未验证 提交 05a07912 编写于 作者: W Wanli 提交者: GitHub

Update handpose estimation model from MediaPipe (2023feb) (#133)

* update handpose model

* update quantize model

* fix quantize path

* update readme of quantization and benchmark result

* fix document
上级 d7232530
......@@ -35,7 +35,7 @@ Guidelines:
| [DaSiamRPN](./models/object_tracking_dasiamrpn) | Object Tracking | 1280x720 | 36.15 | 705.48 | 76.82 | --- | --- |
| [YoutuReID](./models/person_reid_youtureid) | Person Re-Identification | 128x256 | 35.81 | 521.98 | 90.07 | 44.61 | --- |
| [MP-PalmDet](./models/palm_detection_mediapipe) | Palm Detection | 192x192 | 11.09 | 63.79 | 83.20 | 33.81 | --- |
| [MP-HandPose](./models/handpose_estimation_mediapipe) | Hand Pose Estimation | 256x256 | 20.16 | 148.24 | 156.30 | 42.70 | --- |
| [MP-HandPose](./models/handpose_estimation_mediapipe) | Hand Pose Estimation | 224x224 | 4.28 | 36.19 | 40.10 | 19.47 | --- |
\*: Models are quantized in per-channel mode, which run slower than per-tensor quantized models on NPU.
......@@ -91,7 +91,7 @@ Some examples are listed below. You can find more in the directory of each model
### Hand Pose Estimation with [MP-HandPose](models/handpose_estimation_mediapipe/)
![handpose estimation](models/handpose_estimation_mediapipe/examples/mphandpose_demo.gif)
![handpose estimation](models/handpose_estimation_mediapipe/examples/mphandpose_demo.webp)
### QR Code Detection and Parsing with [WeChatQRCode](./models/qrcode_wechatqrcode/)
......
......@@ -5,7 +5,7 @@ Benchmark:
path: "data/palm_detection_20230125"
files: ["palm1.jpg", "palm2.jpg", "palm3.jpg"]
sizes: # [[w1, h1], ...], Omit to run at original scale
- [256, 256]
- [224, 224]
metric:
warmup: 30
repeat: 10
......
......@@ -4,11 +4,14 @@ This model estimates 21 hand keypoints per detected hand from [palm detector](..
![MediaPipe Hands Keypoints](./examples/hand_keypoints.png)
This model is converted from Tensorflow-JS to ONNX using following tools:
- tfjs to tf_saved_model: https://github.com/patlevin/tfjs-to-tf/
- tf_saved_model to ONNX: https://github.com/onnx/tensorflow-onnx
This model is converted from TFlite to ONNX using following tools:
- TFLite model to ONNX: https://github.com/onnx/tensorflow-onnx
- simplified by [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)
**Note**:
- The int8-quantized model may produce invalid results due to a significant drop of accuracy.
- Visit https://google.github.io/mediapipe/solutions/models.html#hands for models of larger scale.
## Demo
Run the following commands to try the demo:
......@@ -21,7 +24,7 @@ python demo.py -i /path/to/image
### Example outputs
![webcam demo](./examples/mphandpose_demo.gif)
![webcam demo](./examples/mphandpose_demo.webp)
## License
......@@ -30,3 +33,5 @@ All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
## Reference
- MediaPipe Handpose: https://github.com/tensorflow/tfjs-models/tree/master/handpose
- MediaPipe hands model and model card: https://google.github.io/mediapipe/solutions/models.html#hands
- Int8 model quantized with rgb evaluation set of FreiHAND: https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html
......@@ -31,69 +31,126 @@ except:
parser = argparse.ArgumentParser(description='Hand Pose Estimation from MediaPipe')
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='./handpose_estimation_mediapipe_2022may.onnx', help='Path to the model.')
parser.add_argument('--model', '-m', type=str, default='./handpose_estimation_mediapipe_2023feb.onnx', help='Path to the model.')
