layers_common.simd.hpp 29.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

43
#include "opencv2/core/hal/intrin.hpp"
44 45 46

namespace cv {
namespace dnn {
47 48 49 50 51 52
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN

void fastConv( const float* weights, size_t wstep, const float* bias,
               const float* rowbuf, float* output, const int* outShape,
               int blockSize, int vecsize, int vecsize_aligned,
               const float* relu, bool initOutput );
53 54 55 56 57 58 59 60 61 62
void fastDepthwiseConv( const float* weights,
                      int kernel_h, int kernel_w,
                      int stride_h, int stride_w,
                      int dilation_h, int dilation_w,
                      int pad_t, int pad_l,
                      const float* bias, const float* relu,
                      const float* inptr,
                      int height, int width,
                      float* outptr,
                      int out_d, int outH, int outW );
63 64 65 66 67 68 69 70 71
void fastGEMM1T( const float* vec, const float* weights,
                 size_t wstep, const float* bias,
                 float* dst, int nvecs, int vecsize );
void fastGEMM( const float* aptr, size_t astep, const float* bptr,
               size_t bstep, float* cptr, size_t cstep,
               int ma, int na, int nb );

#if !defined(CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY) && CV_AVX

A
Alexander Alekhin 已提交
72
#if !CV_FMA3 // AVX workaround
73 74 75
#undef _mm256_fmadd_ps
#define _mm256_fmadd_ps(a, b, c) _mm256_add_ps(c, _mm256_mul_ps(a, b))
#endif
76

77 78
enum { FASCONV_BASE_VECSZ = 4 };

79 80 81 82
void fastConv( const float* weights, size_t wstep, const float* bias,
               const float* rowbuf, float* output, const int* outShape,
               int blockSize, int vecsize, int vecsize_aligned,
               const float* relu, bool initOutput )
83 84 85 86
{
    int outCn = outShape[1];
    size_t outPlaneSize = outShape[2]*outShape[3];
    float r0 = 1.f, r1 = 1.f, r2 = 1.f;
87
    __m128 vr0 = _mm_set1_ps(1.f), vr1 = vr0, vr2 = vr0, z = _mm_setzero_ps();
88 89 90 91 92
    int CV_DECL_ALIGNED(16) maskbuf[FASCONV_BASE_VECSZ] = {0};
    int rsz = blockSize % FASCONV_BASE_VECSZ;
    for( int i = 0; i < rsz; i++ )
        maskbuf[FASCONV_BASE_VECSZ - i - 1] = -1;
    __m128 mask = _mm_loadu_ps((const float*)maskbuf);
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

    // now compute dot product of the weights
    // and im2row-transformed part of the tensor
    for( int i = 0; i < outCn; i += 3 )
    {
        const float* wptr0 = weights + i*wstep;
        const float* wptr1 = wptr0 + wstep;
        const float* wptr2 = wptr1 + wstep;
        float* outptr0 = output + i*outPlaneSize;
        float* outptr1 = outptr0 + outPlaneSize;
        float* outptr2 = outptr1 + outPlaneSize;
        float bias0 = bias[i], bias1 = bias[i+1], bias2 = bias[i+2];

        if( i+2 >= outCn )
        {
            wptr2 = wptr1;
            outptr2 = outptr1;
            bias2 = bias1;
            if( i+1 >= outCn )
            {
                wptr2 = wptr1 = wptr0;
                outptr2 = outptr1 = outptr0;
                bias2 = bias1 = bias0;
            }
        }

        if( relu )
        {
121 122 123 124 125 126 127
            r0 = relu[i]; r1 = relu[i+1]; r2 = relu[i+2];
            if( i+2 >= outCn )
            {
                r2 = r1;
                if( i+1 >= outCn )
                    r2 = r1 = r0;
            }
128 129 130
            vr0 = _mm_set1_ps(r0);
            vr1 = _mm_set1_ps(r1);
            vr2 = _mm_set1_ps(r2);
131 132 133
        }

        int j = 0;
134
        for( ; j < blockSize; j += FASCONV_BASE_VECSZ )
135
        {
136 137 138 139 140 141 142 143
            bool tail = false;
            if (j + FASCONV_BASE_VECSZ > blockSize)
            {
                if (j == 0)
                    break;
                j = blockSize - FASCONV_BASE_VECSZ;
                tail = true;
            }
144
            int k = 0;
145 146 147 148 149 150 151 152 153
            const float* rptr = rowbuf + j*vecsize_aligned;

