:
	case SAS_PROTOCOL_STP:
	case SAS_PROTOCOL_SSP:
	default:
		/* do nothing */
		break;
	}

1153
	slot->task = NULL;
1154 1155 1156 1157
	mvs_tag_clear(mvi, slot_idx);
}

static void mvs_slot_err(struct mvs_info *mvi, struct sas_task *task,
1158
			 u32 slot_idx)
1159
{
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	struct mvs_slot_info *slot = &mvi->slot_info[slot_idx];
	u64 err_dw0 = *(u32 *) slot->response;
	void __iomem *regs = mvi->regs;
	u32 tmp;

	if (err_dw0 & CMD_ISS_STPD)
		if (sas_protocol_ata(task->task_proto)) {
			tmp = mr32(INT_STAT_SRS);
			mw32(INT_STAT_SRS, tmp & 0xFFFF);
		}

	mvs_hba_sb_dump(mvi, slot_idx, task->task_proto);
1172 1173
}

1174
static int mvs_slot_complete(struct mvs_info *mvi, u32 rx_desc)
1175
{
1176
	u32 slot_idx = rx_desc & RXQ_SLOT_MASK;
1177 1178 1179
	struct mvs_slot_info *slot = &mvi->slot_info[slot_idx];
	struct sas_task *task = slot->task;
	struct task_status_struct *tstat = &task->task_status;
1180
	struct mvs_port *port = &mvi->port[task->dev->port->id];
1181
	bool aborted;
1182
	void *to;
1183 1184 1185 1186 1187

	spin_lock(&task->task_state_lock);
	aborted = task->task_state_flags & SAS_TASK_STATE_ABORTED;
	if (!aborted) {
		task->task_state_flags &=
1188
		    ~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR);
1189 1190 1191 1192 1193
		task->task_state_flags |= SAS_TASK_STATE_DONE;
	}
	spin_unlock(&task->task_state_lock);

	if (aborted)
1194
		return -1;
1195 1196 1197 1198

	memset(tstat, 0, sizeof(*tstat));
	tstat->resp = SAS_TASK_COMPLETE;

1199 1200 1201 1202 1203 1204

	if (unlikely(!port->port_attached)) {
		tstat->stat = SAS_PHY_DOWN;
		goto out;
	}

1205
	/* error info record present */
1206
	if ((rx_desc & RXQ_ERR) && (*(u64 *) slot->response)) {
1207 1208 1209 1210 1211 1212 1213 1214
		tstat->stat = SAM_CHECK_COND;
		mvs_slot_err(mvi, task, slot_idx);
		goto out;
	}

	switch (task->task_proto) {
	case SAS_PROTOCOL_SSP:
		/* hw says status == 0, datapres == 0 */
1215
		if (rx_desc & RXQ_GOOD) {
1216
			tstat->stat = SAM_GOOD;
1217 1218
			tstat->resp = SAS_TASK_COMPLETE;
		}
1219 1220 1221
		/* response frame present */
		else if (rx_desc & RXQ_RSP) {
			struct ssp_response_iu *iu =
1222
			    slot->response + sizeof(struct mvs_err_info);
1223 1224 1225 1226 1227 1228 1229 1230
			sas_ssp_task_response(&mvi->pdev->dev, task, iu);
		}

		/* should never happen? */
		else
			tstat->stat = SAM_CHECK_COND;
		break;

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	case SAS_PROTOCOL_SMP: {
			struct scatterlist *sg_resp = &task->smp_task.smp_resp;
			tstat->stat = SAM_GOOD;
			to = kmap_atomic(sg_page(sg_resp), KM_IRQ0);
			memcpy(to + sg_resp->offset,
				slot->response + sizeof(struct mvs_err_info),
				sg_dma_len(sg_resp));
			kunmap_atomic(to, KM_IRQ0);
			break;
		}
1241 1242 1243

	case SAS_PROTOCOL_SATA:
	case SAS_PROTOCOL_STP:
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: {
			struct ata_task_resp *resp =
			    (struct ata_task_resp *)tstat->buf;

			if ((rx_desc & (RXQ_DONE | RXQ_ERR | RXQ_ATTN)) ==
			    RXQ_DONE)
				tstat->stat = SAM_GOOD;
			else
				tstat->stat = SAM_CHECK_COND;

			resp->frame_len = sizeof(struct dev_to_host_fis);
			memcpy(&resp->ending_fis[0],
			       SATA_RECEIVED_D2H_FIS(port->taskfileset),
			       sizeof(struct dev_to_host_fis));
			if (resp->ending_fis[2] & ATA_ERR)
				mvs_hexdump(16, resp->ending_fis, 0);
			break;
		}
1262 1263 1264 1265 1266 1267 1268 1269 1270

	default:
		tstat->stat = SAM_CHECK_COND;
		break;
	}

out:
	mvs_slot_free(mvi, task, slot, slot_idx);
	task->task_done(task);
1271
	return tstat->stat;
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
}

static void mvs_int_full(struct mvs_info *mvi)
{
	void __iomem *regs = mvi->regs;
	u32 tmp, stat;
	int i;

	stat = mr32(INT_STAT);

1282 1283
	mvs_int_rx(mvi, false);

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	for (i = 0; i < MVS_MAX_PORTS; i++) {
		tmp = (stat >> i) & (CINT_PORT | CINT_PORT_STOPPED);
		if (tmp)
			mvs_int_port(mvi, i, tmp);
	}

	if (stat & CINT_SRS)
		mvs_int_sata(mvi);

	mw32(INT_STAT, stat);
}

1296
static int mvs_int_rx(struct mvs_info *mvi, bool self_clear)
1297
{
1298
	void __iomem *regs = mvi->regs;
1299 1300
	u32 rx_prod_idx, rx_desc;
	bool attn = false;
1301
	struct pci_dev *pdev = mvi->pdev;
1302 1303 1304 1305 1306 1307

	/* the first dword in the RX ring is special: it contains
	 * a mirror of the hardware's RX producer index, so that
	 * we don't have to stall the CPU reading that register.
	 * The actual RX ring is offset by one dword, due to this.
	 */
1308
	rx_prod_idx = mr32(RX_CONS_IDX) & RX_RING_SZ_MASK;
1309 1310
	if (rx_prod_idx == 0xfff) {	/* h/w hasn't touched RX ring yet */
		mvi->rx_cons = 0xfff;
1311
		return 0;
1312
	}
1313 1314 1315 1316 1317 1318 1319 1320

	/* The CMPL_Q may come late, read from register and try again
	* note: if coalescing is enabled,
	* it will need to read from register every time for sure
	*/
	if (mvi->rx_cons == rx_prod_idx)
		return 0;

1321 1322 1323 1324
	if (mvi->rx_cons == 0xfff)
		mvi->rx_cons = MVS_RX_RING_SZ - 1;

	while (mvi->rx_cons != rx_prod_idx) {
1325

1326 1327 1328 1329 1330
		/* increment our internal RX consumer pointer */
		mvi->rx_cons = (mvi->rx_cons + 1) & (MVS_RX_RING_SZ - 1);

		rx_desc = le32_to_cpu(mvi->rx[mvi->rx_cons + 1]);

1331
		mvs_hba_cq_dump(mvi);
1332

K
Ke Wei 已提交
1333
		if (likely(rx_desc & RXQ_DONE))
1334 1335
			mvs_slot_complete(mvi, rx_desc);
		if (rx_desc & RXQ_ATTN) {
1336
			attn = true;
1337 1338 1339 1340 1341 1342
			dev_printk(KERN_DEBUG, &pdev->dev, "ATTN %X\n",
				rx_desc);
		} else if (rx_desc & RXQ_ERR) {
			dev_printk(KERN_DEBUG, &pdev->dev, "RXQ_ERR %X\n",
				rx_desc);
		}
1343 1344 1345 1346 1347
	}

	if (attn && self_clear)
		mvs_int_full(mvi);

1348
	return 0;
1349 1350 1351 1352 1353 1354 1355 1356 1357
}

static irqreturn_t mvs_interrupt(int irq, void *opaque)
{
	struct mvs_info *mvi = opaque;
	void __iomem *regs = mvi->regs;
	u32 stat;

	stat = mr32(GBL_INT_STAT);
1358 1359 1360 1361

	/* clear CMD_CMPLT ASAP */
	mw32_f(INT_STAT, CINT_DONE);

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	if (stat == 0 || stat == 0xffffffff)
		return IRQ_NONE;

	spin_lock(&mvi->lock);

	mvs_int_full(mvi);

	spin_unlock(&mvi->lock);

	return IRQ_HANDLED;
}

1374
#ifndef MVS_DISABLE_MSI
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
static irqreturn_t mvs_msi_interrupt(int irq, void *opaque)
{
	struct mvs_info *mvi = opaque;

	spin_lock(&mvi->lock);

	mvs_int_rx(mvi, true);

	spin_unlock(&mvi->lock);

	return IRQ_HANDLED;
}
1387
#endif
1388 1389

struct mvs_task_exec_info {
1390 1391 1392 1393 1394
	struct sas_task *task;
	struct mvs_cmd_hdr *hdr;
	struct mvs_port *port;
	u32 tag;
	int n_elem;
1395 1396
};

