提交 fff405fa 编写于 作者: C chegar

Merge

......@@ -708,8 +708,9 @@ public final class Class<T> implements java.io.Serializable,
*/
@SuppressWarnings("unchecked")
public TypeVariable<Class<T>>[] getTypeParameters() {
if (getGenericSignature() != null)
return (TypeVariable<Class<T>>[])getGenericInfo().getTypeParameters();
ClassRepository info = getGenericInfo();
if (info != null)
return (TypeVariable<Class<T>>[])info.getTypeParameters();
else
return (TypeVariable<Class<T>>[])new TypeVariable<?>[0];
}
......@@ -759,15 +760,19 @@ public final class Class<T> implements java.io.Serializable,
* @since 1.5
*/
public Type getGenericSuperclass() {
if (getGenericSignature() != null) {
// Historical irregularity:
// Generic signature marks interfaces with superclass = Object
// but this API returns null for interfaces
if (isInterface())
return null;
return getGenericInfo().getSuperclass();
} else
ClassRepository info = getGenericInfo();
if (info == null) {
return getSuperclass();
}
// Historical irregularity:
// Generic signature marks interfaces with superclass = Object
// but this API returns null for interfaces
if (isInterface()) {
return null;
}
return info.getSuperclass();
}
/**
......@@ -830,7 +835,23 @@ public final class Class<T> implements java.io.Serializable,
*
* @return an array of interfaces implemented by this class.
*/
public native Class<?>[] getInterfaces();
public Class<?>[] getInterfaces() {
ReflectionData<T> rd = reflectionData();
if (rd == null) {
// no cloning required
return getInterfaces0();
} else {
Class<?>[] interfaces = rd.interfaces;
if (interfaces == null) {
interfaces = getInterfaces0();
rd.interfaces = interfaces;
}
// defensively copy before handing over to user code
return interfaces.clone();
}
}
private native Class<?>[] getInterfaces0();
/**
* Returns the {@code Type}s representing the interfaces
......@@ -882,10 +903,8 @@ public final class Class<T> implements java.io.Serializable,
* @since 1.5
*/
public Type[] getGenericInterfaces() {
if (getGenericSignature() != null)
return getGenericInfo().getSuperInterfaces();
else
return getInterfaces();
ClassRepository info = getGenericInfo();
return (info == null) ? getInterfaces() : info.getSuperInterfaces();
}
......@@ -2396,6 +2415,8 @@ public final class Class<T> implements java.io.Serializable,
// Intermediate results for getFields and getMethods
volatile Field[] declaredPublicFields;
volatile Method[] declaredPublicMethods;
volatile Class<?>[] interfaces;
// Value of classRedefinedCount when we created this ReflectionData instance
final int redefinedCount;
......@@ -2471,10 +2492,10 @@ public final class Class<T> implements java.io.Serializable,
}
// Generic signature handling
private native String getGenericSignature();
private native String getGenericSignature0();
// Generic info repository; lazily initialized
private transient ClassRepository genericInfo;
private volatile transient ClassRepository genericInfo;
// accessor for factory
private GenericsFactory getFactory() {
......@@ -2482,15 +2503,20 @@ public final class Class<T> implements java.io.Serializable,
return CoreReflectionFactory.make(this, ClassScope.make(this));
}
// accessor for generic info repository
// accessor for generic info repository;
// generic info is lazily initialized
private ClassRepository getGenericInfo() {
// lazily initialize repository if necessary
ClassRepository genericInfo = this.genericInfo;
if (genericInfo == null) {
// create and cache generic info repository
genericInfo = ClassRepository.make(getGenericSignature(),
getFactory());
String signature = getGenericSignature0();
if (signature == null) {
genericInfo = ClassRepository.NONE;
} else {
genericInfo = ClassRepository.make(signature, getFactory());
}
this.genericInfo = genericInfo;
}
return genericInfo; //return cached repository
return (genericInfo != ClassRepository.NONE) ? genericInfo : null;
}
// Annotations handling
......
......@@ -24,14 +24,11 @@
*/
package java.lang.invoke;
import java.io.Serializable;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import sun.invoke.util.Wrapper;
import static sun.invoke.util.Wrapper.*;
import static sun.invoke.util.Wrapper.forPrimitiveType;
import static sun.invoke.util.Wrapper.forWrapperType;
import static sun.invoke.util.Wrapper.isWrapperType;
/**
* Abstract implementation of a lambda metafactory which provides parameter unrolling and input validation.
......@@ -67,34 +64,52 @@ import static sun.invoke.util.Wrapper.*;
final MethodType instantiatedMethodType; // Instantiated erased functional interface method type "(Integer)Object"
final boolean isSerializable; // Should the returned instance be serializable
final Class<?>[] markerInterfaces; // Additional marker interfaces to be implemented
final MethodType[] additionalBridges; // Signatures of additional methods to bridge
/**
* Meta-factory constructor.
*
* @param caller Stacked automatically by VM; represents a lookup context with the accessibility privileges
* of the caller.
* @param invokedType Stacked automatically by VM; the signature of the invoked method, which includes the
* expected static type of the returned lambda object, and the static types of the captured
* arguments for the lambda. In the event that the implementation method is an instance method,
* the first argument in the invocation signature will correspond to the receiver.
* @param samMethod The primary method in the functional interface to which the lambda or method reference is
* being converted, represented as a method handle.
* @param implMethod The implementation method which should be called (with suitable adaptation of argument
* types, return types, and adjustment for captured arguments) when methods of the resulting
* functional interface instance are invoked.
* @param instantiatedMethodType The signature of the primary functional interface method after type variables
* are substituted with their instantiation from the capture site
* @param caller Stacked automatically by VM; represents a lookup context
* with the accessibility privileges of the caller.
* @param invokedType Stacked automatically by VM; the signature of the
* invoked method, which includes the expected static
* type of the returned lambda object, and the static
* types of the captured arguments for the lambda. In
* the event that the implementation method is an
* instance method, the first argument in the invocation
* signature will correspond to the receiver.
