tf_importer.cpp 25.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.

/*
Implementation of Tensorflow models parser
*/

#include "../precomp.hpp"
using namespace cv;
using namespace cv::dnn;

#if HAVE_PROTOBUF
#include "graph.pb.h"

#include <iostream>
#include <fstream>
#include <algorithm>
#include <string>
#include <google/protobuf/message.h>
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include "tf_io.hpp"

using ::google::protobuf::RepeatedField;
using ::google::protobuf::RepeatedPtrField;
using ::google::protobuf::Message;
using ::google::protobuf::Descriptor;
using ::google::protobuf::FieldDescriptor;
using ::google::protobuf::Reflection;

namespace
{

static int toNCHW[] = {0, 2, 3, 1};

typedef std::vector<std::pair<String, int> > StrIntVector;

struct Pin
{
    Pin(const std::string &_name, int _blobIndex = 0) :
        name(_name), blobIndex(_blobIndex) {}

    Pin() :
        name(""), blobIndex(-1) {}

    std::string name;
    int blobIndex;
};

void blobShapeFromTensor(const tensorflow::TensorProto &tensor, MatShape& shape)
{
    shape.clear();
    if (tensor.has_tensor_shape())
    {
        const tensorflow::TensorShapeProto &_shape = tensor.tensor_shape();
        int i, n = _shape.dim_size();
        shape.resize(n);

        for (i = 0; i < n; i++)
            shape[i] = (int)_shape.dim(i).size();
    }
    else
    {
        CV_Error(Error::StsError, "Unknown shape of input tensor");
    }
}

template <typename T>
void parseTensor(const tensorflow::TensorProto &tensor, Mat &dstBlob)
{
    MatShape shape;
    blobShapeFromTensor(tensor, shape);
    int dims = (int)shape.size();

    if (dims == 4)
    {
        // REORDER blob NHWC to NCHW
        swap(shape[2], shape[3]); // NHCW
        swap(shape[1], shape[2]); // NCHW
    }

    dstBlob.create(shape, CV_32F);

    int size = tensor.tensor_content().size() / sizeof(T);
    CV_Assert(size == (int)dstBlob.total());

    float *dstData = dstBlob.ptr<float>();
    const T *data = reinterpret_cast<const T*>(tensor.tensor_content().c_str());

    if (dims == 4)
    {
        int num = shape[0], channels = shape[1], height = shape[2], width = shape[3];
        int total = num*channels*height*width;
        for(int i_n = 0; i_n < shape[0]; i_n++) {
            for(int i_c = 0; i_c < shape[1]; i_c++) {
                for(int i_h = 0; i_h < shape[2]; i_h++) {
                    for(int i_w = 0; i_w < shape[3]; i_w++) {
                       int dst_i = channels*height*width*i_n + height*width*i_c + width*i_h + i_w;
                       int src_i = channels*height*width*i_n + i_c + channels*width*i_h + channels*i_w;

                       CV_Assert(dst_i < total);
                       CV_Assert(src_i < total);

                       dstData[dst_i] = data[src_i];
                    }
                }
            }
        }
    } else {
        for (int i = 0; i < size; i++)
            dstData[i] = data[i];
    }
}

void blobFromTensor(const tensorflow::TensorProto &tensor, Mat &dstBlob)
{
    switch (tensor.dtype()) {
        case tensorflow::DT_FLOAT:
            parseTensor<float>(tensor, dstBlob);
            break;
        case tensorflow::DT_DOUBLE:
            parseTensor<double>(tensor, dstBlob);
            break;
        default:
            CV_Error(Error::StsError, "Tensor's data type is not supported");
            break;
    }
}

void printList(const tensorflow::AttrValue::ListValue &val)
{
    std::cout << "(";
    for (int i = 0; i < val.i_size(); i++)
        std::cout << " " << val.i(i);
    std::cout << " )";
}

void printTensorShape(const tensorflow::TensorShapeProto &shape)
{
    std::cout << "[ ";
    for (int d = 0; d < shape.dim_size(); d++)
        std::cout << shape.dim(d).name() <<
                     ":" << shape.dim(d).size() << " ";
    std::cout << "]";
}

void printTensor(const tensorflow::TensorProto &tensor)
{
    printTensorShape(tensor.tensor_shape());