            __m256 vs00 = _mm256_setzero_ps(), vs01 = _mm256_setzero_ps(),
                   vs02 = _mm256_setzero_ps(), vs03 = _mm256_setzero_ps(),
                   vs10 = _mm256_setzero_ps(), vs11 = _mm256_setzero_ps(),
                   vs12 = _mm256_setzero_ps(), vs13 = _mm256_setzero_ps(),
                   vs20 = _mm256_setzero_ps(), vs21 = _mm256_setzero_ps(),
                   vs22 = _mm256_setzero_ps(), vs23 = _mm256_setzero_ps();

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
#if CV_AVX512_SKX // AVX512VL is necessary to avoid register spilling
            if (vecsize >= 32)
            {
                __m512 vs00_5 = _mm512_setzero_ps(), vs01_5 = _mm512_setzero_ps(),
                       vs02_5 = _mm512_setzero_ps(), vs03_5 = _mm512_setzero_ps(),
                       vs10_5 = _mm512_setzero_ps(), vs11_5 = _mm512_setzero_ps(),
                       vs12_5 = _mm512_setzero_ps(), vs13_5 = _mm512_setzero_ps(),
                       vs20_5 = _mm512_setzero_ps(), vs21_5 = _mm512_setzero_ps(),
                       vs22_5 = _mm512_setzero_ps(), vs23_5 = _mm512_setzero_ps();

                for (; k <= vecsize - 16; k += 16, rptr += 16)
                {
                    __m512 w0 = _mm512_loadu_ps(wptr0 + k);
                    __m512 w1 = _mm512_loadu_ps(wptr1 + k);
                    __m512 w2 = _mm512_loadu_ps(wptr2 + k);
                    __m512 r0 = _mm512_loadu_ps(rptr);

                    vs00_5 = _mm512_fmadd_ps(w0, r0, vs00_5);
                    vs10_5 = _mm512_fmadd_ps(w1, r0, vs10_5);
                    vs20_5 = _mm512_fmadd_ps(w2, r0, vs20_5);

                    r0 = _mm512_loadu_ps(rptr + vecsize_aligned);
                    vs01_5 = _mm512_fmadd_ps(w0, r0, vs01_5);
                    vs11_5 = _mm512_fmadd_ps(w1, r0, vs11_5);
                    vs21_5 = _mm512_fmadd_ps(w2, r0, vs21_5);

                    r0 = _mm512_loadu_ps(rptr + vecsize_aligned*2);
                    vs02_5 = _mm512_fmadd_ps(w0, r0, vs02_5);
                    vs12_5 = _mm512_fmadd_ps(w1, r0, vs12_5);
                    vs22_5 = _mm512_fmadd_ps(w2, r0, vs22_5);

                    r0 = _mm512_loadu_ps(rptr + vecsize_aligned*3);
                    vs03_5 = _mm512_fmadd_ps(w0, r0, vs03_5);
                    vs13_5 = _mm512_fmadd_ps(w1, r0, vs13_5);
                    vs23_5 = _mm512_fmadd_ps(w2, r0, vs23_5);
                }
                /*
                 * now fold the 512 bit accumulator vectors into 256 bit vectors so that the AVX2 code can finish
                 * the tail of the vector
                 */
                vs00 = _mm256_add_ps( _mm512_extractf32x8_ps(vs00_5, 0), _mm512_extractf32x8_ps(vs00_5, 1));
                vs10 = _mm256_add_ps( _mm512_extractf32x8_ps(vs10_5, 0), _mm512_extractf32x8_ps(vs10_5, 1));
                vs20 = _mm256_add_ps( _mm512_extractf32x8_ps(vs20_5, 0), _mm512_extractf32x8_ps(vs20_5, 1));

                vs01 = _mm256_add_ps( _mm512_extractf32x8_ps(vs01_5, 0), _mm512_extractf32x8_ps(vs01_5, 1));
                vs11 = _mm256_add_ps( _mm512_extractf32x8_ps(vs11_5, 0), _mm512_extractf32x8_ps(vs11_5, 1));
                vs21 = _mm256_add_ps( _mm512_extractf32x8_ps(vs21_5, 0), _mm512_extractf32x8_ps(vs21_5, 1));

                vs02 = _mm256_add_ps( _mm512_extractf32x8_ps(vs02_5, 0), _mm512_extractf32x8_ps(vs02_5, 1));
                vs12 = _mm256_add_ps( _mm512_extractf32x8_ps(vs12_5, 0), _mm512_extractf32x8_ps(vs12_5, 1));
                vs22 = _mm256_add_ps( _mm512_extractf32x8_ps(vs22_5, 0), _mm512_extractf32x8_ps(vs22_5, 1));

