Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
openanolis
dragonwell8_jdk
提交
ca60259b
D
dragonwell8_jdk
项目概览
openanolis
/
dragonwell8_jdk
通知
4
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
dragonwell8_jdk
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ca60259b
编写于
10月 29, 2019
作者:
B
bpb
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
8225603: Enhancement for big integers
Reviewed-by: darcy, ahgross, rhalade
上级
2705e226
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
80 addition
and
10 deletion
+80
-10
src/share/classes/java/math/MutableBigInteger.java
src/share/classes/java/math/MutableBigInteger.java
+17
-7
src/share/native/sun/security/ec/impl/mpi.c
src/share/native/sun/security/ec/impl/mpi.c
+6
-3
test/java/math/BigInteger/ModInvTime.java
test/java/math/BigInteger/ModInvTime.java
+57
-0
未找到文件。
src/share/classes/java/math/MutableBigInteger.java
浏览文件 @
ca60259b
/*
/*
* Copyright (c) 1999, 20
13
, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1999, 20
20
, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
*
* This code is free software; you can redistribute it and/or modify it
* This code is free software; you can redistribute it and/or modify it
...
@@ -2088,8 +2088,8 @@ class MutableBigInteger {
...
@@ -2088,8 +2088,8 @@ class MutableBigInteger {
}
}
/**
/**
* Calculate the multiplicative inverse of this mod
mod, where mod is odd.
* Calculate the multiplicative inverse of this mod
ulo mod, where the mod
* This and mod are not changed by the calculation.
*
argument is odd.
This and mod are not changed by the calculation.
*
*
* This method implements an algorithm due to Richard Schroeppel, that uses
* This method implements an algorithm due to Richard Schroeppel, that uses
* the same intermediate representation as Montgomery Reduction
* the same intermediate representation as Montgomery Reduction
...
@@ -2143,8 +2143,18 @@ class MutableBigInteger {
...
@@ -2143,8 +2143,18 @@ class MutableBigInteger {
k
+=
trailingZeros
;
k
+=
trailingZeros
;
}
}
while
(
c
.
sign
<
0
)
if
(
c
.
compare
(
p
)
>=
0
)
{
// c has a larger magnitude than p
c
.
signedAdd
(
p
);
MutableBigInteger
remainder
=
c
.
divide
(
p
,
new
MutableBigInteger
());
// The previous line ignores the sign so we copy the data back
// into c which will restore the sign as needed (and converts
// it back to a SignedMutableBigInteger)
c
.
copyValue
(
remainder
);
}
if
(
c
.
sign
<
0
)
{
c
.
signedAdd
(
p
);
}
return
fixup
(
c
,
p
,
k
);
return
fixup
(
c
,
p
,
k
);
}
}
...
@@ -2182,8 +2192,8 @@ class MutableBigInteger {
...
@@ -2182,8 +2192,8 @@ class MutableBigInteger {
}
}
// In theory, c may be greater than p at this point (Very rare!)
// In theory, c may be greater than p at this point (Very rare!)
while
(
c
.
compare
(
p
)
>=
0
)
if
(
c
.
compare
(
p
)
>=
0
)
c
.
subtract
(
p
);
c
=
c
.
divide
(
p
,
new
MutableBigInteger
()
);
return
c
;
return
c
;
}
}
...
...
src/share/native/sun/security/ec/impl/mpi.c
浏览文件 @
ca60259b
/*
/*
* Copyright (c) 2007, 20
14
, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2007, 20
20
, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
* Use is subject to license terms.
*
*
* This library is free software; you can redistribute it and/or
* This library is free software; you can redistribute it and/or
...
@@ -34,7 +34,7 @@
...
@@ -34,7 +34,7 @@
* Netscape Communications Corporation
* Netscape Communications Corporation
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
*
*
* Last Modified Date from the Original Code:
June 2014
* Last Modified Date from the Original Code:
Nov 2019
*********************************************************************** */
*********************************************************************** */
/* Arbitrary precision integer arithmetic library */
/* Arbitrary precision integer arithmetic library */
...
@@ -2134,7 +2134,10 @@ mp_err s_mp_almost_inverse(const mp_int *a, const mp_int *p, mp_int *c)
...
@@ -2134,7 +2134,10 @@ mp_err s_mp_almost_inverse(const mp_int *a, const mp_int *p, mp_int *c)
}
}
}
}
if
(
res
>=
0
)
{
if
(
res
>=
0
)
{
while
(
MP_SIGN
(
c
)
!=
MP_ZPOS
)
{
if
(
s_mp_cmp
(
c
,
p
)
>=
0
)
{
MP_CHECKOK
(
mp_div
(
c
,
p
,
NULL
,
c
));
}
if
(
MP_SIGN
(
c
)
!=
MP_ZPOS
)
{
MP_CHECKOK
(
mp_add
(
c
,
p
,
c
)
);
MP_CHECKOK
(
mp_add
(
c
,
p
,
c
)
);
}
}
res
=
k
;
res
=
k
;
...
...
test/java/math/BigInteger/ModInvTime.java
0 → 100644
浏览文件 @
ca60259b
/*
* Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 8225603
* @summary Tests whether modInverse() completes in a reasonable time
* @run main/othervm ModInvTime
*/
import
java.math.BigInteger
;
public
class
ModInvTime
{
public
static
void
main
(
String
[]
args
)
throws
InterruptedException
{
BigInteger
prime
=
new
BigInteger
(
"39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643"
);
BigInteger
s
=
new
BigInteger
(
"9552729729729327851382626410162104591956625415831952158766936536163093322096473638446154604799898109762512409920799"
);
System
.
out
.
format
(
"int length: %d, modulus length: %d%n"
,
s
.
bitLength
(),
prime
.
bitLength
());
System
.
out
.
println
(
"Computing modular inverse ..."
);
BigInteger
mi
=
s
.
modInverse
(
prime
);
System
.
out
.
format
(
"Modular inverse: %s%n"
,
mi
);
check
(
s
,
prime
,
mi
);
BigInteger
ns
=
s
.
negate
();
BigInteger
nmi
=
ns
.
modInverse
(
prime
);
System
.
out
.
format
(
"Modular inverse of negation: %s%n"
,
nmi
);
check
(
ns
,
prime
,
nmi
);
}
public
static
void
check
(
BigInteger
val
,
BigInteger
mod
,
BigInteger
inv
)
{
BigInteger
r
=
inv
.
multiply
(
val
).
remainder
(
mod
);
if
(
r
.
signum
()
==
-
1
)
r
=
r
.
add
(
mod
);
if
(!
r
.
equals
(
BigInteger
.
ONE
))
throw
new
RuntimeException
(
"Numerically incorrect modular inverse"
);
}
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录