1397 1398
static int mvs_task_prep_smp(struct mvs_info *mvi,
			     struct mvs_task_exec_info *tei)
1399
{
1400 1401
	int elem, rc, i;
	struct sas_task *task = tei->task;
1402 1403
	struct mvs_cmd_hdr *hdr = tei->hdr;
	struct scatterlist *sg_req, *sg_resp;
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	u32 req_len, resp_len, tag = tei->tag;
	void *buf_tmp;
	u8 *buf_oaf;
	dma_addr_t buf_tmp_dma;
	struct mvs_prd *buf_prd;
	struct scatterlist *sg;
	struct mvs_slot_info *slot = &mvi->slot_info[tag];
	struct asd_sas_port *sas_port = task->dev->port;
	u32 flags = (tei->n_elem << MCH_PRD_LEN_SHIFT);
#if _MV_DUMP
	u8 *buf_cmd;
	void *from;
#endif
1417 1418 1419
	/*
	 * DMA-map SMP request, response buffers
	 */
1420
	sg_req = &task->smp_task.smp_req;
1421 1422 1423 1424 1425
	elem = pci_map_sg(mvi->pdev, sg_req, 1, PCI_DMA_TODEVICE);
	if (!elem)
		return -ENOMEM;
	req_len = sg_dma_len(sg_req);

1426
	sg_resp = &task->smp_task.smp_resp;
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	elem = pci_map_sg(mvi->pdev, sg_resp, 1, PCI_DMA_FROMDEVICE);
	if (!elem) {
		rc = -ENOMEM;
		goto err_out;
	}
	resp_len = sg_dma_len(sg_resp);

	/* must be in dwords */
	if ((req_len & 0x3) || (resp_len & 0x3)) {
		rc = -EINVAL;
		goto err_out_2;
	}

	/*
1441
	 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
1442 1443
	 */

1444 1445 1446
	/* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */
	buf_tmp = slot->buf;
	buf_tmp_dma = slot->buf_dma;
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
#if _MV_DUMP
	buf_cmd = buf_tmp;
	hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);
	buf_tmp += req_len;
	buf_tmp_dma += req_len;
	slot->cmd_size = req_len;
#else
	hdr->cmd_tbl = cpu_to_le64(sg_dma_address(sg_req));
#endif

	/* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
	buf_oaf = buf_tmp;
	hdr->open_frame = cpu_to_le64(buf_tmp_dma);

	buf_tmp += MVS_OAF_SZ;
	buf_tmp_dma += MVS_OAF_SZ;

	/* region 3: PRD table ********************************************* */
	buf_prd = buf_tmp;
	if (tei->n_elem)
		hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
	else
		hdr->prd_tbl = 0;

	i = sizeof(struct mvs_prd) * tei->n_elem;
	buf_tmp += i;
	buf_tmp_dma += i;

	/* region 4: status buffer (larger the PRD, smaller this buf) ****** */
	slot->response = buf_tmp;
	hdr->status_buf = cpu_to_le64(buf_tmp_dma);

	/*
	 * Fill in TX ring and command slot header
	 */
	slot->tx = mvi->tx_prod;
	mvi->tx[mvi->tx_prod] = cpu_to_le32((TXQ_CMD_SMP << TXQ_CMD_SHIFT) |
					TXQ_MODE_I | tag |
					(sas_port->phy_mask << TXQ_PHY_SHIFT));

	hdr->flags |= flags;
	hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | ((req_len - 4) / 4));
1490 1491 1492
	hdr->tags = cpu_to_le32(tag);
	hdr->data_len = 0;

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	/* generate open address frame hdr (first 12 bytes) */
	buf_oaf[0] = (1 << 7) | (0 << 4) | 0x01; /* initiator, SMP, ftype 1h */
	buf_oaf[1] = task->dev->linkrate & 0xf;
	*(u16 *)(buf_oaf + 2) = 0xFFFF;		/* SAS SPEC */
	memcpy(buf_oaf + 4, task->dev->sas_addr, SAS_ADDR_SIZE);

	/* fill in PRD (scatter/gather) table, if any */
	for_each_sg(task->scatter, sg, tei->n_elem, i) {
		buf_prd->addr = cpu_to_le64(sg_dma_address(sg));
		buf_prd->len = cpu_to_le32(sg_dma_len(sg));
		buf_prd++;
	}

#if _MV_DUMP
	/* copy cmd table */
	from = kmap_atomic(sg_page(sg_req), KM_IRQ0);
	memcpy(buf_cmd, from + sg_req->offset, req_len);
	kunmap_atomic(from, KM_IRQ0);
#endif
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	return 0;

err_out_2:
	pci_unmap_sg(mvi->pdev, &tei->task->smp_task.smp_resp, 1,
		     PCI_DMA_FROMDEVICE);
err_out:
	pci_unmap_sg(mvi->pdev, &tei->task->smp_task.smp_req, 1,
		     PCI_DMA_TODEVICE);
	return rc;
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
static void mvs_free_reg_set(struct mvs_info *mvi, struct mvs_port *port)
{
	void __iomem *regs = mvi->regs;
	u32 tmp, offs;
	u8 *tfs = &port->taskfileset;

	if (*tfs == MVS_ID_NOT_MAPPED)
		return;

	offs = 1U << ((*tfs & 0x0f) + PCS_EN_SATA_REG_SHIFT);
	if (*tfs < 16) {
		tmp = mr32(PCS);
		mw32(PCS, tmp & ~offs);
	} else {
		tmp = mr32(CTL);
		mw32(CTL, tmp & ~offs);
	}

	tmp = mr32(INT_STAT_SRS) & (1U << *tfs);
	if (tmp)
		mw32(INT_STAT_SRS, tmp);

	*tfs = MVS_ID_NOT_MAPPED;
}

static u8 mvs_assign_reg_set(struct mvs_info *mvi, struct mvs_port *port)
{
	int i;
	u32 tmp, offs;
	void __iomem *regs = mvi->regs;

	if (port->taskfileset != MVS_ID_NOT_MAPPED)
		return 0;

	tmp = mr32(PCS);

	for (i = 0; i < mvi->chip->srs_sz; i++) {
		if (i == 16)
			tmp = mr32(CTL);
		offs = 1U << ((i & 0x0f) + PCS_EN_SATA_REG_SHIFT);
		if (!(tmp & offs)) {
			port->taskfileset = i;

			if (i < 16)
				mw32(PCS, tmp | offs);
			else
				mw32(CTL, tmp | offs);
			tmp = mr32(INT_STAT_SRS) & (1U << i);
			if (tmp)
				mw32(INT_STAT_SRS, tmp);
			return 0;
		}
	}
	return MVS_ID_NOT_MAPPED;
}

static u32 mvs_get_ncq_tag(struct sas_task *task)
{
	u32 tag = 0;
	struct ata_queued_cmd *qc = task->uldd_task;

	if (qc)
		tag = qc->tag;

	return tag;
}

1590 1591 1592 1593 1594 1595 1596
static int mvs_task_prep_ata(struct mvs_info *mvi,
			     struct mvs_task_exec_info *tei)
{
	struct sas_task *task = tei->task;
	struct domain_device *dev = task->dev;
	struct mvs_cmd_hdr *hdr = tei->hdr;
	struct asd_sas_port *sas_port = dev->port;
1597
	struct mvs_slot_info *slot;
1598 1599
	struct scatterlist *sg;
	struct mvs_prd *buf_prd;
1600 1601 1602
	struct mvs_port *port = tei->port;
	u32 tag = tei->tag;
	u32 flags = (tei->n_elem << MCH_PRD_LEN_SHIFT);
1603 1604 1605
	void *buf_tmp;
	u8 *buf_cmd, *buf_oaf;
	dma_addr_t buf_tmp_dma;
1606 1607 1608 1609 1610
	u32 i, req_len, resp_len;
	const u32 max_resp_len = SB_RFB_MAX;

	if (mvs_assign_reg_set(mvi, port) == MVS_ID_NOT_MAPPED)
		return -EBUSY;
1611

1612 1613 1614 1615 1616 1617
	slot = &mvi->slot_info[tag];
	slot->tx = mvi->tx_prod;
	mvi->tx[mvi->tx_prod] = cpu_to_le32(TXQ_MODE_I | tag |
					(TXQ_CMD_STP << TXQ_CMD_SHIFT) |
					(sas_port->phy_mask << TXQ_PHY_SHIFT) |
					(port->taskfileset << TXQ_SRS_SHIFT));
1618 1619 1620

	if (task->ata_task.use_ncq)
		flags |= MCH_FPDMA;
1621 1622 1623 1624 1625
	if (dev->sata_dev.command_set == ATAPI_COMMAND_SET) {
		if (task->ata_task.fis.command != ATA_CMD_ID_ATAPI)
			flags |= MCH_ATAPI;
	}