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
parser.add_argument('--conf_threshold', type=float, default=0.8, help='Filter out hands of confidence < conf_threshold.')
parser.add_argument('--conf_threshold', type=float, default=0.9, help='Filter out hands of confidence < conf_threshold.')
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()
def visualize(image, hands, print_result=False):
output = image.copy()
display_screen = image.copy()
display_3d = np.zeros((400, 400, 3), np.uint8)
cv.line(display_3d, (200, 0), (200, 400), (255, 255, 255), 2)
cv.line(display_3d, (0, 200), (400, 200), (255, 255, 255), 2)
cv.putText(display_3d, 'Main View', (0, 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
cv.putText(display_3d, 'Top View', (200, 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
cv.putText(display_3d, 'Left View', (0, 212), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
cv.putText(display_3d, 'Right View', (200, 212), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
is_draw = False # ensure only one hand is drawn
def draw_lines(image, landmarks, is_draw_point=True, thickness=2):
cv.line(image, landmarks[0], landmarks[1], (255, 255, 255), thickness)
cv.line(image, landmarks[1], landmarks[2], (255, 255, 255), thickness)
cv.line(image, landmarks[2], landmarks[3], (255, 255, 255), thickness)
cv.line(image, landmarks[3], landmarks[4], (255, 255, 255), thickness)
cv.line(image, landmarks[0], landmarks[5], (255, 255, 255), thickness)
cv.line(image, landmarks[5], landmarks[6], (255, 255, 255), thickness)
cv.line(image, landmarks[6], landmarks[7], (255, 255, 255), thickness)
cv.line(image, landmarks[7], landmarks[8], (255, 255, 255), thickness)
cv.line(image, landmarks[0], landmarks[9], (255, 255, 255), thickness)
cv.line(image, landmarks[9], landmarks[10], (255, 255, 255), thickness)
cv.line(image, landmarks[10], landmarks[11], (255, 255, 255), thickness)
cv.line(image, landmarks[11], landmarks[12], (255, 255, 255), thickness)
cv.line(image, landmarks[0], landmarks[13], (255, 255, 255), thickness)
cv.line(image, landmarks[13], landmarks[14], (255, 255, 255), thickness)
cv.line(image, landmarks[14], landmarks[15], (255, 255, 255), thickness)
cv.line(image, landmarks[15], landmarks[16], (255, 255, 255), thickness)
cv.line(image, landmarks[0], landmarks[17], (255, 255, 255), thickness)
cv.line(image, landmarks[17], landmarks[18], (255, 255, 255), thickness)
cv.line(image, landmarks[18], landmarks[19], (255, 255, 255), thickness)
cv.line(image, landmarks[19], landmarks[20], (255, 255, 255), thickness)
if is_draw_point:
for p in landmarks:
cv.circle(image, p, thickness, (0, 0, 255), -1)
for idx, handpose in enumerate(hands):
conf = handpose[-1]
bbox = handpose[0:4].astype(np.int32)
landmarks = handpose[4:-1].reshape(21, 2).astype(np.int32)
handedness = handpose[-2]
if handedness <= 0.5:
handedness_text = 'Left'
else:
handedness_text = 'Right'
landmarks_screen = handpose[4:67].reshape(21, 3).astype(np.int32)
landmarks_word = handpose[67:130].reshape(21, 3)
# Print results
if print_result:
print('-----------hand {}-----------'.format(idx + 1))
print('conf: {:.2f}'.format(conf))
print('handedness: {}'.format(handedness_text))
print('hand box: {}'.format(bbox))
print('hand landmarks: ')
for l in landmarks:
for l in landmarks_screen:
print('\t{}'.format(l))
print('hand world landmarks: ')
for l in landmarks_word:
print('\t{}'.format(l))
# draw box
cv.rectangle(display_screen, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)