* @param samMethod The primary method in the functional interface to which
* the lambda or method reference is being converted,
* represented as a method handle.
* @param implMethod The implementation method which should be called
* (with suitable adaptation of argument types, return
* types, and adjustment for captured arguments) when
* methods of the resulting functional interface instance
* are invoked.
* @param instantiatedMethodType The signature of the primary functional
* interface method after type variables are
* substituted with their instantiation from
* the capture site
* @param isSerializable Should the lambda be made serializable? If set,
* either the target type or one of the additional SAM
* types must extend {@code Serializable}.
* @param markerInterfaces Additional interfaces which the lambda object
* should implement.
* @param additionalBridges Method types for additional signatures to be
* bridged to the implementation method
* @throws ReflectiveOperationException
* @throws LambdaConversionException If any of the meta-factory protocol invariants are violated
* @throws LambdaConversionException If any of the meta-factory protocol
* invariants are violated
*/
AbstractValidatingLambdaMetafactory(MethodHandles.Lookup caller,
MethodType invokedType,
MethodHandle samMethod,
MethodHandle implMethod,
MethodType instantiatedMethodType,
int flags,
Class<?>[] markerInterfaces)
boolean isSerializable,
Class<?>[] markerInterfaces,
MethodType[] additionalBridges)
throws ReflectiveOperationException, LambdaConversionException {
this.targetClass = caller.lookupClass();
this.invokedType = invokedType;
......@@ -118,32 +133,22 @@ import static sun.invoke.util.Wrapper.*;
implKind == MethodHandleInfo.REF_invokeInterface;
this.implDefiningClass = implInfo.getDeclaringClass();
this.implMethodType = implInfo.getMethodType();
this.instantiatedMethodType = instantiatedMethodType;
this.isSerializable = isSerializable;
this.markerInterfaces = markerInterfaces;
this.additionalBridges = additionalBridges;
if (!samClass.isInterface()) {
throw new LambdaConversionException(String.format(
"Functional interface %s is not an interface",
samClass.getName()));
"Functional interface %s is not an interface", samClass.getName()));
}
boolean foundSerializableSupertype = Serializable.class.isAssignableFrom(samBase);
for (Class<?> c : markerInterfaces) {
if (!c.isInterface()) {
throw new LambdaConversionException(String.format(
"Marker interface %s is not an interface",
c.getName()));
"Marker interface %s is not an interface", c.getName()));
}
foundSerializableSupertype |= Serializable.class.isAssignableFrom(c);
}
this.isSerializable = ((flags & LambdaMetafactory.FLAG_SERIALIZABLE) != 0)
|| foundSerializableSupertype;
if (isSerializable && !foundSerializableSupertype) {
markerInterfaces = Arrays.copyOf(markerInterfaces, markerInterfaces.length + 1);
markerInterfaces[markerInterfaces.length-1] = Serializable.class;
}
this.markerInterfaces = markerInterfaces;
}
/**
......@@ -265,9 +270,9 @@ import static sun.invoke.util.Wrapper.*;
}
/**
* Check type adaptability
* @param fromType
* @param toType
* Check type adaptability for parameter types.
* @param fromType Type to convert from
* @param toType Type to convert to
* @param strict If true, do strict checks, else allow that fromType may be parameterized
* @return True if 'fromType' can be passed to an argument of 'toType'
*/
......@@ -299,15 +304,14 @@ import static sun.invoke.util.Wrapper.*;
}
} else {
// both are reference types: fromType should be a superclass of toType.
return strict? toType.isAssignableFrom(fromType) : true;
return !strict || toType.isAssignableFrom(fromType);
}
}
}
/**
* Check type adaptability for return types -- special handling of void type) and parameterized fromType
* @param fromType
* @param toType
* Check type adaptability for return types -- special handling of void type)
* and parameterized fromType
* @return True if 'fromType' can be converted to 'toType'
*/
private boolean isAdaptableToAsReturn(Class<?> fromType, Class<?> toType) {
......@@ -338,89 +342,4 @@ import static sun.invoke.util.Wrapper.*;
}
***********************/
/**
* Find the functional interface method and corresponding abstract methods
* which should be bridged. The functional interface method and those to be
* bridged will have the same name and number of parameters. Check for
* matching default methods (non-abstract), the VM will create bridges for
* default methods; We don't have enough readily available type information
* to distinguish between where the functional interface method should be
* bridged and where the default method should be bridged; This situation is
* flagged.
*/
class MethodAnalyzer {
private final Method[] methods = samBase.getMethods();
private Method samMethod = null;
private final List<Method> methodsToBridge = new ArrayList<>(methods.length);
private boolean conflictFoundBetweenDefaultAndBridge = false;
MethodAnalyzer() {
String samMethodName = samInfo.getName();
Class<?>[] samParamTypes = samMethodType.parameterArray();
int samParamLength = samParamTypes.length;
Class<?> samReturnType = samMethodType.returnType();
Class<?> objectClass = Object.class;
List<Method> defaultMethods = new ArrayList<>(methods.length);
for (Method m : methods) {
if (m.getName().equals(samMethodName) && m.getDeclaringClass() != objectClass) {
Class<?>[] mParamTypes = m.getParameterTypes();
if (mParamTypes.length == samParamLength) {
// Method matches name and parameter length -- and is not Object
if (Modifier.isAbstract(m.getModifiers())) {
// Method is abstract
if (m.getReturnType().equals(samReturnType)
&& Arrays.equals(mParamTypes, samParamTypes)) {
// Exact match, this is the SAM method signature
samMethod = m;
} else if (!hasMatchingBridgeSignature(m)) {
// Record bridges, exclude methods with duplicate signatures
methodsToBridge.add(m);
}
} else {
// Record default methods for conflict testing
defaultMethods.add(m);
}
}
}
}
for (Method dm : defaultMethods) {
if (hasMatchingBridgeSignature(dm)) {
conflictFoundBetweenDefaultAndBridge = true;
break;
}
}
}
Method getSamMethod() {
return samMethod;
}
List<Method> getMethodsToBridge() {
return methodsToBridge;
}
boolean conflictFoundBetweenDefaultAndBridge() {
return conflictFoundBetweenDefaultAndBridge;
}
/**
* Search the list of previously found bridge methods to determine if there is a method with the same signature
* (return and parameter types) as the specified method.