1626 1627 1628
	/* FIXME: fill in port multiplier number */

	hdr->flags = cpu_to_le32(flags);
1629 1630 1631 1632 1633 1634 1635 1636

	/* FIXME: the low order order 5 bits for the TAG if enable NCQ */
	if (task->ata_task.use_ncq) {
		hdr->tags = cpu_to_le32(mvs_get_ncq_tag(task));
		/*Fill in task file */
		task->ata_task.fis.sector_count = hdr->tags << 3;
	} else
		hdr->tags = cpu_to_le32(tag);
1637 1638 1639 1640 1641 1642
	hdr->data_len = cpu_to_le32(task->total_xfer_len);

	/*
	 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
	 */

1643 1644
	/* region 1: command table area (MVS_ATA_CMD_SZ bytes) ************** */
	buf_cmd = buf_tmp = slot->buf;
1645 1646 1647 1648 1649 1650
	buf_tmp_dma = slot->buf_dma;

	hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);

	buf_tmp += MVS_ATA_CMD_SZ;
	buf_tmp_dma += MVS_ATA_CMD_SZ;
1651 1652 1653
#if _MV_DUMP
	slot->cmd_size = MVS_ATA_CMD_SZ;
#endif
1654

1655
	/* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
1656 1657 1658 1659 1660 1661 1662
	/* used for STP.  unused for SATA? */
	buf_oaf = buf_tmp;
	hdr->open_frame = cpu_to_le64(buf_tmp_dma);

	buf_tmp += MVS_OAF_SZ;
	buf_tmp_dma += MVS_OAF_SZ;

1663
	/* region 3: PRD table ********************************************* */
1664
	buf_prd = buf_tmp;
1665 1666 1667 1668
	if (tei->n_elem)
		hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
	else
		hdr->prd_tbl = 0;
1669 1670 1671 1672 1673

	i = sizeof(struct mvs_prd) * tei->n_elem;
	buf_tmp += i;
	buf_tmp_dma += i;

1674
	/* region 4: status buffer (larger the PRD, smaller this buf) ****** */
1675 1676 1677 1678 1679 1680
	/* FIXME: probably unused, for SATA.  kept here just in case
	 * we get a STP/SATA error information record
	 */
	slot->response = buf_tmp;
	hdr->status_buf = cpu_to_le64(buf_tmp_dma);

1681
	req_len = sizeof(struct host_to_dev_fis);
1682
	resp_len = MVS_SLOT_BUF_SZ - MVS_ATA_CMD_SZ -
1683
	    sizeof(struct mvs_err_info) - i;
1684 1685

	/* request, response lengths */
1686
	resp_len = min(resp_len, max_resp_len);
1687 1688
	hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4));

1689
	task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
1690
	/* fill in command FIS and ATAPI CDB */
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
	if (dev->sata_dev.command_set == ATAPI_COMMAND_SET)
		memcpy(buf_cmd + STP_ATAPI_CMD,
			task->ata_task.atapi_packet, 16);

	/* generate open address frame hdr (first 12 bytes) */
	buf_oaf[0] = (1 << 7) | (2 << 4) | 0x1;	/* initiator, STP, ftype 1h */
	buf_oaf[1] = task->dev->linkrate & 0xf;
	*(u16 *)(buf_oaf + 2) = cpu_to_be16(tag);
	memcpy(buf_oaf + 4, task->dev->sas_addr, SAS_ADDR_SIZE);
1701 1702

	/* fill in PRD (scatter/gather) table, if any */
1703
	for_each_sg(task->scatter, sg, tei->n_elem, i) {
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
		buf_prd->addr = cpu_to_le64(sg_dma_address(sg));
		buf_prd->len = cpu_to_le32(sg_dma_len(sg));
		buf_prd++;
	}

	return 0;
}

static int mvs_task_prep_ssp(struct mvs_info *mvi,
			     struct mvs_task_exec_info *tei)
{
	struct sas_task *task = tei->task;
	struct mvs_cmd_hdr *hdr = tei->hdr;
1717
	struct mvs_port *port = tei->port;
1718 1719 1720 1721 1722 1723 1724 1725
	struct mvs_slot_info *slot;
	struct scatterlist *sg;
	struct mvs_prd *buf_prd;
	struct ssp_frame_hdr *ssp_hdr;
	void *buf_tmp;
	u8 *buf_cmd, *buf_oaf, fburst = 0;
	dma_addr_t buf_tmp_dma;
	u32 flags;
1726 1727
	u32 resp_len, req_len, i, tag = tei->tag;
	const u32 max_resp_len = SB_RFB_MAX;
1728 1729 1730

	slot = &mvi->slot_info[tag];

1731 1732 1733 1734
	slot->tx = mvi->tx_prod;
	mvi->tx[mvi->tx_prod] = cpu_to_le32(TXQ_MODE_I | tag |
				(TXQ_CMD_SSP << TXQ_CMD_SHIFT) |
				(port->wide_port_phymap << TXQ_PHY_SHIFT));
1735 1736 1737 1738 1739 1740 1741

	flags = MCH_RETRY;
	if (task->ssp_task.enable_first_burst) {
		flags |= MCH_FBURST;
		fburst = (1 << 7);
	}
	hdr->flags = cpu_to_le32(flags |
1742 1743
				 (tei->n_elem << MCH_PRD_LEN_SHIFT) |
				 (MCH_SSP_FR_CMD << MCH_SSP_FR_TYPE_SHIFT));
1744 1745 1746 1747 1748 1749 1750 1751

	hdr->tags = cpu_to_le32(tag);
	hdr->data_len = cpu_to_le32(task->total_xfer_len);

	/*
	 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
	 */

1752 1753
	/* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */
	buf_cmd = buf_tmp = slot->buf;
1754 1755 1756 1757 1758 1759
	buf_tmp_dma = slot->buf_dma;

	hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);

	buf_tmp += MVS_SSP_CMD_SZ;
	buf_tmp_dma += MVS_SSP_CMD_SZ;
1760 1761 1762
#if _MV_DUMP
	slot->cmd_size = MVS_SSP_CMD_SZ;
#endif
1763

1764
	/* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
1765 1766 1767 1768 1769 1770
	buf_oaf = buf_tmp;
	hdr->open_frame = cpu_to_le64(buf_tmp_dma);

	buf_tmp += MVS_OAF_SZ;
	buf_tmp_dma += MVS_OAF_SZ;

1771
	/* region 3: PRD table ********************************************* */
1772
	buf_prd = buf_tmp;
1773 1774 1775 1776
	if (tei->n_elem)
		hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
	else
		hdr->prd_tbl = 0;
1777 1778 1779 1780 1781

	i = sizeof(struct mvs_prd) * tei->n_elem;
	buf_tmp += i;
	buf_tmp_dma += i;

1782
	/* region 4: status buffer (larger the PRD, smaller this buf) ****** */
1783 1784 1785 1786
	slot->response = buf_tmp;
	hdr->status_buf = cpu_to_le64(buf_tmp_dma);

	resp_len = MVS_SLOT_BUF_SZ - MVS_SSP_CMD_SZ - MVS_OAF_SZ -
1787 1788 1789 1790
	    sizeof(struct mvs_err_info) - i;
	resp_len = min(resp_len, max_resp_len);

	req_len = sizeof(struct ssp_frame_hdr) + 28;
1791 1792 1793 1794 1795 1796 1797

	/* request, response lengths */
	hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4));

	/* generate open address frame hdr (first 12 bytes) */
	buf_oaf[0] = (1 << 7) | (1 << 4) | 0x1;	/* initiator, SSP, ftype 1h */
	buf_oaf[1] = task->dev->linkrate & 0xf;
1798
	*(u16 *)(buf_oaf + 2) = cpu_to_be16(tag);
1799 1800
	memcpy(buf_oaf + 4, task->dev->sas_addr, SAS_ADDR_SIZE);

1801 1802
	/* fill in SSP frame header (Command Table.SSP frame header) */
	ssp_hdr = (struct ssp_frame_hdr *)buf_cmd;
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	ssp_hdr->frame_type = SSP_COMMAND;
	memcpy(ssp_hdr->hashed_dest_addr, task->dev->hashed_sas_addr,
	       HASHED_SAS_ADDR_SIZE);
	memcpy(ssp_hdr->hashed_src_addr,
	       task->dev->port->ha->hashed_sas_addr, HASHED_SAS_ADDR_SIZE);
	ssp_hdr->tag = cpu_to_be16(tag);

	/* fill in command frame IU */
	buf_cmd += sizeof(*ssp_hdr);
	memcpy(buf_cmd, &task->ssp_task.LUN, 8);
1813 1814
	buf_cmd[9] = fburst | task->ssp_task.task_attr |
			(task->ssp_task.task_prio << 3);
1815 1816 1817
	memcpy(buf_cmd + 12, &task->ssp_task.cdb, 16);