# draw handedness
cv.putText(display_screen, '{}'.format(handedness_text), (bbox[0], bbox[1] + 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
# Draw line between each key points
cv.line(output, landmarks[0], landmarks[1], (255, 255, 255), 2)
cv.line(output, landmarks[1], landmarks[2], (255, 255, 255), 2)
cv.line(output, landmarks[2], landmarks[3], (255, 255, 255), 2)
cv.line(output, landmarks[3], landmarks[4], (255, 255, 255), 2)
cv.line(output, landmarks[0], landmarks[5], (255, 255, 255), 2)
cv.line(output, landmarks[5], landmarks[6], (255, 255, 255), 2)
cv.line(output, landmarks[6], landmarks[7], (255, 255, 255), 2)
cv.line(output, landmarks[7], landmarks[8], (255, 255, 255), 2)
cv.line(output, landmarks[0], landmarks[9], (255, 255, 255), 2)
cv.line(output, landmarks[9], landmarks[10], (255, 255, 255), 2)
cv.line(output, landmarks[10], landmarks[11], (255, 255, 255), 2)
cv.line(output, landmarks[11], landmarks[12], (255, 255, 255), 2)
cv.line(output, landmarks[0], landmarks[13], (255, 255, 255), 2)
cv.line(output, landmarks[13], landmarks[14], (255, 255, 255), 2)
cv.line(output, landmarks[14], landmarks[15], (255, 255, 255), 2)
cv.line(output, landmarks[15], landmarks[16], (255, 255, 255), 2)
cv.line(output, landmarks[0], landmarks[17], (255, 255, 255), 2)
cv.line(output, landmarks[17], landmarks[18], (255, 255, 255), 2)
cv.line(output, landmarks[18], landmarks[19], (255, 255, 255), 2)
cv.line(output, landmarks[19], landmarks[20], (255, 255, 255), 2)
for p in landmarks:
cv.circle(output, p, 2, (0, 0, 255), 2)
return output
landmarks_xy = landmarks_screen[:, 0:2]
draw_lines(display_screen, landmarks_xy, is_draw_point=False)
# z value is relative to WRIST
for p in landmarks_screen:
r = max(5 - p[2] // 5, 0)
r = min(r, 14)
cv.circle(display_screen, np.array([p[0], p[1]]), r, (0, 0, 255), -1)
if is_draw is False:
is_draw = True
# Main view
landmarks_xy = landmarks_word[:, [0, 1]]
landmarks_xy = (landmarks_xy * 1000 + 100).astype(np.int32)
draw_lines(display_3d, landmarks_xy, thickness=5)
# Top view
landmarks_xz = landmarks_word[:, [0, 2]]
landmarks_xz[:, 1] = -landmarks_xz[:, 1]
landmarks_xz = (landmarks_xz * 1000 + np.array([300, 100])).astype(np.int32)
draw_lines(display_3d, landmarks_xz, thickness=5)
# Left view
landmarks_yz = landmarks_word[:, [2, 1]]
landmarks_yz[:, 0] = -landmarks_yz[:, 0]
landmarks_yz = (landmarks_yz * 1000 + np.array([100, 300])).astype(np.int32)
draw_lines(display_3d, landmarks_yz, thickness=5)
# Right view
landmarks_zy = landmarks_word[:, [2, 1]]
landmarks_zy = (landmarks_zy * 1000 + np.array([300, 300])).astype(np.int32)
draw_lines(display_3d, landmarks_zy, thickness=5)
return display_screen, display_3d
if __name__ == '__main__':
# palm detector
palm_detector = MPPalmDet(modelPath='../palm_detection_mediapipe/palm_detection_mediapipe_2023feb.onnx',
nmsThreshold=0.3,
scoreThreshold=0.8,
scoreThreshold=0.6,
backendId=args.backend,
targetId=args.target)
# handpose detector
......@@ -108,7 +165,7 @@ if __name__ == '__main__':
# Palm detector inference
palms = palm_detector.infer(image)
hands = np.empty(shape=(0, 47))
hands = np.empty(shape=(0, 132))
# Estimate the pose of each hand
for palm in palms:
......@@ -117,10 +174,12 @@ if __name__ == '__main__':
if handpose is not None:
hands = np.vstack((hands, handpose))
# Draw results on the input image
image = visualize(image, hands, True)
image, view_3d = visualize(image, hands, True)
if len(palms) == 0:
print('No palm detected!')
else:
print('Palm detected!')