*
* @param m The method to match
* @return True if the method was found, False otherwise
*/
private boolean hasMatchingBridgeSignature(Method m) {
Class<?>[] ptypes = m.getParameterTypes();
Class<?> rtype = m.getReturnType();
for (Method md : methodsToBridge) {
if (md.getReturnType().equals(rtype) && Arrays.equals(ptypes, md.getParameterTypes())) {
return true;
}
}
return false;
}
}
}
......@@ -25,15 +25,16 @@
package java.lang.invoke;
import java.lang.reflect.Constructor;
import java.lang.reflect.Method;
import java.security.ProtectionDomain;
import java.util.concurrent.atomic.AtomicInteger;
import jdk.internal.org.objectweb.asm.*;
import static jdk.internal.org.objectweb.asm.Opcodes.*;
import sun.misc.Unsafe;
import java.lang.reflect.Constructor;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.security.ProtectionDomain;
import java.util.concurrent.atomic.AtomicInteger;
import static jdk.internal.org.objectweb.asm.Opcodes.*;
/**
* Lambda metafactory implementation which dynamically creates an inner-class-like class per lambda callsite.
......@@ -41,6 +42,8 @@ import java.security.PrivilegedAction;
* @see LambdaMetafactory
*/
/* package */ final class InnerClassLambdaMetafactory extends AbstractValidatingLambdaMetafactory {
private static final Unsafe UNSAFE = Unsafe.getUnsafe();
private static final int CLASSFILE_VERSION = 51;
private static final String METHOD_DESCRIPTOR_VOID = Type.getMethodDescriptor(Type.VOID_TYPE);
private static final String NAME_MAGIC_ACCESSOR_IMPL = "java/lang/invoke/MagicLambdaImpl";
......@@ -77,36 +80,51 @@ import java.security.PrivilegedAction;
private final Type[] instantiatedArgumentTypes; // ASM types for the functional interface arguments
/**
* General meta-factory constructor, standard cases and allowing for uncommon options such as serialization.
* General meta-factory constructor, supporting both standard cases and
* allowing for uncommon options such as serialization or bridging.
*
* @param caller Stacked automatically by VM; represents a lookup context with the accessibility privileges
* of the caller.
* @param invokedType Stacked automatically by VM; the signature of the invoked method, which includes the
* expected static type of the returned lambda object, and the static types of the captured
* arguments for the lambda. In the event that the implementation method is an instance method,
* the first argument in the invocation signature will correspond to the receiver.
* @param samMethod The primary method in the functional interface to which the lambda or method reference is
* being converted, represented as a method handle.
* @param implMethod The implementation method which should be called (with suitable adaptation of argument
* types, return types, and adjustment for captured arguments) when methods of the resulting
* functional interface instance are invoked.
* @param instantiatedMethodType The signature of the primary functional interface method after type variables
* are substituted with their instantiation from the capture site
* @param flags A bitmask containing flags that may influence the translation of this lambda expression. Defined
* fields include FLAG_SERIALIZABLE.
* @param markerInterfaces Additional interfaces which the lambda object should implement.
* @param caller Stacked automatically by VM; represents a lookup context
* with the accessibility privileges of the caller.
* @param invokedType Stacked automatically by VM; the signature of the
* invoked method, which includes the expected static
* type of the returned lambda object, and the static
* types of the captured arguments for the lambda. In
* the event that the implementation method is an
* instance method, the first argument in the invocation
* signature will correspond to the receiver.
* @param samMethod The primary method in the functional interface to which
* the lambda or method reference is being converted,
* represented as a method handle.
* @param implMethod The implementation method which should be called (with
* suitable adaptation of argument types, return types,
* and adjustment for captured arguments) when methods of
* the resulting functional interface instance are invoked.
* @param instantiatedMethodType The signature of the primary functional
* interface method after type variables are
* substituted with their instantiation from
* the capture site
* @param isSerializable Should the lambda be made serializable? If set,
* either the target type or one of the additional SAM
* types must extend {@code Serializable}.
* @param markerInterfaces Additional interfaces which the lambda object
* should implement.
* @param additionalBridges Method types for additional signatures to be
* bridged to the implementation method
* @throws ReflectiveOperationException
* @throws LambdaConversionException If any of the meta-factory protocol invariants are violated
* @throws LambdaConversionException If any of the meta-factory protocol
* invariants are violated
*/
public InnerClassLambdaMetafactory(MethodHandles.Lookup caller,
MethodType invokedType,
MethodHandle samMethod,
MethodHandle implMethod,
MethodType instantiatedMethodType,
int flags,
Class<?>[] markerInterfaces)
boolean isSerializable,
Class<?>[] markerInterfaces,
MethodType[] additionalBridges)
throws ReflectiveOperationException, LambdaConversionException {
super(caller, invokedType, samMethod, implMethod, instantiatedMethodType, flags, markerInterfaces);
super(caller, invokedType, samMethod, implMethod, instantiatedMethodType,
isSerializable, markerInterfaces, additionalBridges);
implMethodClassName = implDefiningClass.getName().replace('.', '/');
implMethodName = implInfo.getName();
implMethodDesc = implMethodType.toMethodDescriptorString();
......@@ -134,7 +152,8 @@ import java.security.PrivilegedAction;
* @return a CallSite, which, when invoked, will return an instance of the
* functional interface
* @throws ReflectiveOperationException
* @throws LambdaConversionException If properly formed functional interface is not found
* @throws LambdaConversionException If properly formed functional interface
* is not found
*/
@Override
CallSite buildCallSite() throws ReflectiveOperationException, LambdaConversionException {
......@@ -174,8 +193,16 @@ import java.security.PrivilegedAction;
* Generate a class file which implements the functional
* interface, define and return the class.