	/* fill in PRD (scatter/gather) table, if any */
1818
	for_each_sg(task->scatter, sg, tei->n_elem, i) {
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		buf_prd->addr = cpu_to_le64(sg_dma_address(sg));
		buf_prd->len = cpu_to_le32(sg_dma_len(sg));
		buf_prd++;
	}

	return 0;
}

static int mvs_task_exec(struct sas_task *task, const int num, gfp_t gfp_flags)
{
1829 1830 1831
	struct domain_device *dev = task->dev;
	struct mvs_info *mvi = dev->port->ha->lldd_ha;
	struct pci_dev *pdev = mvi->pdev;
1832 1833
	void __iomem *regs = mvi->regs;
	struct mvs_task_exec_info tei;
1834 1835 1836 1837
	struct sas_task *t = task;
	u32 tag = 0xdeadbeef, rc, n_elem = 0;
	unsigned long flags;
	u32 n = num, pass = 0;
1838

1839
	spin_lock_irqsave(&mvi->lock, flags);
1840

1841 1842
	do {
		tei.port = &mvi->port[dev->port->id];
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
		if (!tei.port->port_attached) {
			struct task_status_struct *ts = &t->task_status;
			ts->stat = SAS_PHY_DOWN;
			t->task_done(t);
			rc = 0;
			goto exec_exit;
		}
		if (!sas_protocol_ata(t->task_proto)) {
			if (t->num_scatter) {
				n_elem = pci_map_sg(mvi->pdev, t->scatter,
						    t->num_scatter,
						    t->data_dir);
				if (!n_elem) {
					rc = -ENOMEM;
					goto err_out;
				}
			}
		} else {
			n_elem = t->num_scatter;
		}
1864

1865 1866 1867
		rc = mvs_tag_alloc(mvi, &tag);
		if (rc)
			goto err_out;
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
		mvi->slot_info[tag].task = t;
		mvi->slot_info[tag].n_elem = n_elem;
		memset(mvi->slot_info[tag].buf, 0, MVS_SLOT_BUF_SZ);
		tei.task = t;
		tei.hdr = &mvi->slot[tag];
		tei.tag = tag;
		tei.n_elem = n_elem;

		switch (t->task_proto) {
		case SAS_PROTOCOL_SMP:
			rc = mvs_task_prep_smp(mvi, &tei);
			break;
		case SAS_PROTOCOL_SSP:
			rc = mvs_task_prep_ssp(mvi, &tei);
			break;
		case SAS_PROTOCOL_SATA:
		case SAS_PROTOCOL_STP:
		case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
			rc = mvs_task_prep_ata(mvi, &tei);
			break;
		default:
			dev_printk(KERN_ERR, &pdev->dev,
				"unknown sas_task proto: 0x%x\n",
				t->task_proto);
			rc = -EINVAL;
			break;
		}
1896

1897 1898
		if (rc)
			goto err_out_tag;
1899

1900
		/* TODO: select normal or high priority */
1901

1902 1903 1904
		spin_lock(&t->task_state_lock);
		t->task_state_flags |= SAS_TASK_AT_INITIATOR;
		spin_unlock(&t->task_state_lock);
1905

1906 1907 1908 1909 1910
		if (n == 1) {
			spin_unlock_irqrestore(&mvi->lock, flags);
			mw32(TX_PROD_IDX, mvi->tx_prod);
		}
		mvs_hba_memory_dump(mvi, tag, t->task_proto);
1911

1912 1913
		++pass;
		mvi->tx_prod = (mvi->tx_prod + 1) & (MVS_CHIP_SLOT_SZ - 1);
1914

1915 1916 1917 1918 1919
		if (n == 1)
			break;

		t = list_entry(t->list.next, struct sas_task, list);
	} while (--n);
1920 1921 1922 1923

	return 0;

err_out_tag:
1924
	mvs_tag_free(mvi, tag);
1925
err_out:
1926 1927 1928 1929 1930 1931 1932 1933
	dev_printk(KERN_ERR, &pdev->dev, "mvsas exec failed[%d]!\n", rc);
	if (!sas_protocol_ata(t->task_proto))
		if (n_elem)
			pci_unmap_sg(mvi->pdev, t->scatter, n_elem,
				     t->data_dir);
exec_exit:
	if (pass)
		mw32(TX_PROD_IDX, (mvi->tx_prod - 1) & (MVS_CHIP_SLOT_SZ - 1));
1934 1935 1936 1937
	spin_unlock_irqrestore(&mvi->lock, flags);
	return rc;
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
static int mvs_task_abort(struct sas_task *task)
{
	int rc = 1;
	unsigned long flags;
	struct mvs_info *mvi = task->dev->port->ha->lldd_ha;
	struct pci_dev *pdev = mvi->pdev;

	spin_lock_irqsave(&task->task_state_lock, flags);
	if (task->task_state_flags & SAS_TASK_STATE_DONE) {
		rc = TMF_RESP_FUNC_COMPLETE;
		goto out_done;
	}
	spin_unlock_irqrestore(&task->task_state_lock, flags);

	/*FIXME*/
	rc = TMF_RESP_FUNC_COMPLETE;

	switch (task->task_proto) {
	case SAS_PROTOCOL_SMP:
		dev_printk(KERN_DEBUG, &pdev->dev, "SMP Abort! ");
		break;
	case SAS_PROTOCOL_SSP:
		dev_printk(KERN_DEBUG, &pdev->dev, "SSP Abort! ");
		break;
	case SAS_PROTOCOL_SATA:
	case SAS_PROTOCOL_STP:
	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:{
		dev_printk(KERN_DEBUG, &pdev->dev, "STP Abort! "
			"Dump D2H FIS: \n");
		mvs_hexdump(sizeof(struct host_to_dev_fis),
				(void *)&task->ata_task.fis, 0);
		dev_printk(KERN_DEBUG, &pdev->dev, "Dump ATAPI Cmd : \n");
		mvs_hexdump(16, task->ata_task.atapi_packet, 0);
		break;
	}
	default:
		break;
	}
out_done:
	return rc;
}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
static void mvs_free(struct mvs_info *mvi)
{
	int i;

	if (!mvi)
		return;

	for (i = 0; i < MVS_SLOTS; i++) {
		struct mvs_slot_info *slot = &mvi->slot_info[i];

		if (slot->buf)
			dma_free_coherent(&mvi->pdev->dev, MVS_SLOT_BUF_SZ,
					  slot->buf, slot->buf_dma);
	}

	if (mvi->tx)
		dma_free_coherent(&mvi->pdev->dev,
1997
				  sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ,
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
				  mvi->tx, mvi->tx_dma);
	if (mvi->rx_fis)
		dma_free_coherent(&mvi->pdev->dev, MVS_RX_FISL_SZ,
				  mvi->rx_fis, mvi->rx_fis_dma);
	if (mvi->rx)
		dma_free_coherent(&mvi->pdev->dev,
				  sizeof(*mvi->rx) * MVS_RX_RING_SZ,
				  mvi->rx, mvi->rx_dma);
	if (mvi->slot)
		dma_free_coherent(&mvi->pdev->dev,
2008
				  sizeof(*mvi->slot) * MVS_SLOTS,
2009
				  mvi->slot, mvi->slot_dma);
2010
#ifdef MVS_ENABLE_PERI
2011 2012
	if (mvi->peri_regs)
		iounmap(mvi->peri_regs);
2013
#endif
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	if (mvi->regs)
		iounmap(mvi->regs);
	if (mvi->shost)
		scsi_host_put(mvi->shost);
	kfree(mvi->sas.sas_port);
	kfree(mvi->sas.sas_phy);
	kfree(mvi);
}

/* FIXME: locking? */
static int mvs_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
			   void *funcdata)
{
	struct mvs_info *mvi = sas_phy->ha->lldd_ha;
	int rc = 0, phy_id = sas_phy->id;
	u32 tmp;

2031
	tmp = mvs_read_phy_ctl(mvi, phy_id);
2032 2033

	switch (func) {
2034 2035 2036
	case PHY_FUNC_SET_LINK_RATE:{
			struct sas_phy_linkrates *rates = funcdata;
			u32 lrmin = 0, lrmax = 0;
2037

2038 2039
			lrmin = (rates->minimum_linkrate << 8);
			lrmax = (rates->maximum_linkrate << 12);
2040

