to

Documentation

class treetensor.torch.Tensor(data, *args, **kwargs)[source]
to(*args, **kwargs)[source]

Turn the original tree tensor to another format.

Example:

>>> import torch
>>> import treetensor.torch as ttorch
>>> ttorch.tensor({
...     'a': [[1, 11], [2, 22], [3, 33]],
...     'b': {'x': [[4, 5], [6, 7]]},
... }).to(pytorch.float64)
<Tensor 0x7ff363bb6518>
├── a --> tensor([[ 1., 11.],
│                 [ 2., 22.],
│                 [ 3., 33.]], dtype=torch.float64)
└── b --> <Tensor 0x7ff363bb6ef0>
    └── x --> tensor([[4., 5.],
                      [6., 7.]], dtype=torch.float64)

Torch Version Related

This documentation is based on torch.Tensor.to in torch v1.9.0+cu102. Its arguments’ arrangements depend on the version of pytorch you installed.

If some arguments listed here are not working properly, please check your pytorch’s version with the following command and find its documentation.

1
python -c 'import torch;print(torch.__version__)'

The arguments and keyword arguments supported in torch v1.9.0+cu102 is listed below.

Description From Torch v1.9.0+cu102

class torch.Tensor
to(*args, **kwargs)Tensor

Performs Tensor dtype and/or device conversion. A torch.dtype and torch.device are inferred from the arguments of self.to(*args, **kwargs).

Note

If the self Tensor already has the correct torch.dtype and torch.device, then self is returned. Otherwise, the returned tensor is a copy of self with the desired torch.dtype and torch.device.

Here are the ways to call to:

to(dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format)Tensor

Returns a Tensor with the specified dtype

Args:

memory_format (torch.memory_format, optional): the desired memory format of returned Tensor. Default: torch.preserve_format.

to(device=None, dtype=None, non_blocking=False, copy=False, memory_format=torch.preserve_format)Tensor

Returns a Tensor with the specified device and (optional) dtype. If dtype is None it is inferred to be self.dtype. When non_blocking, tries to convert asynchronously with respect to the host if possible, e.g., converting a CPU Tensor with pinned memory to a CUDA Tensor. When copy is set, a new Tensor is created even when the Tensor already matches the desired conversion.

Args:

memory_format (torch.memory_format, optional): the desired memory format of returned Tensor. Default: torch.preserve_format.

to(other, non_blocking=False, copy=False)Tensor

Returns a Tensor with same torch.dtype and torch.device as the Tensor other. When non_blocking, tries to convert asynchronously with respect to the host if possible, e.g., converting a CPU Tensor with pinned memory to a CUDA Tensor. When copy is set, a new Tensor is created even when the Tensor already matches the desired conversion.

Example:

>>> tensor = torch.randn(2, 2)  # Initially dtype=float32, device=cpu
>>> tensor.to(torch.float64)
tensor([[-0.5044,  0.0005],
        [ 0.3310, -0.0584]], dtype=torch.float64)

>>> cuda0 = torch.device('cuda:0')
>>> tensor.to(cuda0)
tensor([[-0.5044,  0.0005],
        [ 0.3310, -0.0584]], device='cuda:0')

>>> tensor.to(cuda0, dtype=torch.float64)
tensor([[-0.5044,  0.0005],
        [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0')

>>> other = torch.randn((), dtype=torch.float64, device=cuda0)
>>> tensor.to(other, non_blocking=True)
tensor([[-0.5044,  0.0005],
        [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0')