*
* @implNote The class that is generated does not include signature
* information for exceptions that may be present on the SAM method.
* This is to reduce classfile size, and is harmless as checked exceptions
* are erased anyway, no one will ever compile against this classfile,
* and we make no guarantees about the reflective properties of lambda
* objects.
*
* @return a Class which implements the functional interface
* @throws LambdaConversionException If properly formed functional interface is not found
* @throws LambdaConversionException If properly formed functional interface
* is not found
*/
private Class<?> spinInnerClass() throws LambdaConversionException {
String samName = samBase.getName().replace('.', '/');
......@@ -197,28 +224,22 @@ import java.security.PrivilegedAction;
generateConstructor();
MethodAnalyzer ma = new MethodAnalyzer();
// Forward the SAM method
if (ma.getSamMethod() == null) {
throw new LambdaConversionException(String.format("Functional interface method not found: %s", samMethodType));
} else {
generateForwardingMethod(ma.getSamMethod(), false);
}
String methodDescriptor = samMethodType.toMethodDescriptorString();
MethodVisitor mv = cw.visitMethod(ACC_PUBLIC, samInfo.getName(), methodDescriptor, null, null);
new ForwardingMethodGenerator(mv).generate(methodDescriptor);
// Forward the bridges
// @@@ The commented-out code is temporary, pending the VM's ability to bridge all methods on request
// @@@ Once the VM can do fail-over, uncomment the !ma.wasDefaultMethodFound() test, and emit the appropriate
// @@@ classfile attribute to request custom bridging. See 8002092.
if (!ma.getMethodsToBridge().isEmpty() /* && !ma.conflictFoundBetweenDefaultAndBridge() */ ) {
for (Method m : ma.getMethodsToBridge()) {
generateForwardingMethod(m, true);
if (additionalBridges != null) {
for (MethodType mt : additionalBridges) {
methodDescriptor = mt.toMethodDescriptorString();
mv = cw.visitMethod(ACC_PUBLIC|ACC_BRIDGE, samInfo.getName(), methodDescriptor, null, null);
new ForwardingMethodGenerator(mv).generate(methodDescriptor);
}
}
if (isSerializable) {
if (isSerializable)
generateWriteReplace();
}
cw.visitEnd();
......@@ -247,8 +268,8 @@ import java.security.PrivilegedAction;
}
);
return (Class<?>) Unsafe.getUnsafe().defineClass(lambdaClassName, classBytes, 0, classBytes.length,
loader, pd);
return UNSAFE.defineClass(lambdaClassName, classBytes, 0, classBytes.length,
loader, pd);
}
/**
......@@ -265,7 +286,8 @@ import java.security.PrivilegedAction;
ctor.visitVarInsn(ALOAD, 0);
ctor.visitVarInsn(argTypes[i].getOpcode(ILOAD), lvIndex + 1);
lvIndex += argTypes[i].getSize();
ctor.visitFieldInsn(PUTFIELD, lambdaClassName, argNames[i], argTypes[i].getDescriptor());
ctor.visitFieldInsn(PUTFIELD, lambdaClassName, argNames[i],
argTypes[i].getDescriptor());
}
ctor.visitInsn(RETURN);
ctor.visitMaxs(-1, -1); // Maxs computed by ClassWriter.COMPUTE_MAXS, these arguments ignored
......@@ -283,7 +305,7 @@ import java.security.PrivilegedAction;
mv.visitCode();
mv.visitTypeInsn(NEW, NAME_SERIALIZED_LAMBDA);
mv.visitInsn(DUP);;
mv.visitInsn(DUP);
mv.visitLdcInsn(Type.getType(targetClass));
mv.visitLdcInsn(samInfo.getReferenceKind());
mv.visitLdcInsn(invokedType.returnType().getName().replace('.', '/'));
......@@ -312,24 +334,6 @@ import java.security.PrivilegedAction;
mv.visitEnd();
}
/**
* Generate a method which calls the lambda implementation method,
* converting arguments, as needed.
* @param m The method whose signature should be generated
* @param isBridge True if this methods should be flagged as a bridge
*/
private void generateForwardingMethod(Method m, boolean isBridge) {
Class<?>[] exceptionTypes = m.getExceptionTypes();
String[] exceptionNames = new String[exceptionTypes.length];
for (int i = 0; i < exceptionTypes.length; i++) {
exceptionNames[i] = exceptionTypes[i].getName().replace('.', '/');
}
String methodDescriptor = Type.getMethodDescriptor(m);
int access = isBridge? ACC_PUBLIC | ACC_BRIDGE : ACC_PUBLIC;
MethodVisitor mv = cw.visitMethod(access, m.getName(), methodDescriptor, null, exceptionNames);
new ForwardingMethodGenerator(mv).generate(m);
}
/**
* This class generates a method body which calls the lambda implementation
* method, converting arguments, as needed.
......@@ -340,26 +344,26 @@ import java.security.PrivilegedAction;
super(mv);
}
void generate(Method m) throws InternalError {
void generate(String methodDescriptor) {
visitCode();
if (implKind == MethodHandleInfo.REF_newInvokeSpecial) {
visitTypeInsn(NEW, implMethodClassName);
visitInsn(DUP);;
visitInsn(DUP);
}
for (int i = 0; i < argTypes.length; i++) {
visitVarInsn(ALOAD, 0);
visitFieldInsn(GETFIELD, lambdaClassName, argNames[i], argTypes[i].getDescriptor());
}
convertArgumentTypes(Type.getArgumentTypes(m));
convertArgumentTypes(Type.getArgumentTypes(methodDescriptor));
// Invoke the method we want to forward to
visitMethodInsn(invocationOpcode(), implMethodClassName, implMethodName, implMethodDesc);
// Convert the return value (if any) and return it
// Note: if adapting from non-void to void, the 'return' instruction will pop the unneeded result
Type samReturnType = Type.getReturnType(m);
Type samReturnType = Type.getReturnType(methodDescriptor);
convertType(implMethodReturnType, samReturnType, samReturnType);
visitInsn(samReturnType.getOpcode(Opcodes.IRETURN));
......