    if (tensor.tensor_content().empty())
        return;

    switch (tensor.dtype())
    {
    case 1:  // float
        {
            const float *data = reinterpret_cast<const float*>(tensor.tensor_content().c_str());
            int size = tensor.tensor_content().size() / sizeof(float);
            for (int i = 0; i < std::min(10, size); i++)
                std::cout << " " << data[i];
            if (size > 10)
                std::cout << " ... " << size - 10 << " more";
            break;
        }
    case 3:  // int32
        {
            const int *data = reinterpret_cast<const int*>(tensor.tensor_content().c_str());
            int size = tensor.tensor_content().size() / sizeof(int);
            for (int i = 0; i < std::min(10, size); i++)
                std::cout << " " << data[i];
            if (size > 10)
                std::cout << " ... " << size - 10 << " more";
            break;
        }
    default:
        CV_Error(Error::StsError, "Tensor type is not supported");
        break;
    }
}

void printLayerAttr(const tensorflow::NodeDef &layer)
{
    std::cout << std::endl << layer.name() << ":" << layer.op();
    for (int ii = 0; ii < layer.input_size(); ii++)
        std::cout << "(" << layer.input(ii) << ")";
    std::cout << std::endl;
    google::protobuf::Map<std::string, tensorflow::AttrValue> attr
            = layer.attr();
    for (google::protobuf::Map<std::string, tensorflow::AttrValue>::const_iterator ai = attr.begin();
         ai != attr.end(); ++ai)
    {
        std::cout << ai->first << ":";
        if (ai->first == "dtype" || ai->first == "T")
            std::cout << ai->second.i();
        else if (ai->first == "padding")
            std::cout << ai->second.s();
        else if (ai->first == "transpose_a" || ai->first == "transpose_b")
            std::cout << ai->second.b();
        //            else if (ai->first == "shape")
        //              printTensorShape(ai->second.shape());
        else if (ai->first == "strides" || ai->first == "ksize")
            printList(ai->second.list());
        else
            printTensor(ai->second.tensor());
        std::cout << std::endl;
    }
}

bool hasLayerAttr(const tensorflow::NodeDef &layer, const std::string &name)
{
    google::protobuf::Map<std::string, tensorflow::AttrValue> attr = layer.attr();
    return attr.find(name) != attr.end();
}

const tensorflow::AttrValue& getLayerAttr(const tensorflow::NodeDef &layer, const std::string &name)
{
    return layer.attr().at(name);
}

void setStrides(LayerParams &layerParams, const tensorflow::NodeDef &layer)
{
    if (hasLayerAttr(layer, "strides"))
    {
        const tensorflow::AttrValue& val = getLayerAttr(layer, "strides");
        if (val.list().i_size() != 4 ||
            val.list().i(0) != 1 || val.list().i(3) != 1)
            CV_Error(Error::StsError, "Unsupported strides");
        layerParams.set("stride_h", static_cast<int>(val.list().i(1)));
        layerParams.set("stride_w", static_cast<int>(val.list().i(2)));
    }
}

DictValue parseDims(const tensorflow::TensorProto &tensor) {
    MatShape shape;
    blobShapeFromTensor(tensor, shape);
    int dims = (int)shape.size();

    CV_Assert(tensor.dtype() == tensorflow::DT_INT32);
    CV_Assert(dims == 1);

    int size = tensor.tensor_content().size() / sizeof(int);
    const int *data = reinterpret_cast<const int*>(tensor.tensor_content().c_str());
    // TODO: add reordering shape if dims == 4
    return DictValue::arrayInt(data, size);
}

void setKSize(LayerParams &layerParams, const tensorflow::NodeDef &layer)
{
    if (hasLayerAttr(layer, "ksize"))
    {
        const tensorflow::AttrValue& val = getLayerAttr(layer, "ksize");
        if (val.list().i_size() != 4 ||
            val.list().i(0) != 1 || val.list().i(3) != 1)
            CV_Error(Error::StsError, "Unsupported ksize");
        layerParams.set("kernel_h", static_cast<int>(val.list().i(1)));
        layerParams.set("kernel_w", static_cast<int>(val.list().i(2)));
    }
    else
    {
        layerParams.set("kernel_h", 1);
        layerParams.set("kernel_w", 1);
    }
}