                vs03 = _mm256_add_ps( _mm512_extractf32x8_ps(vs03_5, 0), _mm512_extractf32x8_ps(vs03_5, 1));
                vs13 = _mm256_add_ps( _mm512_extractf32x8_ps(vs13_5, 0), _mm512_extractf32x8_ps(vs13_5, 1));
                vs23 = _mm256_add_ps( _mm512_extractf32x8_ps(vs23_5, 0), _mm512_extractf32x8_ps(vs23_5, 1));
            }
#endif

            for (; k < vecsize; k += 8, rptr += 8 )
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
            {
                __m256 w0 = _mm256_load_ps(wptr0 + k);
                __m256 w1 = _mm256_load_ps(wptr1 + k);
                __m256 w2 = _mm256_load_ps(wptr2 + k);
                __m256 r0 = _mm256_load_ps(rptr);

                vs00 = _mm256_fmadd_ps(w0, r0, vs00);
                vs10 = _mm256_fmadd_ps(w1, r0, vs10);
                vs20 = _mm256_fmadd_ps(w2, r0, vs20);

                r0 = _mm256_load_ps(rptr + vecsize_aligned);
                vs01 = _mm256_fmadd_ps(w0, r0, vs01);
                vs11 = _mm256_fmadd_ps(w1, r0, vs11);
                vs21 = _mm256_fmadd_ps(w2, r0, vs21);

                r0 = _mm256_load_ps(rptr + vecsize_aligned*2);
                vs02 = _mm256_fmadd_ps(w0, r0, vs02);
                vs12 = _mm256_fmadd_ps(w1, r0, vs12);
                vs22 = _mm256_fmadd_ps(w2, r0, vs22);

                r0 = _mm256_load_ps(rptr + vecsize_aligned*3);
                vs03 = _mm256_fmadd_ps(w0, r0, vs03);
                vs13 = _mm256_fmadd_ps(w1, r0, vs13);
                vs23 = _mm256_fmadd_ps(w2, r0, vs23);
            }

            __m256 t0 = _mm256_hadd_ps(_mm256_hadd_ps(vs00, vs01), _mm256_hadd_ps(vs02, vs03));
            __m256 t1 = _mm256_hadd_ps(_mm256_hadd_ps(vs10, vs11), _mm256_hadd_ps(vs12, vs13));
            __m256 t2 = _mm256_hadd_ps(_mm256_hadd_ps(vs20, vs21), _mm256_hadd_ps(vs22, vs23));

            t0 = _mm256_add_ps(t0, _mm256_permute2f128_ps(t0, t0, 1));
            t1 = _mm256_add_ps(t1, _mm256_permute2f128_ps(t1, t1, 1));
            t2 = _mm256_add_ps(t2, _mm256_permute2f128_ps(t2, t2, 1));

247
            __m128 s0, s1, s2;
248 249 250

            if( initOutput )
            {
251 252 253
                s0 = _mm_set1_ps(bias0);
                s1 = _mm_set1_ps(bias1);
                s2 = _mm_set1_ps(bias2);
254 255 256
            }
            else
            {
257 258 259
                s0 = _mm_loadu_ps(outptr0 + j);
                s1 = _mm_loadu_ps(outptr1 + j);
                s2 = _mm_loadu_ps(outptr2 + j);
260 261
            }

262 263 264
            s0 = _mm_add_ps(s0, _mm256_castps256_ps128(t0));
            s1 = _mm_add_ps(s1, _mm256_castps256_ps128(t1));
            s2 = _mm_add_ps(s2, _mm256_castps256_ps128(t2));
265 266 267

            if( relu )
            {
268 269 270
                __m128 m0 = _mm_cmp_ps(s0, z, _CMP_GT_OS);
                __m128 m1 = _mm_cmp_ps(s1, z, _CMP_GT_OS);
                __m128 m2 = _mm_cmp_ps(s2, z, _CMP_GT_OS);
271 272 273 274 275 276 277 278 279 280
                s0 = _mm_blendv_ps(_mm_mul_ps(s0, vr0), s0, m0);
                s1 = _mm_blendv_ps(_mm_mul_ps(s1, vr1), s1, m1);
                s2 = _mm_blendv_ps(_mm_mul_ps(s2, vr2), s2, m2);
            }

            if( tail )
            {
                s0 = _mm_blendv_ps(_mm_loadu_ps(outptr0 + j), s0, mask);
                s1 = _mm_blendv_ps(_mm_loadu_ps(outptr1 + j), s1, mask);
                s2 = _mm_blendv_ps(_mm_loadu_ps(outptr2 + j), s2, mask);
281 282
            }