......@@ -25,6 +25,9 @@
package java.lang.invoke;
import java.io.Serializable;
import java.util.Arrays;
/**
* <p>Bootstrap methods for converting lambda expressions and method references to functional interface objects.</p>
*
......@@ -44,16 +47,11 @@ package java.lang.invoke;
*
* <p>When parameterized types are used, the instantiated type of the functional interface method may be different
* from that in the functional interface. For example, consider
* <code>interface I&lt;T&gt; { int m(T x); }</code> if this functional interface type is used in a lambda
* <code>I&lt;Byte&gt; v = ...</code>, we need both the actual functional interface method which has the signature
* <code>(Object)int</code> and the erased instantiated type of the functional interface method (or simply
* {@code interface I<T> { int m(T x); }} if this functional interface type is used in a lambda
* {@code I<Byte>; v = ...}, we need both the actual functional interface method which has the signature
* {@code (Object)int} and the erased instantiated type of the functional interface method (or simply
* <I>instantiated method type</I>), which has signature
* <code>(Byte)int</code>.
*
* <p>While functional interfaces only have a single abstract method from the language perspective (concrete
* methods in Object are and default methods may be present), at the bytecode level they may actually have multiple
* methods because of the need for bridge methods. Invoking any of these methods on the lambda object will result
* in invoking the implementation method.
* {@code (Byte)int}.
*
* <p>The argument list of the implementation method and the argument list of the functional interface method(s)
* may differ in several ways. The implementation methods may have additional arguments to accommodate arguments
......@@ -144,38 +142,59 @@ package java.lang.invoke;
*/
public class LambdaMetafactory {
/** Flag for alternate metafactories indicating the lambda object is must to be serializable */
/** Flag for alternate metafactories indicating the lambda object is
* must to be serializable */
public static final int FLAG_SERIALIZABLE = 1 << 0;
/**
* Flag for alternate metafactories indicating the lambda object implements other marker interfaces
* Flag for alternate metafactories indicating the lambda object implements
* other marker interfaces
* besides Serializable
*/
public static final int FLAG_MARKERS = 1 << 1;
/**
* Flag for alternate metafactories indicating the lambda object requires
* additional bridge methods
*/
public static final int FLAG_BRIDGES = 1 << 2;
private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0];
private static final MethodType[] EMPTY_MT_ARRAY = new MethodType[0];
/**
* Standard meta-factory for conversion of lambda expressions or method references to functional interfaces.
/**
* Standard meta-factory for conversion of lambda expressions or method
* references to functional interfaces.
*
* @param caller Stacked automatically by VM; represents a lookup context with the accessibility privileges
* of the caller.
* @param invokedName Stacked automatically by VM; the name of the invoked method as it appears at the call site.
* @param caller Stacked automatically by VM; represents a lookup context
* with the accessibility privileges of the caller.
* @param invokedName Stacked automatically by VM; the name of the invoked
* method as it appears at the call site.
* Currently unused.
* @param invokedType Stacked automatically by VM; the signature of the invoked method, which includes the
* expected static type of the returned lambda object, and the static types of the captured
* arguments for the lambda. In the event that the implementation method is an instance method,
* the first argument in the invocation signature will correspond to the receiver.
* @param samMethod The primary method in the functional interface to which the lambda or method reference is
* being converted, represented as a method handle.
* @param implMethod The implementation method which should be called (with suitable adaptation of argument
* types, return types, and adjustment for captured arguments) when methods of the resulting
* functional interface instance are invoked.
* @param instantiatedMethodType The signature of the primary functional interface method after type variables
* are substituted with their instantiation from the capture site
* @return a CallSite, which, when invoked, will return an instance of the functional interface
* @param invokedType Stacked automatically by VM; the signature of the
* invoked method, which includes the expected static
* type of the returned lambda object, and the static
* types of the captured arguments for the lambda.
* In the event that the implementation method is an
* instance method, the first argument in the invocation
* signature will correspond to the receiver.
* @param samMethod The primary method in the functional interface to which
* the lambda or method reference is being converted,
* represented as a method handle.
* @param implMethod The implementation method which should be called
* (with suitable adaptation of argument types, return
* types, and adjustment for captured arguments) when
* methods of the resulting functional interface instance
* are invoked.
* @param instantiatedMethodType The signature of the primary functional
* interface method after type variables
* are substituted with their instantiation
* from the capture site
* @return a CallSite, which, when invoked, will return an instance of the
* functional interface
* @throws ReflectiveOperationException
* @throws LambdaConversionException If any of the meta-factory protocol invariants are violated
* @throws LambdaConversionException If any of the meta-factory protocol
* invariants are violated
*/
public static CallSite metaFactory(MethodHandles.Lookup caller,
String invokedName,
......@@ -185,15 +204,17 @@ public class LambdaMetafactory {
MethodType instantiatedMethodType)
throws ReflectiveOperationException, LambdaConversionException {
AbstractValidatingLambdaMetafactory mf;
mf = new InnerClassLambdaMetafactory(caller, invokedType, samMethod, implMethod, instantiatedMethodType,
0, EMPTY_CLASS_ARRAY);
mf = new InnerClassLambdaMetafactory(caller, invokedType, samMethod,
implMethod, instantiatedMethodType,
false, EMPTY_CLASS_ARRAY, EMPTY_MT_ARRAY);
mf.validateMetafactoryArgs();
return mf.buildCallSite();
}
/**
* Alternate meta-factory for conversion of lambda expressions or method references to functional interfaces,
* which supports serialization and other uncommon options.