void setPadding(LayerParams &layerParams, const tensorflow::NodeDef &layer)
{
    if (hasLayerAttr(layer, "padding"))
        layerParams.set("pad_mode", getLayerAttr(layer, "padding").s());
}

void RemoveIdentityOps(tensorflow::GraphDef& net) {
    typedef std::map<String, String>  IdentityOpsMap;
    IdentityOpsMap identity_ops;

    std::vector<int> identity_ops_idx;

    int layersCount = net.node_size();
    for (int li = 0; li < layersCount; li++)
    {
        const tensorflow::NodeDef &layer = net.node(li);
        String type = layer.op();

        if (type == "Identity") {
            identity_ops_idx.push_back(li);
            identity_ops[layer.name()] = layer.input(0);
        }
    }

    for (int li = 0; li < layersCount; li++)
    {
        tensorflow::NodeDef* layer = net.mutable_node(li);
        for (int input_id = 0; input_id < layer->input_size(); input_id++) {
            String input_op_name = layer->input(input_id);
            IdentityOpsMap::iterator it = identity_ops.find(input_op_name);

            if (it != identity_ops.end()) {
                layer->set_input(input_id, it->second);
            }
        }
    }

    std::sort(identity_ops_idx.begin(), identity_ops_idx.end());

    int removed_nodes = 0;
    for(size_t i = 0; i < identity_ops_idx.size(); i++) {
        int start_id = identity_ops_idx[i] - removed_nodes;
        net.mutable_node()->DeleteSubrange(start_id, 1);
        removed_nodes++;
    }
}

Pin parsePin(const std::string &name)
{
    Pin pin(name);

    size_t delimiter_pos = name.find_first_of(":");
    if (delimiter_pos != std::string::npos)
    {
        pin.name = name.substr(0, delimiter_pos);
        std::istringstream(name.substr(delimiter_pos + 1)) >> pin.blobIndex;
    }

    return pin;
}

StrIntVector getNextLayers(const tensorflow::GraphDef& net, const String& layer_name, const String& type = "")
{
   StrIntVector layers;

   for (int li = 0; li < net.node_size(); li++)
   {
       const tensorflow::NodeDef& layer = net.node(li);
       for (int input_id = 0; input_id < layer.input_size(); input_id++) {
           String input_op_name = parsePin(layer.input(input_id)).name;
           bool type_ok = type.empty() ? true : type == layer.op();
           if (input_op_name == layer_name && type_ok)
               layers.push_back(std::make_pair(layer.name(), li));
       }
   }

   return layers;
}

void ExcludeLayer(tensorflow::GraphDef& net, const int layer_index, const int input_blob_index, bool remove_from_net = true) {
    String layer_name = net.node(layer_index).name();
    StrIntVector layers = getNextLayers(net, layer_name);

    String removed_layer_input = net.node(layer_index).input(input_blob_index);

    for (size_t i = 0; i < layers.size(); i++)
    {
        tensorflow::NodeDef* layer = net.mutable_node(layers[i].second);
        for (int input_id = 0; input_id < layer->input_size(); input_id++) {
                String input_op_name = layer->input(input_id);

                if (input_op_name == layer_name) {
                    layer->set_input(input_id, removed_layer_input);
                }
        }
    }

    if (remove_from_net)
        net.mutable_node()->DeleteSubrange(layer_index, 1);
}

class TFImporter : public Importer {
public:
    TFImporter(const char *model);
    void populateNet(Net dstNet);
    ~TFImporter() {}

private:
    void kernelFromTensor(const tensorflow::TensorProto &tensor, Mat &dstBlob);

    void connect(const std::map<String, int>& layers_name_id_map, Net& network, const Pin& outPin,
                 const int input_layer_id, const int input_blob_id);
    void connectToAllBlobs(const std::map<String, int>& layer_id, Net& network, const Pin& outPin,
                           const int input_layer_id, const int input_blobs_count);
    const tensorflow::TensorProto& getConstBlob(const tensorflow::NodeDef &layer, std::map<String, int> const_layers,
                                                int input_blob_index = -1, int* actual_inp_blob_idx = 0);


    tensorflow::GraphDef net;
};