# Save results
if args.save:
......@@ -131,6 +190,7 @@ if __name__ == '__main__':
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, image)
cv.imshow('3D HandPose Demo', view_3d)
cv.waitKey(0)
else: # Omit input to call default camera
deviceId = 0
......@@ -145,7 +205,7 @@ if __name__ == '__main__':
# Palm detector inference
palms = palm_detector.infer(frame)
hands = np.empty(shape=(0, 47))
hands = np.empty(shape=(0, 132))
tm.start()
# Estimate the pose of each hand
......@@ -156,12 +216,14 @@ if __name__ == '__main__':
hands = np.vstack((hands, handpose))
tm.stop()
# Draw results on the input image
frame = visualize(frame, hands)
frame, view_3d = visualize(frame, hands)
if len(palms) == 0:
print('No palm detected!')
else:
print('Palm detected!')
cv.putText(frame, 'FPS: {:.2f}'.format(tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
cv.imshow('MediaPipe Handpose Detection Demo', frame)
cv.imshow('3D HandPose Demo', view_3d)
tm.reset()
......@@ -9,7 +9,7 @@ class MPHandPose:
self.backend_id = backendId
self.target_id = targetId
self.input_size = np.array([256, 256]) # wh
self.input_size = np.array([224, 224]) # wh
self.PALM_LANDMARK_IDS = [0, 5, 9, 13, 17, 1, 2]
self.PALM_LANDMARKS_INDEX_OF_PALM_BASE = 0
self.PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE = 2
......@@ -115,20 +115,25 @@ class MPHandPose:
return results # [bbox_coords, landmarks_coords, conf]
def _postprocess(self, blob, rotated_palm_bbox, angle, rotation_matrix):
landmarks, conf = blob
landmarks, conf, handedness, landmarks_word = blob
conf = conf[0][0]
if conf < self.conf_threshold:
return None
landmarks = landmarks.reshape(-1, 3) # shape: (1, 63) -> (21, 3)
landmarks = landmarks[0].reshape(-1, 3) # shape: (1, 63) -> (21, 3)
landmarks_word = landmarks_word[0].reshape(-1, 3) # shape: (1, 63) -> (21, 3)
# transform coords back to the input coords
wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
scale_factor = wh_rotated_palm_bbox / self.input_size
landmarks[:, :2] = (landmarks[:, :2] - self.input_size / 2) * scale_factor
landmarks[:, 2] = landmarks[:, 2] * max(scale_factor) # depth scaling
coords_rotation_matrix = cv.getRotationMatrix2D((0, 0), angle, 1.0)
rotated_landmarks = np.dot(landmarks[:, :2], coords_rotation_matrix[:, :2])
rotated_landmarks = np.c_[rotated_landmarks, landmarks[:, 2]]
rotated_landmarks_world = np.dot(landmarks_word[:, :2], coords_rotation_matrix[:, :2])
rotated_landmarks_world = np.c_[rotated_landmarks_world, landmarks_word[:, 2]]
# invert rotation
rotation_component = np.array([
[rotation_matrix[0][0], rotation_matrix[1][0]],
......@@ -144,12 +149,12 @@ class MPHandPose:
original_center = np.array([
np.dot(center, inverse_rotation_matrix[0]),
np.dot(center, inverse_rotation_matrix[1])])
landmarks = rotated_landmarks[:, :2] + original_center
landmarks[:, :2] = rotated_landmarks[:, :2] + original_center
# get bounding box from rotated_landmarks
bbox = np.array([
np.amin(landmarks, axis=0),
np.amax(landmarks, axis=0)]) # [top-left, bottom-right]
np.amin(landmarks[:, :2], axis=0),
np.amax(landmarks[:, :2], axis=0)]) # [top-left, bottom-right]
# shift bounding box
wh_bbox = bbox[1] - bbox[0]
shift_vector = self.HAND_BOX_SHIFT_VECTOR * wh_bbox
......@@ -162,4 +167,9 @@ class MPHandPose:
center_bbox - new_half_size,
center_bbox + new_half_size])
return np.r_[bbox.reshape(-1), landmarks.reshape(-1), conf[0]]
# [0: 4]: hand bounding box found in image of format [x1, y1, x2, y2] (top-left and bottom-right points)
# [4: 67]: screen landmarks with format [x1, y1, z1, x2, y2 ... x21, y21, z21], z value is relative to WRIST
# [67: 130]: world landmarks with format [x1, y1, z1, x2, y2 ... x21, y21, z21], 3D metric x, y, z coordinate
# [130]: handedness, (left)[0, 1](right) hand
# [131]: confidence
return np.r_[bbox.reshape(-1), landmarks.reshape(-1), rotated_landmarks_world.reshape(-1), handedness[0][0], conf]
......@@ -7,6 +7,9 @@ This model detects palm bounding boxes and palm landmarks, and is converted from
- SSD Anchors are generated from [GenMediaPipePalmDectionSSDAnchors](https://github.com/VimalMollyn/GenMediaPipePalmDectionSSDAnchors)
**Note**:
- Visit https://google.github.io/mediapipe/solutions/models.html#hands for models of larger scale.
## Demo
Run the following commands to try the demo:
......
......@@ -54,4 +54,4 @@ python quantize-inc.py model1
## Dataset
Some models are quantized with extra datasets.
- [MP-PalmDet](../../models/palm_detection_mediapipe) int8 model quantized with evaluation set of [FreiHAND](https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html). The dataset downloaded from [link](https://lmb.informatik.uni-freiburg.de/data/freihand/FreiHAND_pub_v2_eval.zip). Unpack it and path to `FreiHAND_pub_v2_eval/evaluation/rgb`.
\ No newline at end of file
- [MP-PalmDet](../../models/palm_detection_mediapipe) and [MP-HandPose](../../models/handpose_estimation_mediapipe) are quantized with evaluation set of [FreiHAND](https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html). Download the dataset from [this link](https://lmb.informatik.uni-freiburg.de/data/freihand/FreiHAND_pub_v2_eval.zip). Unpack it and replace `path/to/dataset` with the path to `FreiHAND_pub_v2_eval/evaluation/rgb`.
......@@ -14,7 +14,7 @@ from onnx import version_converter
import onnxruntime
from onnxruntime.quantization import quantize_static, CalibrationDataReader, QuantType, QuantFormat
from transform import Compose, Resize, CenterCrop, Normalize, ColorConvert
from transform import Compose, Resize, CenterCrop, Normalize, ColorConvert, HandAlign
class DataReader(CalibrationDataReader):
def __init__(self, model_path, image_dir, transforms, data_dim):
......@@ -37,6 +37,8 @@ class DataReader(CalibrationDataReader):
continue
img = cv.imread(os.path.join(image_dir, image_name))
img = self.transforms(img)
if img is None:
continue
blob = cv.dnn.blobFromImage(img)
if self.data_dim == 'hwc':
blob = cv.transposeND(blob, [0, 2, 3, 1])
......@@ -110,7 +112,10 @@ models=dict(
calibration_image_dir='path/to/dataset',
transforms=Compose([Resize(size=(192, 192)), Normalize(std=[255, 255, 255]),
ColorConvert(ctype=cv.COLOR_BGR2RGB)]), data_dim='hwc'),
mp_handpose=Quantize(model_path='../../models/handpose_estimation_mediapipe/handpose_estimation_mediapipe_2023feb.onnx',
calibration_image_dir='path/to/dataset',
transforms=Compose([HandAlign("mp_handpose"), Resize(size=(224, 224)), Normalize(std=[255, 255, 255]),
ColorConvert(ctype=cv.COLOR_BGR2RGB)]), data_dim='hwc'),
)
if __name__ == '__main__':
......