* Alternate meta-factory for conversion of lambda expressions or method
* references to functional interfaces, which supports serialization and
* other uncommon options.
*
* The declared argument list for this method is:
*
......@@ -213,21 +234,28 @@ public class LambdaMetafactory {
* int flags,
* int markerInterfaceCount, // IF flags has MARKERS set
* Class... markerInterfaces // IF flags has MARKERS set
* int bridgeCount, // IF flags has BRIDGES set
* MethodType... bridges // IF flags has BRIDGES set
* )
*
*
* @param caller Stacked automatically by VM; represents a lookup context with the accessibility privileges
* of the caller.
* @param invokedName Stacked automatically by VM; the name of the invoked method as it appears at the call site.
* Currently unused.
* @param invokedType Stacked automatically by VM; the signature of the invoked method, which includes thefu
* expected static type of the returned lambda object, and the static types of the captured
* arguments for the lambda. In the event that the implementation method is an instance method,
* the first argument in the invocation signature will correspond to the receiver.
* @param args argument to pass, flags, marker interface count, and marker interfaces as described above
* @return a CallSite, which, when invoked, will return an instance of the functional interface
* @param caller Stacked automatically by VM; represents a lookup context
* with the accessibility privileges of the caller.
* @param invokedName Stacked automatically by VM; the name of the invoked
* method as it appears at the call site. Currently unused.
* @param invokedType Stacked automatically by VM; the signature of the
* invoked method, which includes the expected static
* type of the returned lambda object, and the static
* types of the captured arguments for the lambda.
* In the event that the implementation method is an
* instance method, the first argument in the invocation
* signature will correspond to the receiver.
* @param args flags and optional arguments, as described above
* @return a CallSite, which, when invoked, will return an instance of the
* functional interface
* @throws ReflectiveOperationException
* @throws LambdaConversionException If any of the meta-factory protocol invariants are violated
* @throws LambdaConversionException If any of the meta-factory protocol
* invariants are violated
*/
public static CallSite altMetaFactory(MethodHandles.Lookup caller,
String invokedName,
......@@ -239,6 +267,7 @@ public class LambdaMetafactory {
MethodType instantiatedMethodType = (MethodType)args[2];
int flags = (Integer) args[3];
Class<?>[] markerInterfaces;
MethodType[] bridges;
int argIndex = 4;
if ((flags & FLAG_MARKERS) != 0) {
int markerCount = (Integer) args[argIndex++];
......@@ -248,9 +277,30 @@ public class LambdaMetafactory {
}
else
markerInterfaces = EMPTY_CLASS_ARRAY;
AbstractValidatingLambdaMetafactory mf;
mf = new InnerClassLambdaMetafactory(caller, invokedType, samMethod, implMethod, instantiatedMethodType,
flags, markerInterfaces);
if ((flags & FLAG_BRIDGES) != 0) {
int bridgeCount = (Integer) args[argIndex++];
bridges = new MethodType[bridgeCount];
System.arraycopy(args, argIndex, bridges, 0, bridgeCount);
argIndex += bridgeCount;
}
else
bridges = EMPTY_MT_ARRAY;
boolean foundSerializableSupertype = Serializable.class.isAssignableFrom(invokedType.returnType());
for (Class<?> c : markerInterfaces)
foundSerializableSupertype |= Serializable.class.isAssignableFrom(c);
boolean isSerializable = ((flags & LambdaMetafactory.FLAG_SERIALIZABLE) != 0)
|| foundSerializableSupertype;
if (isSerializable && !foundSerializableSupertype) {
markerInterfaces = Arrays.copyOf(markerInterfaces, markerInterfaces.length + 1);
markerInterfaces[markerInterfaces.length-1] = Serializable.class;
}
AbstractValidatingLambdaMetafactory mf
= new InnerClassLambdaMetafactory(caller, invokedType, samMethod,
implMethod, instantiatedMethodType,
isSerializable, markerInterfaces, bridges);
mf.validateMetafactoryArgs();
return mf.buildCallSite();
}
......
......@@ -27,10 +27,13 @@ package java.lang.invoke;
import sun.invoke.util.Wrapper;
import java.lang.ref.WeakReference;
import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.ConcurrentHashMap;
import sun.invoke.util.BytecodeDescriptor;
import static java.lang.invoke.MethodHandleStatics.*;
import sun.invoke.util.VerifyType;
......@@ -171,7 +174,7 @@ class MethodType implements java.io.Serializable {
return new IndexOutOfBoundsException(num.toString());
}
static final WeakInternSet internTable = new WeakInternSet();
static final ConcurrentWeakInternSet<MethodType> internTable = new ConcurrentWeakInternSet<>();
static final Class<?>[] NO_PTYPES = {};
......@@ -1013,267 +1016,104 @@ s.writeObject(this.parameterArray());
}
/**
* Weak intern set based on implementation of the <tt>HashSet</tt> and
* <tt>WeakHashMap</tt>, with <em>weak values</em>. Note: <tt>null</tt>
* values will yield <tt>NullPointerException</tt>
* Refer to implementation of WeakInternSet for details.
* Simple implementation of weak concurrent intern set.
*
* @see java.util.HashMap
* @see java.util.HashSet
* @see java.util.WeakHashMap
* @see java.lang.ref.WeakReference
* @param <T> interned type
*/
private static class WeakInternSet {
// The default initial capacity -- MUST be a power of two.
private static final int DEFAULT_INITIAL_CAPACITY = 16;
private static class ConcurrentWeakInternSet<T> {
// The maximum capacity, used if a higher value is implicitly specified
// by either of the constructors with arguments.