TFImporter::TFImporter(const char *model)
{
    if (model && model[0])
        ReadTFNetParamsFromBinaryFileOrDie(model, &net);
}

void TFImporter::kernelFromTensor(const tensorflow::TensorProto &tensor, Mat &dstBlob)
{
    MatShape shape;
    blobShapeFromTensor(tensor, shape);
    int dims = (int)shape.size();

    // TODO: other blob types
    CV_Assert(tensor.dtype() == tensorflow::DT_FLOAT);
    CV_Assert(dims == 4);

    // REORDER kernel HWIO to OIHW
    swap(shape[0], shape[2]); // IWHO
    swap(shape[1], shape[3]); // IOHW
    swap(shape[0], shape[1]); // OIHW

    dstBlob.create(shape, CV_32F);

    int size = tensor.tensor_content().size() / sizeof(float);
    CV_Assert(size == (int)dstBlob.total());

    float *dstData = dstBlob.ptr<float>();
    const float *data = reinterpret_cast<const float*>(tensor.tensor_content().c_str());

    int out_c = shape[0], input_c = shape[1], height = shape[2], width = shape[3];
    int total = out_c*input_c*height*width;
    for(int i_oc = 0; i_oc < out_c; i_oc++) {
        for(int i_ic = 0; i_ic < input_c; i_ic++) {
            for(int i_h = 0; i_h < height; i_h++) {
                for(int i_w = 0; i_w < width; i_w++) {
                    int dst_i = input_c*height*width*i_oc + height*width*i_ic + width*i_h + i_w;
                    int src_i = out_c*input_c*width*i_h + out_c*input_c*i_w + out_c*i_ic + i_oc;
                    CV_Assert(dst_i < total);
                    CV_Assert(src_i < total);
                   dstData[dst_i] = data[src_i];
                }
            }
        }
    }
}

void TFImporter::connect(const std::map<String, int>& layers_name_id_map, Net& network, const Pin& outPin,
             const int input_layer_id, const int input_blob_id)
{
    std::map<String, int>::const_iterator it = layers_name_id_map.find(outPin.name);
    if (it == layers_name_id_map.end())
        CV_Error(Error::StsError, "Input layer not found: " + outPin.name);
    network.connect(it->second, outPin.blobIndex, input_layer_id, input_blob_id);
}

void TFImporter::connectToAllBlobs(const std::map<String, int>& layer_id, Net& network, const Pin& outPin,
                     const int input_layer_id, const int input_blobs_count)
{
    for (int input_blob_id = 0; input_blob_id < input_blobs_count; input_blob_id++)
        connect(layer_id, network, outPin, input_layer_id, input_blob_id);
}

const tensorflow::TensorProto& TFImporter::getConstBlob(const tensorflow::NodeDef &layer, std::map<String, int> const_layers,
                                              int input_blob_index, int* actual_inp_blob_idx) {
    if (input_blob_index == -1) {
        for(int i = 0; i < layer.input_size(); i++) {
            Pin input = parsePin(layer.input(i));
            if (const_layers.find(input.name) != const_layers.end()) {
                if (input_blob_index != -1)
                    CV_Error(Error::StsError, "More than one input is Const op");

                input_blob_index = i;
            }
        }
    }

    if (input_blob_index == -1)
        CV_Error(Error::StsError, "Const input blob for weights not found");

    Pin kernel_inp = parsePin(layer.input(input_blob_index));
    if (const_layers.find(kernel_inp.name) == const_layers.end())
        CV_Error(Error::StsError, "Const kernel input not found");
    if (kernel_inp.blobIndex != 0)
        CV_Error(Error::StsError, "Unsupported kernel input");

    if(actual_inp_blob_idx) {
        *actual_inp_blob_idx = input_blob_index;
    }

    return net.node(const_layers.at(kernel_inp.name)).attr().at("value").tensor();
}


void TFImporter::populateNet(Net dstNet)
{
    RemoveIdentityOps(net);

    std::map<int, String> layers_to_ignore;

    int layersSize = net.node_size();