283 284 285
            _mm_storeu_ps(outptr0 + j, s0);
            _mm_storeu_ps(outptr1 + j, s1);
            _mm_storeu_ps(outptr2 + j, s2);
286 287
        }

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
        for( ; j <= blockSize - 2; j += 2 )
        {
            const float* rptr0 = rowbuf + j*vecsize_aligned;
            const float* rptr1 = rowbuf + (j+1)*vecsize_aligned;
            float s00, s01, s10, s11, s20, s21;

            if( initOutput )
            {
                s00 = s01 = bias0;
                s10 = s11 = bias1;
                s20 = s21 = bias2;
            }
            else
            {
                s00 = outptr0[j]; s01 = outptr0[j+1];
                s10 = outptr1[j]; s11 = outptr1[j+1];
                s20 = outptr2[j]; s21 = outptr2[j+1];
            }

            for( int k = 0; k < vecsize; k++ )
            {
                float w0 = wptr0[k], w1 = wptr1[k], w2 = wptr2[k];
                float r = rptr0[k];
                s00 += w0*r; s10 += w1*r; s20 += w2*r;
                r = rptr1[k];
                s01 += w0*r; s11 += w1*r; s21 += w2*r;
            }

            if( relu )
            {
                s00 = s00 > 0.f ? s00 : s00*r0;
                s01 = s01 > 0.f ? s01 : s01*r0;
                s10 = s10 > 0.f ? s10 : s10*r1;
                s11 = s11 > 0.f ? s11 : s11*r1;
                s20 = s20 > 0.f ? s20 : s20*r2;
                s21 = s21 > 0.f ? s21 : s21*r2;
            }

            outptr0[j] = s00;
            outptr0[j+1] = s01;
            outptr1[j] = s10;
            outptr1[j+1] = s11;
            outptr2[j] = s20;
            outptr2[j+1] = s21;
        }

334 335
        for( ; j < blockSize; j++ )
        {
336
            const float* rptr0 = rowbuf + j*vecsize_aligned;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
            float s00, s10, s20;

            if( initOutput )
            {
                s00 = bias0;
                s10 = bias1;
                s20 = bias2;
            }
            else
            {
                s00 = outptr0[j];
                s10 = outptr1[j];
                s20 = outptr2[j];
            }

            for( int k = 0; k < vecsize; k++ )
            {
354 355 356
                float w0 = wptr0[k], w1 = wptr1[k], w2 = wptr2[k];
                float r = rptr0[k];
                s00 += w0*r; s10 += w1*r; s20 += w2*r;
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
            }

            if( relu )
            {
                s00 = s00 > 0.f ? s00 : s00*r0;
                s10 = s10 > 0.f ? s10 : s10*r1;
                s20 = s20 > 0.f ? s20 : s20*r2;
            }

            outptr0[j] = s00;
            outptr1[j] = s10;
            outptr2[j] = s20;
        }
    }
    _mm256_zeroupper();
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static inline void _mm256_load_deinterleave(const float* ptr, __m256& a, __m256& b)
{
    __m256 t0 = _mm256_loadu_ps(ptr);
    __m256 t1 = _mm256_loadu_ps(ptr + 8);

    __m256 lo = _mm256_permute2f128_ps(t0, t1, 0+2*16);
    __m256 hi = _mm256_permute2f128_ps(t0, t1, 1+3*16);
    a = _mm256_shuffle_ps(lo, hi, 0x88);
    b = _mm256_shuffle_ps(lo, hi, 0xdd);
}

void fastDepthwiseConv( const float* wptr,
                     int kernel_h, int kernel_w,
                     int stride_h, int stride_w,
                     int dilation_h, int dilation_w,
                     int pad_t, int pad_l,
                     const float* biasptr, const float* relu,
                     const float* inptr_,
                     int height, int width,
                     float* outptr_,
                     int out_d, int outH, int outW )
{
    const float w00_ = wptr[0], w01_ = wptr[1], w02_ = wptr[2],
                w10 = wptr[3], w11 = wptr[4], w12 = wptr[5],
                w20_ = wptr[6], w21_ = wptr[7], w22_ = wptr[8];
    int outW1 = min(outW, (width - dilation_w*(kernel_w - 1) + pad_l)/stride_w);
    float relu_coeff = relu ? relu[out_d] : 1.f, bias = biasptr[out_d];

