提交 aa911275 编写于 作者: A Andrey Kamaev

Merged the trunk r8907, r8908

上级 af912f48
......@@ -158,40 +158,19 @@ then paste the CDT 8.0 repository URL http://download.eclipse.org/tools/cdt/rele
.. image:: images/eclipse_inst_cdt_2.png
:alt: Configure builders
:align: center
.. important:: This instructions should be applied for each Android project in *Eclipse* workspace having native (JNI) part to build.
#. Right click on your project in :guilabel:`Package Explorer` window and select :guilabel:`New` -> :guilabel:`Other`:
.. image:: images/eclipse_cdt_cfg1.png
:alt: Configure CDT
:align: center
.. important:: OpenCV 2.4.2 for Android package contains samples projects pre-configured to use CDT Builder for JNI part build via ``ndk-build``.
#. Select :guilabel:`C/C++` -> :guilabel:`Convert to C/C++ project`:
#. Define the ``NDKROOT`` environment variable containing the path to Android NDK in your system (e.g. **"X:\\Apps\\android-ndk-r8"** or **"/opt/android-ndk-r8"**)
.. image:: images/eclipse_cdt_cfg2.png
:alt: Configure CDT
:align: center
#. CDT Builder is configured for Windows hosts, on Linux or MacOS open `Project Properties` of the projects having JNI part (`face-detection`, `Tutorial 3` and `Tutorial 4`), select :guilabel:`C/C++ Build` in the left pane, remove **".cmd"** and leave ``"${NDKROOT}/ndk-build"`` in the :guilabel:`Build command` edit box and click :guilabel:`OK`.
#. Select :guilabel:`"C++"`, :guilabel:`"Makefile Project"`, :guilabel:`"Other Toolchain"`:
.. image:: images/eclipse_cdt_cfg3.png
:alt: Configure CDT
:align: center
#. Right click on your project in :guilabel:`Package Explorer` window and select :guilabel:`Properties`, then :guilabel:`C/C++ Build` in the left pane.
Unckeck :guilabel:`Use default build command` and put ``ndk-build`` invocation in the :guilabel:`Build command` edit box and click :guilabel:`Apply` :
.. image:: images/eclipse_cdt_cfg4.png
:alt: Configure CDT
:align: center
#. Select :guilabel:`Builders` in the left pane, select :guilabel:`"CDT Builder"`, press :guilabel:`Edit` button on the righ and set check-boxes as on the picture below for automatic rebuild of JNI part:
.. image:: images/eclipse_cdt_cfg5.png
:alt: Configure CDT
:align: center
#. Use menu :guilabel:`Project` -> :guilabel:`Clean...` to make sure that NDK build is invoked on the project build:
.. image:: images/eclipse_ndk_build.png
......@@ -243,7 +222,7 @@ OpenCV binary package includes 3 samples having JNI resources:
This sample illustrates usage of both simple OpenCV face detector via Java API and advanced detection based face tracker via JNI and C++.
Before OpenCV 2.4.2 for Android these projects are not configured to use CDT for building their native part , so you can do it yourself.
.. important:: Before OpenCV **2.4.2** for Android these projects were not configured to use CDT for building their native part , so you can do it yourself.
Practice: Create an Android application, which uses OpenCV
==========================================================
......
......@@ -3,8 +3,19 @@ SVN and KNearest digit recognition.
Sample loads a dataset of handwritten digits from 'digits.png'.
Then it trains a SVN and KNearest classifiers on it and evaluates
their accuracy. Moment-based image deskew is used to improve
the recognition accuracy.
their accuracy.
Following preprocessing is applied to the dataset:
- Moment-based image deskew (see deskew())
- Digit images are split into 4 10x10 cells and 16-bin
histogram of oriented gradients is computed for each
cell
- Transform histograms to space with Hellinger metric (see [1] (RootSIFT))
[1] R. Arandjelovic, A. Zisserman
"Three things everyone should know to improve object retrieval"
http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf
Usage:
digits.py
......@@ -14,17 +25,25 @@ import numpy as np
import cv2
from multiprocessing.pool import ThreadPool
from common import clock, mosaic
from numpy.linalg import norm
SZ = 20 # size of each digit is SZ x SZ
CLASS_N = 10
DIGITS_FN = 'digits.png'
def split2d(img, cell_size, flatten=True):
h, w = img.shape[:2]
sx, sy = cell_size
cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)]
cells = np.array(cells)
if flatten:
cells = cells.reshape(-1, sy, sx)
return cells
def load_digits(fn):
print 'loading "%s" ...' % fn
digits_img = cv2.imread(fn, 0)
h, w = digits_img.shape
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
digits = np.array(digits).reshape(-1, SZ, SZ)
digits = split2d(digits_img, (SZ, SZ))
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
return digits, labels
......@@ -92,6 +111,31 @@ def evaluate_model(model, digits, samples, labels):
vis.append(img)
return mosaic(25, vis)
def preprocess_simple(digits):
return np.float32(digits).reshape(-1, SZ*SZ) / 255.0
def preprocess_hog(digits):
samples = []
for img in digits:
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
mag, ang = cv2.cartToPolar(gx, gy)
bin_n = 16
bin = np.int32(bin_n*ang/(2*np.pi))
bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
hist = np.hstack(hists)
# transform to Hellinger kernel
eps = 1e-7
hist /= hist.sum() + eps
hist = np.sqrt(hist)
hist /= norm(hist) + eps
samples.append(hist)
return np.float32(samples)
if __name__ == '__main__':
print __doc__
......@@ -100,13 +144,13 @@ if __name__ == '__main__':
print 'preprocessing...'