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
			if (lrmin) {
				tmp &= ~(0xf << 8);
				tmp |= lrmin;
			}
			if (lrmax) {
				tmp &= ~(0xf << 12);
				tmp |= lrmax;
			}
			mvs_write_phy_ctl(mvi, phy_id, tmp);
			break;
2051 2052 2053 2054 2055
		}

	case PHY_FUNC_HARD_RESET:
		if (tmp & PHY_RST_HARD)
			break;
2056
		mvs_write_phy_ctl(mvi, phy_id, tmp | PHY_RST_HARD);
2057 2058 2059
		break;

	case PHY_FUNC_LINK_RESET:
2060
		mvs_write_phy_ctl(mvi, phy_id, tmp | PHY_RST);
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
		break;

	case PHY_FUNC_DISABLE:
	case PHY_FUNC_RELEASE_SPINUP_HOLD:
	default:
		rc = -EOPNOTSUPP;
	}

	return rc;
}

static void __devinit mvs_phy_init(struct mvs_info *mvi, int phy_id)
{
	struct mvs_phy *phy = &mvi->phy[phy_id];
	struct asd_sas_phy *sas_phy = &phy->sas_phy;

	sas_phy->enabled = (phy_id < mvi->chip->n_phy) ? 1 : 0;
	sas_phy->class = SAS;
	sas_phy->iproto = SAS_PROTOCOL_ALL;
	sas_phy->tproto = 0;
	sas_phy->type = PHY_TYPE_PHYSICAL;
	sas_phy->role = PHY_ROLE_INITIATOR;
	sas_phy->oob_mode = OOB_NOT_CONNECTED;
	sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;

	sas_phy->id = phy_id;
	sas_phy->sas_addr = &mvi->sas_addr[0];
	sas_phy->frame_rcvd = &phy->frame_rcvd[0];
	sas_phy->ha = &mvi->sas;
	sas_phy->lldd_phy = phy;
}

2093 2094
static struct mvs_info *__devinit mvs_alloc(struct pci_dev *pdev,
					    const struct pci_device_id *ent)
2095 2096
{
	struct mvs_info *mvi;
2097
	unsigned long res_start, res_len, res_flag;
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	struct asd_sas_phy **arr_phy;
	struct asd_sas_port **arr_port;
	const struct mvs_chip_info *chip = &mvs_chips[ent->driver_data];
	int i;

	/*
	 * alloc and init our per-HBA mvs_info struct
	 */

	mvi = kzalloc(sizeof(*mvi), GFP_KERNEL);
	if (!mvi)
		return NULL;

	spin_lock_init(&mvi->lock);
	mvi->pdev = pdev;
	mvi->chip = chip;

	if (pdev->device == 0x6440 && pdev->revision == 0)
		mvi->flags |= MVF_PHY_PWR_FIX;

	/*
	 * alloc and init SCSI, SAS glue
	 */

	mvi->shost = scsi_host_alloc(&mvs_sht, sizeof(void *));
	if (!mvi->shost)
		goto err_out;

	arr_phy = kcalloc(MVS_MAX_PHYS, sizeof(void *), GFP_KERNEL);
	arr_port = kcalloc(MVS_MAX_PHYS, sizeof(void *), GFP_KERNEL);
	if (!arr_phy || !arr_port)
		goto err_out;

	for (i = 0; i < MVS_MAX_PHYS; i++) {
		mvs_phy_init(mvi, i);
		arr_phy[i] = &mvi->phy[i].sas_phy;
		arr_port[i] = &mvi->port[i].sas_port;
	}

	SHOST_TO_SAS_HA(mvi->shost) = &mvi->sas;
	mvi->shost->transportt = mvs_stt;
2139
	mvi->shost->max_id = 21;
2140
	mvi->shost->max_lun = ~0;
2141 2142
	mvi->shost->max_channel = 0;
	mvi->shost->max_cmd_len = 16;
2143 2144 2145 2146 2147 2148 2149 2150

	mvi->sas.sas_ha_name = DRV_NAME;
	mvi->sas.dev = &pdev->dev;
	mvi->sas.lldd_module = THIS_MODULE;
	mvi->sas.sas_addr = &mvi->sas_addr[0];
	mvi->sas.sas_phy = arr_phy;
	mvi->sas.sas_port = arr_port;
	mvi->sas.num_phys = chip->n_phy;
2151 2152 2153
	mvi->sas.lldd_max_execute_num = MVS_CHIP_SLOT_SZ - 1;
	mvi->sas.lldd_queue_size = MVS_QUEUE_SIZE;
	mvi->can_queue = (MVS_CHIP_SLOT_SZ >> 1) - 1;
2154 2155 2156
	mvi->sas.lldd_ha = mvi;
	mvi->sas.core.shost = mvi->shost;

2157
	mvs_tag_init(mvi);
2158 2159 2160 2161 2162

	/*
	 * ioremap main and peripheral registers
	 */

2163
#ifdef MVS_ENABLE_PERI
2164 2165 2166 2167 2168 2169
	res_start = pci_resource_start(pdev, 2);
	res_len = pci_resource_len(pdev, 2);
	if (!res_start || !res_len)
		goto err_out;

	mvi->peri_regs = ioremap_nocache(res_start, res_len);
2170
	if (!mvi->peri_regs)
2171
		goto err_out;
2172
#endif
2173 2174 2175 2176 2177 2178

	res_start = pci_resource_start(pdev, 4);
	res_len = pci_resource_len(pdev, 4);
	if (!res_start || !res_len)
		goto err_out;

2179 2180 2181 2182 2183 2184
	res_flag = pci_resource_flags(pdev, 4);
	if (res_flag & IORESOURCE_CACHEABLE)
		mvi->regs = ioremap(res_start, res_len);
	else
		mvi->regs = ioremap_nocache(res_start, res_len);

2185 2186 2187 2188 2189 2190 2191 2192
	if (!mvi->regs)
		goto err_out;

	/*
	 * alloc and init our DMA areas
	 */

	mvi->tx = dma_alloc_coherent(&pdev->dev,
2193
				     sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ,
2194 2195 2196
				     &mvi->tx_dma, GFP_KERNEL);
	if (!mvi->tx)
		goto err_out;
2197
	memset(mvi->tx, 0, sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ);
2198 2199

	mvi->rx_fis = dma_alloc_coherent(&pdev->dev, MVS_RX_FISL_SZ,
2200
					 &mvi->rx_fis_dma, GFP_KERNEL);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	if (!mvi->rx_fis)
		goto err_out;
	memset(mvi->rx_fis, 0, MVS_RX_FISL_SZ);

	mvi->rx = dma_alloc_coherent(&pdev->dev,
				     sizeof(*mvi->rx) * MVS_RX_RING_SZ,
				     &mvi->rx_dma, GFP_KERNEL);
	if (!mvi->rx)
		goto err_out;
	memset(mvi->rx, 0, sizeof(*mvi->rx) * MVS_RX_RING_SZ);

	mvi->rx[0] = cpu_to_le32(0xfff);
	mvi->rx_cons = 0xfff;

	mvi->slot = dma_alloc_coherent(&pdev->dev,
				       sizeof(*mvi->slot) * MVS_SLOTS,
				       &mvi->slot_dma, GFP_KERNEL);
	if (!mvi->slot)
		goto err_out;
	memset(mvi->slot, 0, sizeof(*mvi->slot) * MVS_SLOTS);

	for (i = 0; i < MVS_SLOTS; i++) {
		struct mvs_slot_info *slot = &mvi->slot_info[i];

		slot->buf = dma_alloc_coherent(&pdev->dev, MVS_SLOT_BUF_SZ,
2226
					       &slot->buf_dma, GFP_KERNEL);
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
		if (!slot->buf)
			goto err_out;
		memset(slot->buf, 0, MVS_SLOT_BUF_SZ);
	}

	/* finally, read NVRAM to get our SAS address */
	if (mvs_nvram_read(mvi, NVR_SAS_ADDR, &mvi->sas_addr, 8))
		goto err_out;
	return mvi;

err_out:
	mvs_free(mvi);
	return NULL;
}

static u32 mvs_cr32(void __iomem *regs, u32 addr)
{
	mw32(CMD_ADDR, addr);
	return mr32(CMD_DATA);
}

static void mvs_cw32(void __iomem *regs, u32 addr, u32 val)
{
	mw32(CMD_ADDR, addr);
	mw32(CMD_DATA, val);
}

2254
static u32 mvs_read_phy_ctl(struct mvs_info *mvi, u32 port)
2255 2256
{
	void __iomem *regs = mvi->regs;
2257 2258
	return (port < 4)?mr32(P0_SER_CTLSTAT + port * 4):
		mr32(P4_SER_CTLSTAT + (port - 4) * 4);
2259 2260
}