    for (int out_i = 0; out_i < outH; out_i++)
    {
        int in_i = out_i * stride_h - pad_t, out_j = 0;
        const float* imgptr0 = inptr_ + in_i*width;
        const float* imgptr1 = imgptr0 + dilation_h*width;
        const float* imgptr2 = imgptr0 + (dilation_h*2)*width;
        float out, w00 = w00_, w01 = w01_, w02 = w02_;
        float w20 = w20_, w21 = w21_, w22 = w22_;
        if (in_i < 0)
        {
            w00 = w01 = w02 = 0.f;
            imgptr0 = imgptr1;
        }
        else if (in_i + dilation_h*(kernel_h-1) >= height)
        {
            w20 = w21 = w22 = 0.f;
            imgptr2 = imgptr1;
        }
        float* outptr = outptr_ + out_i*outW;
        if (pad_l > 0)
        {
            out = imgptr0[0]*w01 + imgptr0[dilation_w]*w02 +
                  imgptr1[0]*w11 + imgptr1[dilation_w]*w12 +
                  imgptr2[0]*w21 + imgptr2[dilation_w]*w22 + bias;
            if (relu)
                out = out > 0.f ? out : out*relu_coeff;
            outptr[0] = out;
            out_j = 1;
        }

        if (stride_w == 1 || (stride_w == 2 && dilation_w == 1))
        {
            const int VECSZ = 8;
            __m256 vw00 = _mm256_set1_ps(w00), vw01 = _mm256_set1_ps(w01), vw02 = _mm256_set1_ps(w02),
                      vw10 = _mm256_set1_ps(w10), vw11 = _mm256_set1_ps(w11), vw12 = _mm256_set1_ps(w12),
                      vw20 = _mm256_set1_ps(w20), vw21 = _mm256_set1_ps(w21), vw22 = _mm256_set1_ps(w22);
            __m256 z = _mm256_setzero_ps(), vbias = _mm256_set1_ps(bias), vrc = _mm256_set1_ps(relu_coeff);

            if( stride_w == 1 )
                for( ; out_j < outW1; out_j += VECSZ )
                {
                    if (out_j + VECSZ > outW1 && out_j > pad_l)
                        out_j = outW1 - VECSZ;
                    int in_j = out_j * stride_w - pad_l;
                    __m256 v00 = _mm256_loadu_ps(imgptr0 + in_j),
                           v01 = _mm256_loadu_ps(imgptr0 + in_j + dilation_w),
                           v02 = _mm256_loadu_ps(imgptr0 + in_j + dilation_w*2),
                           v10 = _mm256_loadu_ps(imgptr1 + in_j),
                           v11 = _mm256_loadu_ps(imgptr1 + in_j + dilation_w),
                           v12 = _mm256_loadu_ps(imgptr1 + in_j + dilation_w*2),
                           v20 = _mm256_loadu_ps(imgptr2 + in_j),
                           v21 = _mm256_loadu_ps(imgptr2 + in_j + dilation_w),
                           v22 = _mm256_loadu_ps(imgptr2 + in_j + dilation_w*2);

                    __m256 vout0 = _mm256_fmadd_ps(v00, vw00, vbias);
                    __m256 vout1 = _mm256_mul_ps(v01, vw01);
                    __m256 vout2 = _mm256_mul_ps(v02, vw02);

                    vout0 = _mm256_fmadd_ps(v10, vw10, vout0);
                    vout1 = _mm256_fmadd_ps(v11, vw11, vout1);
                    vout2 = _mm256_fmadd_ps(v12, vw12, vout2);

                    vout0 = _mm256_fmadd_ps(v20, vw20, vout0);
                    vout1 = _mm256_fmadd_ps(v21, vw21, vout1);
                    vout2 = _mm256_fmadd_ps(v22, vw22, vout2);