    // find all Const layers for params
    std::map<String, int> value_id;
    for (int li = 0; li < layersSize; li++)
    {
        const tensorflow::NodeDef &layer = net.node(li);
        String name = layer.name();
        String type = layer.op();

        if (type != "Const")
            continue;  // only Const parameters are supported

        if (layer.attr().find("value") != layer.attr().end())
        {
            value_id.insert(std::make_pair(name, li));
        }

        layers_to_ignore[li] = name;
    }

    std::map<String, int> layer_id;

    for (int li = 0; li < layersSize; li++)
    {
        const tensorflow::NodeDef &layer = net.node(li);
        String name = layer.name();
        String type = layer.op();
        LayerParams layerParams;

        if(layers_to_ignore.find(li) != layers_to_ignore.end())
            continue;

        if (type == "Conv2D")
        {
            layerParams.set("bias_term", false);
            layerParams.blobs.resize(1);

            StrIntVector next_layers = getNextLayers(net, name, "BiasAdd");
            if (next_layers.size() == 1) {
                layerParams.set("bias_term", true);
                layerParams.blobs.resize(2);

                int weights_layer_index = next_layers[0].second;

                blobFromTensor(getConstBlob(net.node(weights_layer_index), value_id), layerParams.blobs[1]);
                ExcludeLayer(net, weights_layer_index, 0, false);
                layers_to_ignore[weights_layer_index] = next_layers[0].first;
            }

            kernelFromTensor(getConstBlob(layer, value_id), layerParams.blobs[0]);
            const int* kshape = layerParams.blobs[0].size.p;
            layerParams.set("kernel_h", kshape[2]);
            layerParams.set("kernel_w", kshape[3]);
            layerParams.set("num_output", kshape[0]);

            setStrides(layerParams, layer);
            setPadding(layerParams, layer);

            int id = dstNet.addLayer(name, "Convolution", layerParams);
            layer_id[name] = id;

            // one input only
            connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
        }
        else if (type == "BiasAdd" || type == "Add")
        {
            layerParams.blobs.resize(1);
            blobFromTensor(getConstBlob(layer, value_id), layerParams.blobs[0]);

            int id = dstNet.addLayer(name, "Shift", layerParams);
            layer_id[name] = id;

            // one input only
            connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
        }
        else if (type == "Identity")
        {
            int id = dstNet.addLayer(name, "Identity", layerParams);
            layer_id[name] = id;

            connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
        }
        else if (type == "MatMul")
        {
            CV_Assert(layer.input_size() == 2);

            layerParams.set("bias_term", false);
            layerParams.blobs.resize(1);

            StrIntVector next_layers = getNextLayers(net, name, "BiasAdd");
            if (next_layers.size() == 1) {
                layerParams.set("bias_term", true);
                layerParams.blobs.resize(2);

                int weights_layer_index = next_layers[0].second;
                blobFromTensor(getConstBlob(net.node(weights_layer_index), value_id), layerParams.blobs[1]);
                ExcludeLayer(net, weights_layer_index, 0, false);
                layers_to_ignore[weights_layer_index] = next_layers[0].first;
            }

            int kernel_blob_index = -1;
            blobFromTensor(getConstBlob(layer, value_id, -1, &kernel_blob_index), layerParams.blobs[0]);

            if (kernel_blob_index == 1) { // In this case output is computed by x*W formula - W should be transposed
                Mat data = layerParams.blobs[0].t();
                layerParams.blobs[0] = data.clone();
            }

            layerParams.set("num_output", layerParams.blobs[0].size[0]);

            int id = dstNet.addLayer(name, "InnerProduct", layerParams);
            layer_id[name] = id;

            // one input only
            int input_blob_index = kernel_blob_index == 0 ? 1 : 0;
            connect(layer_id, dstNet, parsePin(layer.input(input_blob_index)), id, 0);
        }
        else if (type == "Reshape")
        {
            layerParams.set("dim", parseDims(getConstBlob(layer, value_id, 1)));
            layerParams.set("reorder_dims", true);

            int id = dstNet.addLayer(name, "Reshape", layerParams);
            layer_id[name] = id;