2261
static void mvs_write_phy_ctl(struct mvs_info *mvi, u32 port, u32 val)
2262 2263
{
	void __iomem *regs = mvi->regs;
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	if (port < 4)
		mw32(P0_SER_CTLSTAT + port * 4, val);
	else
		mw32(P4_SER_CTLSTAT + (port - 4) * 4, val);
}

static u32 mvs_read_port(struct mvs_info *mvi, u32 off, u32 off2, u32 port)
{
	void __iomem *regs = mvi->regs + off;
	void __iomem *regs2 = mvi->regs + off2;
	return (port < 4)?readl(regs + port * 8):
		readl(regs2 + (port - 4) * 8);
}

static void mvs_write_port(struct mvs_info *mvi, u32 off, u32 off2,
				u32 port, u32 val)
{
	void __iomem *regs = mvi->regs + off;
	void __iomem *regs2 = mvi->regs + off2;
	if (port < 4)
		writel(val, regs + port * 8);
	else
		writel(val, regs2 + (port - 4) * 8);
}

static u32 mvs_read_port_cfg_data(struct mvs_info *mvi, u32 port)
{
	return mvs_read_port(mvi, MVS_P0_CFG_DATA, MVS_P4_CFG_DATA, port);
}

static void mvs_write_port_cfg_data(struct mvs_info *mvi, u32 port, u32 val)
{
	mvs_write_port(mvi, MVS_P0_CFG_DATA, MVS_P4_CFG_DATA, port, val);
}

static void mvs_write_port_cfg_addr(struct mvs_info *mvi, u32 port, u32 addr)
{
	mvs_write_port(mvi, MVS_P0_CFG_ADDR, MVS_P4_CFG_ADDR, port, addr);
}

static u32 mvs_read_port_vsr_data(struct mvs_info *mvi, u32 port)
{
	return mvs_read_port(mvi, MVS_P0_VSR_DATA, MVS_P4_VSR_DATA, port);
}

static void mvs_write_port_vsr_data(struct mvs_info *mvi, u32 port, u32 val)
{
	mvs_write_port(mvi, MVS_P0_VSR_DATA, MVS_P4_VSR_DATA, port, val);
}

static void mvs_write_port_vsr_addr(struct mvs_info *mvi, u32 port, u32 addr)
{
	mvs_write_port(mvi, MVS_P0_VSR_ADDR, MVS_P4_VSR_ADDR, port, addr);
}

static u32 mvs_read_port_irq_stat(struct mvs_info *mvi, u32 port)
{
	return mvs_read_port(mvi, MVS_P0_INT_STAT, MVS_P4_INT_STAT, port);
}

static void mvs_write_port_irq_stat(struct mvs_info *mvi, u32 port, u32 val)
{
	mvs_write_port(mvi, MVS_P0_INT_STAT, MVS_P4_INT_STAT, port, val);
}

static u32 mvs_read_port_irq_mask(struct mvs_info *mvi, u32 port)
{
	return mvs_read_port(mvi, MVS_P0_INT_MASK, MVS_P4_INT_MASK, port);
}
2333

2334 2335 2336
static void mvs_write_port_irq_mask(struct mvs_info *mvi, u32 port, u32 val)
{
	mvs_write_port(mvi, MVS_P0_INT_MASK, MVS_P4_INT_MASK, port, val);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
}

static void __devinit mvs_phy_hacks(struct mvs_info *mvi)
{
	void __iomem *regs = mvi->regs;
	u32 tmp;

	/* workaround for SATA R-ERR, to ignore phy glitch */
	tmp = mvs_cr32(regs, CMD_PHY_TIMER);
	tmp &= ~(1 << 9);
	tmp |= (1 << 10);
	mvs_cw32(regs, CMD_PHY_TIMER, tmp);

	/* enable retry 127 times */
	mvs_cw32(regs, CMD_SAS_CTL1, 0x7f7f);

	/* extend open frame timeout to max */
	tmp = mvs_cr32(regs, CMD_SAS_CTL0);
	tmp &= ~0xffff;
	tmp |= 0x3fff;
	mvs_cw32(regs, CMD_SAS_CTL0, tmp);

	/* workaround for WDTIMEOUT , set to 550 ms */
	mvs_cw32(regs, CMD_WD_TIMER, 0xffffff);

	/* not to halt for different port op during wideport link change */
	mvs_cw32(regs, CMD_APP_ERR_CONFIG, 0xffefbf7d);

	/* workaround for Seagate disk not-found OOB sequence, recv
	 * COMINIT before sending out COMWAKE */
	tmp = mvs_cr32(regs, CMD_PHY_MODE_21);
	tmp &= 0x0000ffff;
	tmp |= 0x00fa0000;
	mvs_cw32(regs, CMD_PHY_MODE_21, tmp);

	tmp = mvs_cr32(regs, CMD_PHY_TIMER);
	tmp &= 0x1fffffff;
	tmp |= (2U << 29);	/* 8 ms retry */
	mvs_cw32(regs, CMD_PHY_TIMER, tmp);
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

	/* TEST - for phy decoding error, adjust voltage levels */
	mw32(P0_VSR_ADDR + 0, 0x8);
	mw32(P0_VSR_DATA + 0, 0x2F0);

	mw32(P0_VSR_ADDR + 8, 0x8);
	mw32(P0_VSR_DATA + 8, 0x2F0);

	mw32(P0_VSR_ADDR + 16, 0x8);
	mw32(P0_VSR_DATA + 16, 0x2F0);

	mw32(P0_VSR_ADDR + 24, 0x8);
	mw32(P0_VSR_DATA + 24, 0x2F0);

}

static void mvs_enable_xmt(struct mvs_info *mvi, int PhyId)
{
	void __iomem *regs = mvi->regs;
	u32 tmp;

	tmp = mr32(PCS);
	if (mvi->chip->n_phy <= 4)
		tmp |= 1 << (PhyId + PCS_EN_PORT_XMT_SHIFT);
	else
		tmp |= 1 << (PhyId + PCS_EN_PORT_XMT_SHIFT2);
	mw32(PCS, tmp);
}

static void mvs_detect_porttype(struct mvs_info *mvi, int i)
{
	void __iomem *regs = mvi->regs;
	u32 reg;
	struct mvs_phy *phy = &mvi->phy[i];

	/* TODO check & save device type */
	reg = mr32(GBL_PORT_TYPE);

	if (reg & MODE_SAS_SATA & (1 << i))
		phy->phy_type |= PORT_TYPE_SAS;
	else
		phy->phy_type |= PORT_TYPE_SATA;
}

static void *mvs_get_d2h_reg(struct mvs_info *mvi, int i, void *buf)
{
	u32 *s = (u32 *) buf;

	if (!s)
		return NULL;

	mvs_write_port_cfg_addr(mvi, i, PHYR_SATA_SIG3);
	s[3] = mvs_read_port_cfg_data(mvi, i);

	mvs_write_port_cfg_addr(mvi, i, PHYR_SATA_SIG2);
	s[2] = mvs_read_port_cfg_data(mvi, i);

	mvs_write_port_cfg_addr(mvi, i, PHYR_SATA_SIG1);
	s[1] = mvs_read_port_cfg_data(mvi, i);

	mvs_write_port_cfg_addr(mvi, i, PHYR_SATA_SIG0);
	s[0] = mvs_read_port_cfg_data(mvi, i);

	return (void *)s;
}

static u32 mvs_is_sig_fis_received(u32 irq_status)
{
	return irq_status & PHYEV_SIG_FIS;
}

static void mvs_update_wideport(struct mvs_info *mvi, int i)
{
	struct mvs_phy *phy = &mvi->phy[i];
	struct mvs_port *port = phy->port;
	int j, no;

	for_each_phy(port->wide_port_phymap, no, j, mvi->chip->n_phy)
		if (no & 1) {
			mvs_write_port_cfg_addr(mvi, no, PHYR_WIDE_PORT);
			mvs_write_port_cfg_data(mvi, no,
						port->wide_port_phymap);
		} else {
			mvs_write_port_cfg_addr(mvi, no, PHYR_WIDE_PORT);
			mvs_write_port_cfg_data(mvi, no, 0);
		}
}

static u32 mvs_is_phy_ready(struct mvs_info *mvi, int i)
{
	u32 tmp;
	struct mvs_phy *phy = &mvi->phy[i];
	struct mvs_port *port;

	tmp = mvs_read_phy_ctl(mvi, i);

	if ((tmp & PHY_READY_MASK) && !(phy->irq_status & PHYEV_POOF)) {
		if (!phy->port)
			phy->phy_attached = 1;
		return tmp;
	}

	port = phy->port;
	if (port) {
		if (phy->phy_type & PORT_TYPE_SAS) {
			port->wide_port_phymap &= ~(1U << i);
			if (!port->wide_port_phymap)
				port->port_attached = 0;
			mvs_update_wideport(mvi, i);
		} else if (phy->phy_type & PORT_TYPE_SATA)
			port->port_attached = 0;
		mvs_free_reg_set(mvi, phy->port);
		phy->port = NULL;
		phy->phy_attached = 0;
		phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
	}
	return 0;
}

static void mvs_update_phyinfo(struct mvs_info *mvi, int i,
					int get_st)
{
	struct mvs_phy *phy = &mvi->phy[i];
	struct pci_dev *pdev = mvi->pdev;
	u32 tmp, j;
	u64 tmp64;

	mvs_write_port_cfg_addr(mvi, i, PHYR_IDENTIFY);
	phy->dev_info = mvs_read_port_cfg_data(mvi, i);

	mvs_write_port_cfg_addr(mvi, i, PHYR_ADDR_HI);
	phy->dev_sas_addr = (u64) mvs_read_port_cfg_data(mvi, i) << 32;

	mvs_write_port_cfg_addr(mvi, i, PHYR_ADDR_LO);
	phy->dev_sas_addr |= mvs_read_port_cfg_data(mvi, i);

	if (get_st) {
		phy->irq_status = mvs_read_port_irq_stat(mvi, i);
		phy->phy_status = mvs_is_phy_ready(mvi, i);
	}

	if (phy->phy_status) {
		u32 phy_st;
		struct asd_sas_phy *sas_phy = mvi->sas.sas_phy[i];

		mvs_write_port_cfg_addr(mvi, i, PHYR_PHY_STAT);
		phy_st = mvs_read_port_cfg_data(mvi, i);

		sas_phy->linkrate =
			(phy->phy_status & PHY_NEG_SPP_PHYS_LINK_RATE_MASK) >>
				PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET;