                    vout0 = _mm256_add_ps(_mm256_add_ps(vout0, vout1), vout2);
                    if (relu)
                    {
                        __m256 m = _mm256_cmp_ps(vout0, z, _CMP_GT_OQ);
                        vout0 = _mm256_blendv_ps(_mm256_mul_ps(vout0, vrc), vout0, m);
                    }
                    _mm256_storeu_ps(outptr + out_j, vout0);
                }
            else
                for( ; out_j < outW1; out_j += VECSZ )
                {
                    if (out_j + VECSZ > outW1 && out_j > pad_l)
                        out_j = outW1 - VECSZ;
                    int in_j = out_j * stride_w - pad_l;
                    __m256 v00, v01, v02, v10, v11, v12, v20, v21, v22, unused;
                    _mm256_load_deinterleave(imgptr0 + in_j, v00, v01);
                    _mm256_load_deinterleave(imgptr0 + in_j + 2, v02, unused);
                    _mm256_load_deinterleave(imgptr1 + in_j, v10, v11);
                    _mm256_load_deinterleave(imgptr1 + in_j + 2, v12, unused);
                    _mm256_load_deinterleave(imgptr2 + in_j, v20, v21);
                    _mm256_load_deinterleave(imgptr2 + in_j + 2, v22, unused);

                    __m256 vout0 = _mm256_fmadd_ps(v00, vw00, vbias);
                    __m256 vout1 = _mm256_mul_ps(v01, vw01);
                    __m256 vout2 = _mm256_mul_ps(v02, vw02);

                    vout0 = _mm256_fmadd_ps(v10, vw10, vout0);
                    vout1 = _mm256_fmadd_ps(v11, vw11, vout1);
                    vout2 = _mm256_fmadd_ps(v12, vw12, vout2);

                    vout0 = _mm256_fmadd_ps(v20, vw20, vout0);
                    vout1 = _mm256_fmadd_ps(v21, vw21, vout1);
                    vout2 = _mm256_fmadd_ps(v22, vw22, vout2);

                    vout0 = _mm256_add_ps(_mm256_add_ps(vout0, vout1), vout2);
                    if (relu)
                    {
                        __m256 m = _mm256_cmp_ps(vout0, z, _CMP_GT_OQ);
                        vout0 = _mm256_blendv_ps(_mm256_mul_ps(vout0, vrc), vout0, m);
                    }
                    _mm256_storeu_ps(outptr + out_j, vout0);
                }
        }

        for (; out_j < outW1; out_j++)
        {
            int in_j = out_j * stride_w - pad_l;
            out = imgptr0[in_j]*w00 + imgptr0[in_j + dilation_w]*w01 + imgptr0[in_j + dilation_w*2]*w02 +
                  imgptr1[in_j]*w10 + imgptr1[in_j + dilation_w]*w11 + imgptr1[in_j + dilation_w*2]*w12 +
                  imgptr2[in_j]*w20 + imgptr2[in_j + dilation_w]*w21 + imgptr2[in_j + dilation_w*2]*w22 + bias;
            if (relu)
                out = out > 0.f ? out : out*relu_coeff;
            outptr[out_j] = out;
        }

        for (; out_j < outW; out_j++ )
        {
            int in_j0 = out_j * stride_w - pad_l, in_j1 = in_j0 + dilation_w, in_j2 = in_j0 + dilation_w*2;
            float s0 = 1.f, s1 = 1.f, s2 = 1.f;
            if (in_j0 >= width)
            {
                in_j0 = 0;
                s0 = 0.f;
            }
            if (in_j1 >= width)
            {
                in_j1 = 0;
                s1 = 0.f;
            }
            if (in_j2 >= width)
            {
                in_j2 = 0;
                s2 = 0.f;
            }
            out = imgptr0[in_j0]*w00*s0 + imgptr0[in_j1]*w01*s1 + imgptr0[in_j2]*w02*s2 +
                  imgptr1[in_j0]*w10*s0 + imgptr1[in_j1]*w11*s1 + imgptr1[in_j2]*w12*s2 +
                  imgptr2[in_j0]*w20*s0 + imgptr2[in_j1]*w21*s1 + imgptr2[in_j2]*w22*s2 + bias;
            if (relu)
                out = out > 0.f ? out : out*relu_coeff;
            outptr[out_j] = out;
        }
    }
    _mm256_zeroupper();
}