// MUST be a power of two <= 1<<30.
private static final int MAXIMUM_CAPACITY = 1 << 30;
private final ConcurrentMap<WeakEntry<T>, WeakEntry<T>> map;
private final ReferenceQueue<T> stale;
// The load factor used when none specified in constructor.
private static final float DEFAULT_LOAD_FACTOR = 0.75f;
// The table, resized as necessary. Length MUST Always be a power of two.
private Entry[] table;
// The number of entries contained in this set.
private int size;
// The next size value at which to resize (capacity * load factor).
private int threshold;
// The load factor for the hash table.
private final float loadFactor;
// Reference queue for cleared WeakEntries
private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
private Entry[] newTable(int n) {
return new Entry[n];
}
/**
* Constructs a new, empty <tt>WeakInternSet</tt> with the default initial
* capacity (16) and load factor (0.75).
*/
WeakInternSet() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = DEFAULT_INITIAL_CAPACITY;
table = newTable(DEFAULT_INITIAL_CAPACITY);
}
/**
* Applies a supplemental hash function to a given hashCode, which
* defends against poor quality hash functions. This is critical
* because hashing uses power-of-two length hash tables, that
* otherwise encounter collisions for hashCodes that do not differ
* in lower bits.
* @param h preliminary hash code value
* @return supplemental hash code value
*/
private static int hash(int h) {
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
public ConcurrentWeakInternSet() {
this.map = new ConcurrentHashMap<>();
this.stale = new ReferenceQueue<>();
}
/**
* Checks for equality of non-null reference x and possibly-null y. By
* default uses Object.equals.
* @param x first object to compare
* @param y second object to compare
* @return <tt>true</tt> if objects are equal
*/
private static boolean eq(Object x, Object y) {
return x == y || x.equals(y);
}
/**
* Returns index for hash code h.
* @param h raw hash code
* @param length length of table (power of 2)
* @return index in table
*/
private static int indexFor(int h, int length) {
return h & (length-1);
}
/**
* Expunges stale entries from the table.
* Get the existing interned element.
* This method returns null if no element is interned.
*
* @param elem element to look up
* @return the interned element
*/
private void expungeStaleEntries() {
for (Object x; (x = queue.poll()) != null; ) {
synchronized (queue) {
Entry entry = (Entry) x;
int i = indexFor(entry.hash, table.length);
Entry prev = table[i];
Entry p = prev;
while (p != null) {
Entry next = p.next;
if (p == entry) {
if (prev == entry)
table[i] = next;
else
prev.next = next;
entry.next = null;
size--;
break;
}
prev = p;
p = next;
}
public T get(T elem) {
if (elem == null) throw new NullPointerException();
expungeStaleElements();
WeakEntry<T> value = map.get(new WeakEntry<>(elem));
if (value != null) {
T res = value.get();
if (res != null) {
return res;
}
}
return null;
}
/**
* Returns the table after first expunging stale entries.
* @return an expunged hash table
*/
private Entry[] getTable() {
expungeStaleEntries();
return table;
}
/**
* Returns the entry to which the specified value is mapped,
* or {@code null} if this set contains no entry for the value.
*
* <p>More formally, if this set contains an entry for value
* {@code entry} to a value {@code value} such that
* {@code entry.equals(value)}, then this method returns {@code entry};
* otherwise it returns {@code null}.
* Interns the element.
* Always returns non-null element, matching the one in the intern set.
* Under the race against another add(), it can return <i>different</i>
* element, if another thread beats us to interning it.
*
* @param value value to search for in set
* @return interned value if in set, otherwise <tt>null</tt>
* @param elem element to add
* @return element that was actually added
*/
synchronized MethodType get(MethodType value) {
int h = hash(value.hashCode());
Entry[] tab = getTable();
int index = indexFor(h, tab.length);
Entry e = tab[index];
MethodType g;
while (e != null) {
if (e.hash == h && eq(value, g = e.get()))
return g;
e = e.next;
}
return null;
public T add(T elem) {
if (elem == null) throw new NullPointerException();
// Playing double race here, and so spinloop is required.
// First race is with two concurrent updaters.
// Second race is with GC purging weak ref under our feet.
// Hopefully, we almost always end up with a single pass.
T interned;
WeakEntry<T> e = new WeakEntry<>(elem, stale);
do {
expungeStaleElements();
WeakEntry<T> exist = map.putIfAbsent(e, e);
interned = (exist == null) ? elem : exist.get();
} while (interned == null);
return interned;
}
/**
* Attempts to add the specified value to the set and returns same value.
* If the set previously contained an entry for this value, the old
* value is left untouched and returned as the result.
*
* @param value value to be added
* @return the previous entry associated with <tt>value</tt>, or
* <tt>value</tt> if there was no previous entry found
*/
synchronized MethodType add(MethodType value) {
int h = hash(value.hashCode());
Entry[] tab = getTable();
int i = indexFor(h, tab.length);
MethodType g;
for (Entry e = tab[i]; e != null; e = e.next) {
if (h == e.hash && eq(value, g = e.get())) {
return g;
}
private void expungeStaleElements() {
Reference<? extends T> reference;
while ((reference = stale.poll()) != null) {
map.remove(reference);
}
Entry e = tab[i];
tab[i] = new Entry(value, queue, h, e);
if (++size >= threshold)
resize(tab.length * 2);
return value;
}
/**
* Rehashes the contents of this set into a new array with a
* larger capacity. This method is called automatically when the
* number of keys in this set reaches its threshold.
*
* If current capacity is MAXIMUM_CAPACITY, this method does not
* resize the set, but sets threshold to Integer.MAX_VALUE.
* This has the effect of preventing future calls.
*
* @param newCapacity the new capacity, MUST be a power of two;
* must be greater than current capacity unless current
* capacity is MAXIMUM_CAPACITY (in which case value
* is irrelevant)
*/
private void resize(int newCapacity) {
Entry[] oldTable = getTable();
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
private static class WeakEntry<T> extends WeakReference<T> {
public final int hashcode;
public WeakEntry(T key, ReferenceQueue<T> queue) {
super(key, queue);
hashcode = key.hashCode();
}
Entry[] newTable = newTable(newCapacity);
transfer(oldTable, newTable);
table = newTable;
/*
* If ignoring null elements and processing ref queue caused massive
* shrinkage, then restore old table. This should be rare, but avoids
* unbounded expansion of garbage-filled tables.