		/* Updated attached_sas_addr */
		mvs_write_port_cfg_addr(mvi, i, PHYR_ATT_ADDR_HI);
		phy->att_dev_sas_addr =
				(u64) mvs_read_port_cfg_data(mvi, i) << 32;

		mvs_write_port_cfg_addr(mvi, i, PHYR_ATT_ADDR_LO);
		phy->att_dev_sas_addr |= mvs_read_port_cfg_data(mvi, i);

		dev_printk(KERN_DEBUG, &pdev->dev,
			"phy[%d] Get Attached Address 0x%llX ,"
			" SAS Address 0x%llX\n",
			i, phy->att_dev_sas_addr, phy->dev_sas_addr);
		dev_printk(KERN_DEBUG, &pdev->dev,
			"Rate = %x , type = %d\n",
			sas_phy->linkrate, phy->phy_type);

#if 1
		/*
		* If the device is capable of supporting a wide port
		* on its phys, it may configure the phys as a wide port.
		*/
		if (phy->phy_type & PORT_TYPE_SAS)
			for (j = 0; j < mvi->chip->n_phy && j != i; ++j) {
				if ((mvi->phy[j].phy_attached) &&
					(mvi->phy[j].phy_type & PORT_TYPE_SAS))
					if (phy->att_dev_sas_addr ==
					mvi->phy[j].att_dev_sas_addr - 1) {
						phy->att_dev_sas_addr =
						mvi->phy[j].att_dev_sas_addr;
						break;
					}
			}

#endif

		tmp64 = cpu_to_be64(phy->att_dev_sas_addr);
		memcpy(sas_phy->attached_sas_addr, &tmp64, SAS_ADDR_SIZE);

		if (phy->phy_type & PORT_TYPE_SAS) {
			mvs_write_port_cfg_addr(mvi, i, PHYR_ATT_DEV_INFO);
			phy->att_dev_info = mvs_read_port_cfg_data(mvi, i);
			phy->identify.device_type =
			    phy->att_dev_info & PORT_DEV_TYPE_MASK;

			if (phy->identify.device_type == SAS_END_DEV)
				phy->identify.target_port_protocols =
							SAS_PROTOCOL_SSP;
			else if (phy->identify.device_type != NO_DEVICE)
				phy->identify.target_port_protocols =
							SAS_PROTOCOL_SMP;
			if (phy_st & PHY_OOB_DTCTD)
				sas_phy->oob_mode = SAS_OOB_MODE;
			phy->frame_rcvd_size =
			    sizeof(struct sas_identify_frame);
		} else if (phy->phy_type & PORT_TYPE_SATA) {
			phy->identify.target_port_protocols = SAS_PROTOCOL_STP;
			if (mvs_is_sig_fis_received(phy->irq_status)) {
				if (phy_st & PHY_OOB_DTCTD)
					sas_phy->oob_mode = SATA_OOB_MODE;
				phy->frame_rcvd_size =
				    sizeof(struct dev_to_host_fis);
				mvs_get_d2h_reg(mvi, i,
						(void *)sas_phy->frame_rcvd);
			} else {
				dev_printk(KERN_DEBUG, &pdev->dev,
					"No sig fis\n");
			}
		}
		/* workaround for HW phy decoding error on 1.5g disk drive */
		mvs_write_port_vsr_addr(mvi, i, VSR_PHY_MODE6);
		tmp = mvs_read_port_vsr_data(mvi, i);
		if (((phy->phy_status & PHY_NEG_SPP_PHYS_LINK_RATE_MASK) >>
		     PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET) ==
			SAS_LINK_RATE_1_5_GBPS)
			tmp &= ~PHY_MODE6_DTL_SPEED;
		else
			tmp |= PHY_MODE6_DTL_SPEED;
		mvs_write_port_vsr_data(mvi, i, tmp);

	}
	if (get_st)
		mvs_write_port_irq_stat(mvi, i, phy->irq_status);
}

static void mvs_port_formed(struct asd_sas_phy *sas_phy)
{
	struct sas_ha_struct *sas_ha = sas_phy->ha;
	struct mvs_info *mvi = sas_ha->lldd_ha;
	struct asd_sas_port *sas_port = sas_phy->port;
	struct mvs_phy *phy = sas_phy->lldd_phy;
	struct mvs_port *port = &mvi->port[sas_port->id];
	unsigned long flags;

	spin_lock_irqsave(&mvi->lock, flags);
	port->port_attached = 1;
	phy->port = port;
	port->taskfileset = MVS_ID_NOT_MAPPED;
	if (phy->phy_type & PORT_TYPE_SAS) {
		port->wide_port_phymap = sas_port->phy_mask;
		mvs_update_wideport(mvi, sas_phy->id);
	}
	spin_unlock_irqrestore(&mvi->lock, flags);
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
}

static int __devinit mvs_hw_init(struct mvs_info *mvi)
{
	void __iomem *regs = mvi->regs;
	int i;
	u32 tmp, cctl;

	/* make sure interrupts are masked immediately (paranoia) */
	mw32(GBL_CTL, 0);
	tmp = mr32(GBL_CTL);

2642
	/* Reset Controller */
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	if (!(tmp & HBA_RST)) {
		if (mvi->flags & MVF_PHY_PWR_FIX) {
			pci_read_config_dword(mvi->pdev, PCR_PHY_CTL, &tmp);
			tmp &= ~PCTL_PWR_ON;
			tmp |= PCTL_OFF;
			pci_write_config_dword(mvi->pdev, PCR_PHY_CTL, tmp);

			pci_read_config_dword(mvi->pdev, PCR_PHY_CTL2, &tmp);
			tmp &= ~PCTL_PWR_ON;
			tmp |= PCTL_OFF;
			pci_write_config_dword(mvi->pdev, PCR_PHY_CTL2, tmp);
		}

		/* global reset, incl. COMRESET/H_RESET_N (self-clearing) */
		mw32_f(GBL_CTL, HBA_RST);
	}

	/* wait for reset to finish; timeout is just a guess */
	i = 1000;
	while (i-- > 0) {
		msleep(10);

		if (!(mr32(GBL_CTL) & HBA_RST))
			break;
	}
	if (mr32(GBL_CTL) & HBA_RST) {
		dev_printk(KERN_ERR, &mvi->pdev->dev, "HBA reset failed\n");
		return -EBUSY;
	}

2673
	/* Init Chip */
2674 2675 2676 2677 2678 2679 2680
	/* make sure RST is set; HBA_RST /should/ have done that for us */
	cctl = mr32(CTL);
	if (cctl & CCTL_RST)
		cctl &= ~CCTL_RST;
	else
		mw32_f(CTL, cctl | CCTL_RST);

2681 2682 2683 2684 2685 2686
	/* write to device control _AND_ device status register? - A.C. */
	pci_read_config_dword(mvi->pdev, PCR_DEV_CTRL, &tmp);
	tmp &= ~PRD_REQ_MASK;
	tmp |= PRD_REQ_SIZE;
	pci_write_config_dword(mvi->pdev, PCR_DEV_CTRL, tmp);

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	pci_read_config_dword(mvi->pdev, PCR_PHY_CTL, &tmp);
	tmp |= PCTL_PWR_ON;
	tmp &= ~PCTL_OFF;
	pci_write_config_dword(mvi->pdev, PCR_PHY_CTL, tmp);

	pci_read_config_dword(mvi->pdev, PCR_PHY_CTL2, &tmp);
	tmp |= PCTL_PWR_ON;
	tmp &= ~PCTL_OFF;
	pci_write_config_dword(mvi->pdev, PCR_PHY_CTL2, tmp);

	mw32_f(CTL, cctl);

2699 2700 2701
	/* reset control */
	mw32(PCS, 0);		/*MVS_PCS */

2702 2703 2704 2705 2706 2707 2708 2709
	mvs_phy_hacks(mvi);

	mw32(CMD_LIST_LO, mvi->slot_dma);
	mw32(CMD_LIST_HI, (mvi->slot_dma >> 16) >> 16);

	mw32(RX_FIS_LO, mvi->rx_fis_dma);
	mw32(RX_FIS_HI, (mvi->rx_fis_dma >> 16) >> 16);

2710
	mw32(TX_CFG, MVS_CHIP_SLOT_SZ);
2711 2712 2713 2714 2715 2716 2717
	mw32(TX_LO, mvi->tx_dma);
	mw32(TX_HI, (mvi->tx_dma >> 16) >> 16);

	mw32(RX_CFG, MVS_RX_RING_SZ);
	mw32(RX_LO, mvi->rx_dma);
	mw32(RX_HI, (mvi->rx_dma >> 16) >> 16);