# shuffle digits
rand = np.random.RandomState(12345)
rand = np.random.RandomState(321)
shuffle = rand.permutation(len(digits))
digits, labels = digits[shuffle], labels[shuffle]
digits2 = map(deskew, digits)
samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0
samples = preprocess_hog(digits2)
train_n = int(0.9*len(samples))
cv2.imshow('test set', mosaic(25, digits[train_n:]))
digits_train, digits_test = np.split(digits2, [train_n])
......@@ -115,13 +159,13 @@ if __name__ == '__main__':
print 'training KNearest...'
model = KNearest(k=1)
model = KNearest(k=4)
model.train(samples_train, labels_train)
vis = evaluate_model(model, digits_test, samples_test, labels_test)
cv2.imshow('KNearest test', vis)
print 'training SVM...'
model = SVM(C=4.66, gamma=0.08)
model = SVM(C=2.67, gamma=5.383)
model.train(samples_train, labels_train)
vis = evaluate_model(model, digits_test, samples_test, labels_test)
cv2.imshow('SVM test', vis)
......
......@@ -76,7 +76,7 @@ class App(object):
shuffle = np.random.permutation(len(digits))
digits, labels = digits[shuffle], labels[shuffle]
digits2 = map(deskew, digits)
samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0
samples = preprocess_hog(digits2)
return samples, labels
def get_dataset(self):
......@@ -95,8 +95,8 @@ class App(object):
return ires
def adjust_SVM(self):
Cs = np.logspace(0, 5, 10, base=2)
gammas = np.logspace(-7, -2, 10, base=2)
Cs = np.logspace(0, 10, 15, base=2)
gammas = np.logspace(-7, 4, 15, base=2)
scores = np.zeros((len(Cs), len(gammas)))
scores[:] = np.nan
......@@ -114,6 +114,9 @@ class App(object):
print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100)
print scores
print 'writing score table to "svm_scores.npz"'
np.savez('svm_scores.npz', scores=scores, Cs=Cs, gammas=gammas)
i, j = np.unravel_index(scores.argmin(), scores.shape)
best_params = dict(C = Cs[i], gamma=gammas[j])
print 'best params:', best_params
......@@ -142,7 +145,6 @@ if __name__ == '__main__':
print __doc__
args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env='])
args = dict(args)
args.setdefault('--model', 'svm')
......
import numpy as np
import cv2
import digits
import os
import video
from common import mosaic
from digits import *
def main():
......@@ -15,11 +15,9 @@ def main():
print '"%s" not found, run digits.py first' % classifier_fn
return
model = digits.SVM()
model = SVM()
model.load('digits_svm.dat')
SZ = 20
while True:
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
......@@ -55,13 +53,12 @@ def main():
A[:,:2] = np.eye(2)*s
A[:,2] = t
sub1 = cv2.warpAffine(sub, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
sub1 = digits.deskew(sub1)
sub1 = deskew(sub1)
if x+w+SZ < frame.shape[1] and y+SZ < frame.shape[0]:
frame[y:,x+w:][:SZ, :SZ] = sub1[...,np.newaxis]
sample = np.float32(sub1).reshape(1,SZ*SZ) / 255.0
sample = preprocess_hog([sub1])
digit = model.predict(sample)[0]
cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
......
......@@ -2,14 +2,16 @@
Robust line fitting.
==================
Example of using cv2.fitLine function for fitting line to points in presence of outliers.
Example of using cv2.fitLine function for fitting line
to points in presence of outliers.
Usage
-----
fitline.py
Switch through different M-estimator functions and see, how well the robust functions
fit the line even in case of ~50% of outliers.
Switch through different M-estimator functions and see,
how well the robust functions fit the line even
in case of ~50% of outliers.
Keys
----
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册