*/
if (size >= threshold / 2) {
threshold = (int)(newCapacity * loadFactor);
} else {
expungeStaleEntries();
transfer(newTable, oldTable);
table = oldTable;
public WeakEntry(T key) {
super(key);
hashcode = key.hashCode();
}
}
/**
* Transfers all entries from src to dest tables
* @param src original table
* @param dest new table
*/
private void transfer(Entry[] src, Entry[] dest) {
for (int j = 0; j < src.length; ++j) {
Entry e = src[j];
src[j] = null;
while (e != null) {
Entry next = e.next;
MethodType key = e.get();
if (key == null) {
e.next = null; // Help GC
size--;
} else {
int i = indexFor(e.hash, dest.length);
e.next = dest[i];
dest[i] = e;
}
e = next;
@Override
public boolean equals(Object obj) {
if (obj instanceof WeakEntry) {
Object that = ((WeakEntry) obj).get();
Object mine = get();
return (that == null || mine == null) ? (this == obj) : mine.equals(that);
}
return false;
}
}
/**
* The entries in this hash table extend WeakReference, using its main ref
* field as the key.
*/
private static class Entry extends WeakReference<MethodType> {
final int hash;
Entry next;
/**
* Creates new entry.
*/
Entry(MethodType key,
ReferenceQueue<Object> queue,
int hash, Entry next) {
super(key, queue);
this.hash = hash;
this.next = next;
@Override
public int hashCode() {
return hashcode;
}
}
}
}
/*
* Copyright (c) 1996, 2012, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
......@@ -248,6 +248,7 @@ public abstract class Signature extends SignatureSpi {
Signature sig;
if (instance.impl instanceof Signature) {
sig = (Signature)instance.impl;
sig.algorithm = algorithm;
} else {
SignatureSpi spi = (SignatureSpi)instance.impl;
sig = new Delegate(spi, algorithm);
......
......@@ -40,6 +40,8 @@ import java.lang.reflect.Type;
*/
public class ClassRepository extends GenericDeclRepository<ClassSignature> {
public static final ClassRepository NONE = ClassRepository.make("Ljava/lang/Object;", null);
private Type superclass; // caches the generic superclass info
private Type[] superInterfaces; // caches the generic superinterface info
......
......@@ -55,7 +55,7 @@ extern jboolean VerifyFixClassname(char *utf_name);
static JNINativeMethod methods[] = {
{"getName0", "()" STR, (void *)&JVM_GetClassName},
{"getSuperclass", "()" CLS, NULL},
{"getInterfaces", "()[" CLS, (void *)&JVM_GetClassInterfaces},
{"getInterfaces0", "()[" CLS, (void *)&JVM_GetClassInterfaces},
{"getClassLoader0", "()" JCL, (void *)&JVM_GetClassLoader},
{"isInterface", "()Z", (void *)&JVM_IsInterface},
{"getSigners", "()[" OBJ, (void *)&JVM_GetClassSigners},
......@@ -70,7 +70,7 @@ static JNINativeMethod methods[] = {
{"getProtectionDomain0", "()" PD, (void *)&JVM_GetProtectionDomain},
{"getDeclaredClasses0", "()[" CLS, (void *)&JVM_GetDeclaredClasses},
{"getDeclaringClass", "()" CLS, (void *)&JVM_GetDeclaringClass},
{"getGenericSignature", "()" STR, (void *)&JVM_GetClassSignature},
{"getGenericSignature0", "()" STR, (void *)&JVM_GetClassSignature},
{"getRawAnnotations", "()" BA, (void *)&JVM_GetClassAnnotations},
{"getConstantPool", "()" CPL, (void *)&JVM_GetClassConstantPool},
{"desiredAssertionStatus0","("CLS")Z",(void *)&JVM_DesiredAssertionStatus},
......
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* Portions Copyright (c) 2013 IBM Corporation
*/
/*
* @test
* @bug 8014620
* @summary Signature.getAlgorithm return null in special case
* @run main/othervm SignatureGetAlgorithm
* @author youdwei
*/
import java.security.*;
public class SignatureGetAlgorithm {
public static void main(String[] args) throws Exception {
Provider testProvider = new TestProvider();
Security.addProvider(testProvider);
Signature sig = Signature.getInstance("MySignatureAlg");
String algorithm = sig.getAlgorithm();
System.out.println("Algorithm Name: " + algorithm);
if (algorithm == null) {
throw new Exception("algorithm name should be 'MySignatureAlg'");
}
}
public static class TestProvider extends Provider {
TestProvider() {
super("test", 1.0, "test");
put("Signature.MySignatureAlg",
"SignatureGetAlgorithm$MySignatureAlg");
}
}
public static class MySignatureAlg extends Signature {
public MySignatureAlg() {
super(null);
}
MySignatureAlg(String s) {
super(s);
}
@Override
protected void engineInitVerify(PublicKey publicKey)
throws InvalidKeyException {
}
@Override
protected void engineInitSign(PrivateKey privateKey)
throws InvalidKeyException {
}
@Override
protected void engineUpdate(byte b) throws SignatureException {
}
@Override
protected void engineUpdate(byte[] b, int off, int len)
throws SignatureException {
}
@Override
protected byte[] engineSign()
throws SignatureException {
return new byte[0];
}
@Override
protected boolean engineVerify(byte[] sigBytes)
throws SignatureException {
return false;
}
@Override
@Deprecated
protected void engineSetParameter(String param, Object value)
throws InvalidParameterException {
}
@Override
@Deprecated
protected Object engineGetParameter(String param)
throws InvalidParameterException {
return null;
}
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册