553
// dst = vec * weights^t + bias
554 555 556
void fastGEMM1T( const float* vec, const float* weights,
                 size_t wstep, const float* bias,
                 float* dst, int nvecs, int vecsize )
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
{
    int i = 0;

    for( ; i <= nvecs - 8; i += 8 )
    {
        const float* wptr = weights + i*wstep;
        __m256 vs0 = _mm256_setzero_ps(), vs1 = _mm256_setzero_ps(),
               vs2 = _mm256_setzero_ps(), vs3 = _mm256_setzero_ps(),
               vs4 = _mm256_setzero_ps(), vs5 = _mm256_setzero_ps(),
               vs6 = _mm256_setzero_ps(), vs7 = _mm256_setzero_ps();

        for( int k = 0; k < vecsize; k += 8, wptr += 8 )
        {
            __m256 v = _mm256_load_ps(vec + k);

            vs0 = _mm256_fmadd_ps(_mm256_load_ps(wptr), v, vs0);
            vs1 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep), v, vs1);
            vs2 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*2), v, vs2);
            vs3 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*3), v, vs3);
            vs4 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*4), v, vs4);
            vs5 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*5), v, vs5);
            vs6 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*6), v, vs6);
            vs7 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*7), v, vs7);
        }

        __m256 s0 = _mm256_hadd_ps(_mm256_hadd_ps(vs0, vs1), _mm256_hadd_ps(vs2, vs3));
        __m256 s1 = _mm256_hadd_ps(_mm256_hadd_ps(vs4, vs5), _mm256_hadd_ps(vs6, vs7));

        s0 = _mm256_add_ps(s0, _mm256_permute2f128_ps(s0, s0, 1));
        s1 = _mm256_add_ps(s1, _mm256_permute2f128_ps(s1, s1, 1));

        s0 = _mm256_add_ps(s0, _mm256_castps128_ps256(_mm_loadu_ps(bias + i)));
        s1 = _mm256_add_ps(s1, _mm256_castps128_ps256(_mm_loadu_ps(bias + i + 4)));

        _mm_storeu_ps(dst + i, _mm256_castps256_ps128(s0));
        _mm_storeu_ps(dst + i + 4, _mm256_castps256_ps128(s1));
    }

    float temp = 0.f;
    for( ; i < nvecs; i++ )
    {
        const float* wptr = weights + i*wstep;
        __m256 vs0 = _mm256_setzero_ps();

        for( int k = 0; k < vecsize; k += 8, wptr += 8 )
        {
            __m256 v = _mm256_load_ps(vec + k);
            vs0 = _mm256_fmadd_ps(_mm256_load_ps(wptr), v, vs0);
        }

        __m256 s0 = _mm256_hadd_ps(_mm256_hadd_ps(vs0, vs0), vs0);
        s0 = _mm256_add_ps(s0, _mm256_permute2f128_ps(s0, s0, 1));
        _mm_store_ss(&temp, _mm256_castps256_ps128(s0));
        dst[i] = temp + bias[i];
    }

    _mm256_zeroupper();
}

616

617 618 619
void fastGEMM( const float* aptr, size_t astep, const float* bptr,
               size_t bstep, float* cptr, size_t cstep,
               int ma, int na, int nb )
620 621
{
    int n = 0;
622

A
Alexander Alekhin 已提交
623
#if CV_AVX512_SKX // AVX512VL is necessary to avoid register spilling
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    for( ; n <= nb - 32; n += 32 )
    {
        for( int m = 0; m < ma; m += 4 )
        {
            const float* aptr0 = aptr + astep*m;
            const float* aptr1 = aptr + astep*std::min(m+1, ma-1);
            const float* aptr2 = aptr + astep*std::min(m+2, ma-1);
            const float* aptr3 = aptr + astep*std::min(m+3, ma-1);

            float* cptr0 = cptr + cstep*m;
            float* cptr1 = cptr + cstep*std::min(m+1, ma-1);
            float* cptr2 = cptr + cstep*std::min(m+2, ma-1);
            float* cptr3 = cptr + cstep*std::min(m+3, ma-1);

            __m512 d00 = _mm512_setzero_ps(), d01 = _mm512_setzero_ps();
            __m512 d10 = _mm512_setzero_ps(), d11 = _mm512_setzero_ps();
            __m512 d20 = _mm512_setzero_ps(), d21 = _mm512_setzero_ps();
            __m512 d30 = _mm512_setzero_ps(), d31 = _mm512_setzero_ps();

            for( int k = 0; k < na; k++ )
            {
                __m512 a0 = _mm512_set1_ps(aptr0[k]);
                __m512 a1 = _mm512_set1_ps(aptr1[k]);
                __m512 a2 = _mm512_set1_ps(aptr2[k]);
                __m512 a3 = _mm512_set1_ps(aptr3[k]);
                __m512 b0 = _mm512_loadu_ps(bptr + k*bstep + n);
                __m512 b1 = _mm512_loadu_ps(bptr + k*bstep + n + 16);
                d00 = _mm512_fmadd_ps(a0, b0, d00);
                d01 = _mm512_fmadd_ps(a0, b1, d01);
                d10 = _mm512_fmadd_ps(a1, b0, d10);
                d11 = _mm512_fmadd_ps(a1, b1, d11);
                d20 = _mm512_fmadd_ps(a2, b0, d20);
                d21 = _mm512_fmadd_ps(a2, b1, d21);
                d30 = _mm512_fmadd_ps(a3, b0, d30);
                d31 = _mm512_fmadd_ps(a3, b1, d31);
            }