2718 2719 2720
	/* enable auto port detection */
	mw32(GBL_PORT_TYPE, MODE_AUTO_DET_EN);
	msleep(100);
2721 2722
	/* init and reset phys */
	for (i = 0; i < mvi->chip->n_phy; i++) {
K
Ke Wei 已提交
2723 2724
		u32 lo = be32_to_cpu(*(u32 *)&mvi->sas_addr[4]);
		u32 hi = be32_to_cpu(*(u32 *)&mvi->sas_addr[0]);
2725 2726

		mvs_detect_porttype(mvi, i);
2727 2728

		/* set phy local SAS address */
2729 2730 2731 2732
		mvs_write_port_cfg_addr(mvi, i, PHYR_ADDR_LO);
		mvs_write_port_cfg_data(mvi, i, lo);
		mvs_write_port_cfg_addr(mvi, i, PHYR_ADDR_HI);
		mvs_write_port_cfg_data(mvi, i, hi);
2733 2734

		/* reset phy */
2735
		tmp = mvs_read_phy_ctl(mvi, i);
2736
		tmp |= PHY_RST;
2737
		mvs_write_phy_ctl(mvi, i, tmp);
2738 2739 2740 2741 2742
	}

	msleep(100);

	for (i = 0; i < mvi->chip->n_phy; i++) {
2743 2744 2745 2746 2747
		/* clear phy int status */
		tmp = mvs_read_port_irq_stat(mvi, i);
		tmp &= ~PHYEV_SIG_FIS;
		mvs_write_port_irq_stat(mvi, i, tmp);

2748
		/* set phy int mask */
2749 2750 2751
		tmp = PHYEV_RDY_CH | PHYEV_BROAD_CH | PHYEV_UNASSOC_FIS |
			PHYEV_ID_DONE | PHYEV_DEC_ERR;
		mvs_write_port_irq_mask(mvi, i, tmp);
2752

2753 2754 2755
		msleep(100);
		mvs_update_phyinfo(mvi, i, 1);
		mvs_enable_xmt(mvi, i);
2756 2757 2758 2759
	}

	/* FIXME: update wide port bitmaps */

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	/* little endian for open address and command table, etc. */
	/* A.C.
	 * it seems that ( from the spec ) turning on big-endian won't
	 * do us any good on big-endian machines, need further confirmation
	 */
	cctl = mr32(CTL);
	cctl |= CCTL_ENDIAN_CMD;
	cctl |= CCTL_ENDIAN_DATA;
	cctl &= ~CCTL_ENDIAN_OPEN;
	cctl |= CCTL_ENDIAN_RSP;
	mw32_f(CTL, cctl);

	/* reset CMD queue */
	tmp = mr32(PCS);
	tmp |= PCS_CMD_RST;
	mw32(PCS, tmp);
	/* interrupt coalescing may cause missing HW interrput in some case,
	 * and the max count is 0x1ff, while our max slot is 0x200,
	 * it will make count 0.
	 */
	tmp = 0;
	mw32(INT_COAL, tmp);

	tmp = 0x100;
	mw32(INT_COAL_TMOUT, tmp);

2786
	/* ladies and gentlemen, start your engines */
2787 2788
	mw32(TX_CFG, 0);
	mw32(TX_CFG, MVS_CHIP_SLOT_SZ | TX_EN);
2789
	mw32(RX_CFG, MVS_RX_RING_SZ | RX_EN);
2790 2791
	/* enable CMD/CMPL_Q/RESP mode */
	mw32(PCS, PCS_SATA_RETRY | PCS_FIS_RX_EN | PCS_CMD_EN);
2792 2793

	/* re-enable interrupts globally */
2794 2795 2796 2797 2798
	mvs_hba_interrupt_enable(mvi);

	/* enable completion queue interrupt */
	tmp = (CINT_PORT_MASK | CINT_DONE | CINT_MEM);
	mw32(INT_MASK, tmp);
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

	return 0;
}

static void __devinit mvs_print_info(struct mvs_info *mvi)
{
	struct pci_dev *pdev = mvi->pdev;
	static int printed_version;

	if (!printed_version++)
		dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");

	dev_printk(KERN_INFO, &pdev->dev, "%u phys, addr %llx\n",
		   mvi->chip->n_phy, SAS_ADDR(mvi->sas_addr));
}

static int __devinit mvs_pci_init(struct pci_dev *pdev,
2816
				  const struct pci_device_id *ent)
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
{
	int rc;
	struct mvs_info *mvi;
	irq_handler_t irq_handler = mvs_interrupt;

	rc = pci_enable_device(pdev);
	if (rc)
		return rc;

	pci_set_master(pdev);

	rc = pci_request_regions(pdev, DRV_NAME);
	if (rc)
		goto err_out_disable;

	rc = pci_go_64(pdev);
	if (rc)
		goto err_out_regions;

	mvi = mvs_alloc(pdev, ent);
	if (!mvi) {
		rc = -ENOMEM;
		goto err_out_regions;
	}

	rc = mvs_hw_init(mvi);
	if (rc)
		goto err_out_mvi;

2846
#ifndef MVS_DISABLE_MSI
2847
	if (!pci_enable_msi(pdev)) {
2848 2849
		u32 tmp;
		void __iomem *regs = mvi->regs;
2850 2851
		mvi->flags |= MVF_MSI;
		irq_handler = mvs_msi_interrupt;
2852 2853
		tmp = mr32(PCS);
		mw32(PCS, tmp | PCS_SELF_CLEAR);
2854
	}
2855
#endif
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873

	rc = request_irq(pdev->irq, irq_handler, IRQF_SHARED, DRV_NAME, mvi);
	if (rc)
		goto err_out_msi;

	rc = scsi_add_host(mvi->shost, &pdev->dev);
	if (rc)
		goto err_out_irq;

	rc = sas_register_ha(&mvi->sas);
	if (rc)
		goto err_out_shost;

	pci_set_drvdata(pdev, mvi);

	mvs_print_info(mvi);

	scsi_scan_host(mvi->shost);
2874

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	return 0;

err_out_shost:
	scsi_remove_host(mvi->shost);
err_out_irq:
	free_irq(pdev->irq, mvi);
err_out_msi:
	if (mvi->flags |= MVF_MSI)
		pci_disable_msi(pdev);
err_out_mvi:
	mvs_free(mvi);
err_out_regions:
	pci_release_regions(pdev);
err_out_disable:
	pci_disable_device(pdev);
	return rc;
}

static void __devexit mvs_pci_remove(struct pci_dev *pdev)
{
	struct mvs_info *mvi = pci_get_drvdata(pdev);

	pci_set_drvdata(pdev, NULL);

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	if (mvi) {
		sas_unregister_ha(&mvi->sas);
		mvs_hba_interrupt_disable(mvi);
		sas_remove_host(mvi->shost);
		scsi_remove_host(mvi->shost);

		free_irq(pdev->irq, mvi);
		if (mvi->flags & MVF_MSI)
			pci_disable_msi(pdev);
		mvs_free(mvi);
		pci_release_regions(pdev);
	}
2911 2912 2913 2914 2915 2916
	pci_disable_device(pdev);
}

static struct sas_domain_function_template mvs_transport_ops = {
	.lldd_execute_task	= mvs_task_exec,
	.lldd_control_phy	= mvs_phy_control,
2917 2918
	.lldd_abort_task	= mvs_task_abort,
	.lldd_port_formed	= mvs_port_formed
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
};

static struct pci_device_id __devinitdata mvs_pci_table[] = {
	{ PCI_VDEVICE(MARVELL, 0x6320), chip_6320 },
	{ PCI_VDEVICE(MARVELL, 0x6340), chip_6440 },
	{ PCI_VDEVICE(MARVELL, 0x6440), chip_6440 },
	{ PCI_VDEVICE(MARVELL, 0x6480), chip_6480 },

	{ }	/* terminate list */
};

static struct pci_driver mvs_pci_driver = {
	.name		= DRV_NAME,
	.id_table	= mvs_pci_table,
	.probe		= mvs_pci_init,
	.remove		= __devexit_p(mvs_pci_remove),
};

static int __init mvs_init(void)
{
	int rc;

	mvs_stt = sas_domain_attach_transport(&mvs_transport_ops);
	if (!mvs_stt)
		return -ENOMEM;

	rc = pci_register_driver(&mvs_pci_driver);
	if (rc)
		goto err_out;

	return 0;

err_out:
	sas_release_transport(mvs_stt);
	return rc;
}

static void __exit mvs_exit(void)
{
	pci_unregister_driver(&mvs_pci_driver);
	sas_release_transport(mvs_stt);
}

module_init(mvs_init);
module_exit(mvs_exit);

MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
MODULE_DESCRIPTION("Marvell 88SE6440 SAS/SATA controller driver");
MODULE_VERSION(DRV_VERSION);
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, mvs_pci_table);