......@@ -5,8 +5,9 @@
# Third party copyrights are property of their respective owners.
import collections
import numpy as numpy
import numpy as np
import cv2 as cv
import sys
class Compose:
def __init__(self, transforms=[]):
......@@ -15,6 +16,8 @@ class Compose:
def __call__(self, img):
for t in self.transforms:
img = t(img)
if img is None:
break
return img
class Resize:
......@@ -58,3 +61,69 @@ class ColorConvert:
def __call__(self, img):
return cv.cvtColor(img, self.ctype)
class HandAlign:
def __init__(self, model):
self.model = model
sys.path.append('../../models/palm_detection_mediapipe')
from mp_palmdet import MPPalmDet
self.palm_detector = MPPalmDet(modelPath='../../models/palm_detection_mediapipe/palm_detection_mediapipe_2023feb.onnx', nmsThreshold=0.3, scoreThreshold=0.9)
def __call__(self, img):
return self.mp_handpose_align(img)
def mp_handpose_align(self, img):
palms = self.palm_detector.infer(img)
if len(palms) == 0:
return None
palm = palms[0]
palm_bbox = palm[0:4].reshape(2, 2)
palm_landmarks = palm[4:18].reshape(7, 2)
p1 = palm_landmarks[0]
p2 = palm_landmarks[2]
radians = np.pi / 2 - np.arctan2(-(p2[1] - p1[1]), p2[0] - p1[0])
radians = radians - 2 * np.pi * np.floor((radians + np.pi) / (2 * np.pi))
angle = np.rad2deg(radians)
# get bbox center
center_palm_bbox = np.sum(palm_bbox, axis=0) / 2
# get rotation matrix
rotation_matrix = cv.getRotationMatrix2D(center_palm_bbox, angle, 1.0)
# get rotated image
rotated_image = cv.warpAffine(img, rotation_matrix, (img.shape[1], img.shape[0]))
# get bounding boxes from rotated palm landmarks
homogeneous_coord = np.c_[palm_landmarks, np.ones(palm_landmarks.shape[0])]
rotated_palm_landmarks = np.array([
np.dot(homogeneous_coord, rotation_matrix[0]),
np.dot(homogeneous_coord, rotation_matrix[1])])
# get landmark bounding box
rotated_palm_bbox = np.array([
np.amin(rotated_palm_landmarks, axis=1),
np.amax(rotated_palm_landmarks, axis=1)]) # [top-left, bottom-right]
# shift bounding box
wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
shift_vector = [0, -0.1] * wh_rotated_palm_bbox
rotated_palm_bbox = rotated_palm_bbox + shift_vector
# squarify bounding boxx
center_rotated_plam_bbox = np.sum(rotated_palm_bbox, axis=0) / 2
wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
new_half_size = np.amax(wh_rotated_palm_bbox) / 2
rotated_palm_bbox = np.array([
center_rotated_plam_bbox - new_half_size,
center_rotated_plam_bbox + new_half_size])
# enlarge bounding box
center_rotated_plam_bbox = np.sum(rotated_palm_bbox, axis=0) / 2
wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
new_half_size = wh_rotated_palm_bbox * 1.5
rotated_palm_bbox = np.array([
center_rotated_plam_bbox - new_half_size,
center_rotated_plam_bbox + new_half_size])
# Crop the rotated image by the bounding box
[[x1, y1], [x2, y2]] = rotated_palm_bbox.astype(np.int32)
diff = np.maximum([-x1, -y1, x2 - rotated_image.shape[1], y2 - rotated_image.shape[0]], 0)
[x1, y1, x2, y2] = [x1, y1, x2, y2] + diff
crop = rotated_image[y1:y2, x1:x2, :]
crop = cv.copyMakeBorder(crop, diff[1], diff[3], diff[0], diff[2], cv.BORDER_CONSTANT, value=(0, 0, 0))
return crop
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册