            _mm512_storeu_ps(cptr0 + n, d00);
            _mm512_storeu_ps(cptr0 + n + 16, d01);
            _mm512_storeu_ps(cptr1 + n, d10);
            _mm512_storeu_ps(cptr1 + n + 16, d11);
            _mm512_storeu_ps(cptr2 + n, d20);
            _mm512_storeu_ps(cptr2 + n + 16, d21);
            _mm512_storeu_ps(cptr3 + n, d30);
            _mm512_storeu_ps(cptr3 + n + 16, d31);
        }
    }
#endif

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
    for( ; n <= nb - 16; n += 16 )
    {
        for( int m = 0; m < ma; m += 4 )
        {
            const float* aptr0 = aptr + astep*m;
            const float* aptr1 = aptr + astep*std::min(m+1, ma-1);
            const float* aptr2 = aptr + astep*std::min(m+2, ma-1);
            const float* aptr3 = aptr + astep*std::min(m+3, ma-1);

            float* cptr0 = cptr + cstep*m;
            float* cptr1 = cptr + cstep*std::min(m+1, ma-1);
            float* cptr2 = cptr + cstep*std::min(m+2, ma-1);
            float* cptr3 = cptr + cstep*std::min(m+3, ma-1);

            __m256 d00 = _mm256_setzero_ps(), d01 = _mm256_setzero_ps();
            __m256 d10 = _mm256_setzero_ps(), d11 = _mm256_setzero_ps();
            __m256 d20 = _mm256_setzero_ps(), d21 = _mm256_setzero_ps();
            __m256 d30 = _mm256_setzero_ps(), d31 = _mm256_setzero_ps();

            for( int k = 0; k < na; k++ )
            {
                __m256 a0 = _mm256_set1_ps(aptr0[k]);
                __m256 a1 = _mm256_set1_ps(aptr1[k]);
                __m256 a2 = _mm256_set1_ps(aptr2[k]);
                __m256 a3 = _mm256_set1_ps(aptr3[k]);
                __m256 b0 = _mm256_loadu_ps(bptr + k*bstep + n);
                __m256 b1 = _mm256_loadu_ps(bptr + k*bstep + n + 8);
                d00 = _mm256_fmadd_ps(a0, b0, d00);
                d01 = _mm256_fmadd_ps(a0, b1, d01);
                d10 = _mm256_fmadd_ps(a1, b0, d10);
                d11 = _mm256_fmadd_ps(a1, b1, d11);
                d20 = _mm256_fmadd_ps(a2, b0, d20);
                d21 = _mm256_fmadd_ps(a2, b1, d21);
                d30 = _mm256_fmadd_ps(a3, b0, d30);
                d31 = _mm256_fmadd_ps(a3, b1, d31);
            }

            _mm256_storeu_ps(cptr0 + n, d00);
            _mm256_storeu_ps(cptr0 + n + 8, d01);
            _mm256_storeu_ps(cptr1 + n, d10);
            _mm256_storeu_ps(cptr1 + n + 8, d11);
            _mm256_storeu_ps(cptr2 + n, d20);
            _mm256_storeu_ps(cptr2 + n + 8, d21);
            _mm256_storeu_ps(cptr3 + n, d30);
            _mm256_storeu_ps(cptr3 + n + 8, d31);
        }
    }

    for( ; n < nb; n++ )
    {
        for( int m = 0; m < ma; m++ )
        {
            const float* aptr0 = aptr + astep*m;
            float* cptr0 = cptr + cstep*m;
            float d0 = 0.f;

            for( int k = 0; k < na; k++ )
                d0 += aptr0[k]*bptr[k*bstep + n];

            cptr0[n] = d0;
        }
    }
    _mm256_zeroupper();
}

738
#endif // CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
739

740 741
CV_CPU_OPTIMIZATION_NAMESPACE_END
}} // namespace