            // one input only
            connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
        }
        else if (type == "Const")
        {
        }
        else if (type == "Softmax")
        {
            int id = dstNet.addLayer(name, "Softmax", layerParams);
            layer_id[name] = id;

            connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
        }
        else if (type == "LRN")
        {
            if(hasLayerAttr(layer, "alpha")) {
                layerParams.set("alpha", getLayerAttr(layer, "alpha").f());
            }
            if(hasLayerAttr(layer, "beta")) {
                layerParams.set("beta", getLayerAttr(layer, "beta").f());
            }
            if(hasLayerAttr(layer, "depth_radius")) {
                int radius = (int)getLayerAttr(layer, "depth_radius").i();
                layerParams.set("local_size", 2*radius + 1);
            }
            if(hasLayerAttr(layer, "bias")) {
                layerParams.set("bias", getLayerAttr(layer, "bias").f());
            }
            layerParams.set("norm_by_size", false);

            int id = dstNet.addLayer(name, "LRN", layerParams);
            layer_id[name] = id;

            connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
        }
        else if (type == "Concat")
        {
            int axis = getConstBlob(layer, value_id, 0).int_val().Get(0);
            layerParams.set("axis", toNCHW[axis]);

            int id = dstNet.addLayer(name, "Concat", layerParams);
            layer_id[name] = id;

            // input(0) is concat_dim
            for (int ii = 1; ii < layer.input_size(); ii++)
            {
                Pin inp = parsePin(layer.input(ii));
                if (layer_id.find(inp.name) == layer_id.end())
                    CV_Error(Error::StsError, "Input layer not found: " + inp.name);
                dstNet.connect(layer_id.at(inp.name), inp.blobIndex, id, ii - 1);
            }
        }
        else if (type == "Relu")
        {
            int id = dstNet.addLayer(name, "ReLU", layerParams);
            layer_id[name] = id;

            connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
        }
        else if (type == "MaxPool")
        {
            layerParams.set("pool", "max");

            setKSize(layerParams, layer);
            setStrides(layerParams, layer);
            setPadding(layerParams, layer);

            int id = dstNet.addLayer(name, "Pooling", layerParams);
            layer_id[name] = id;

            connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
        }
        else if (type == "AvgPool")
        {
            layerParams.set("pool", "ave");

            setKSize(layerParams, layer);
            setStrides(layerParams, layer);
            setPadding(layerParams, layer);

            int id = dstNet.addLayer(name, "Pooling", layerParams);
            layer_id[name] = id;

            connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
        }
        else if (type == "Placeholder")
        {
            std::vector<String> netInputs(1);
            netInputs[0] = name;
            layer_id[name] = 0;
            dstNet.setInputsNames(netInputs);
        }
        else if (type == "Split") {
            // TODO: determing axis index remapping by input dimensions order of input blob
            // TODO: slicing input may be Const op
            // TODO: slicing kernels for convolutions - in current implenmentation it is impossible
            // TODO: add parsing num of slices parameter
            CV_Assert(layer.input_size() == 2);
            // num_split
            // 1st blob is dims tensor
            layerParams.set("slice_point", DictValue::arrayReal((double*)0, 0));

            int axis = getConstBlob(layer, value_id, 0).int_val().Get(0);
            layerParams.set("axis", toNCHW[axis]);

            int id = dstNet.addLayer(name, "Slice", layerParams);
            layer_id[name] = id;

            // one input only
            connect(layer_id, dstNet, parsePin(layer.input(1)), id, 0);
        }
        else
        {
            printLayerAttr(layer);
            CV_Error_(Error::StsError, ("Unknown layer type %s in op %s", type.c_str(), name.c_str()));
        }
    }
}

} // namespace

Ptr<Importer> cv::dnn::createTensorflowImporter(const String &model)
{
    return Ptr<Importer>(new TFImporter(model.c_str()));
}

#else //HAVE_PROTOBUF

Ptr<Importer> cv::dnn::createTensorflowImporter(const String&)
{
    CV_Error(cv::Error::StsNotImplemented, "libprotobuf required to import data from TensorFlow models");
    return Ptr<Importer>();
}

#endif //HAVE_PROTOBUF

Net cv::dnn::readNetFromTensorflow(const String &model)
{
    Ptr<Importer> importer = createTensorflowImporter(model);
    Net net;
    if (importer)
        importer->populateNet(net);
    return net;
}